用户名: 密码: 验证码:
城市快速路交通态势评估理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市规模的不断扩大,快速路已成为支撑整个道路交通系统运转的关键,发挥着不可替代的作用。尽管快速路的定位是为长距离、快速交通出行服务,但日益增长的交通压力所带来的交通拥堵问题却也不可避免的发生在快速路上。正是由于相对封闭的道路结构,阻碍了排队车辆的疏散,导致快速路交通拥堵时空影响更加明显。由于快速路的重要功能和特殊地位,控制和解决城市快速路交通拥堵问题迫在眉睫。基于现有的交通数据和信息资源,如何快速捕捉交通运行的外在特征和演变规律,准确评判快速路网的交通现状及潜在能力,合理预测交通拥堵的变化和发展趋势,是快速路交通管理的关键。
     因此,论文立足于为交通管理体系服务,从北京市快速路的实际问题和需求出发,开展对交通态势评估的关键理论和技术方法研究,重在突出城市快速路交通流的宏观特征和动态变化。
     为全面了解快速路交通特性,基于实测数据标定了交通流基本图模型,对比分析了流量、占有率的时变关系和周期性特征;通过时间比例筛选,获取了高峰时段快速路网中的常发性拥堵路段,分析了典型路段的拥堵时空比例分布;引入残存函数并采用Lognormal概率分布描述了快速路段常发性交通拥堵持续时间特征;采用速度时空分布云图直观呈现了偶发事件下的交通拥堵演变规律。
     为实现对快速路网交通拥堵状态的预报和预警,提出了基于改进元胞传输模型的快速路交通状态估计和预测模型。基于快速路物理结构和交通特点,引入可变元胞长度变量进行了不等长元胞划分,提出了“虚拟传输能力”概念适度扩大了元胞传输的时间间隔,并采用Van Aerde交通流模型替代假设的“梯形”结构模型,描述了交通流参数间的非线性关系;基于改进元胞传输模型获得交通流基本参数,设计了对交通拥堵强度、扩散范围、持续时间和影响程度的参数估计算法;选取密度为状态变量、速度为观测变量,建立了快速路非线性交通状态空间预测模型;引入了扩展卡尔曼滤波理论解决了非线性模型的多步预测问题;并最终通过了模型的实例验证。
     围绕快速路宏观交通状态评价问题,构建了基于运行速度里程分布的“宏观交通状态指数”评价模型。提出了交通流宏观基本图模型的矢量算法,建立了北京市不同时期的快速路平均流量-平均密度-平均速度的关系基本图,用于描述网络实际交通服务水平;在此基础上,提出了快速路宏观交通状态的五级划分方法;经过大量统计分析得到了不同宏观交通状态下的运行速度概率分布模型,建立了基于百分位速度临界值的快速路“宏观交通状态指数”评价方法,并通过西三环路实例验证了模型的适用性。
     最后,选取北京市西三环快速路网为研究对象,实现了交通状态多步预测;同时对路网宏观交通状态进行了预评价。
     论文从北京市快速路交通问题的实际出发,完成了从理论分析、特征研究、模型构建到模型应用四个环节研究工作,同时从提高模型精度、扩大模型应用等方面提出了展望,以期能够为城市交通管理提供可靠的交通态势评估结果。
With the continued expansion of urban scale, expressways have become key factors that support the entire urban road traffic running, playing an irreplaceable role in urban transportation systems. Although the function of expressways is positioned to serve the long-distance and high-speed traffic, congestions caused by the increasing traffic demand inevitably happen on expressways. The relatively closed structure of the expressway network blocks the release of jammed traffic, resulting in more apparent effect of congestions in both temporal and spacialdimensions. Due to the important function and position of expressways, controlling and solving the congestion problems on the expressway network has become particularly urgent. Based on the available traffic data resources, the keys to the traffic managements on experessways are to quickly capture the external characteristics and evolutions of traffic, to accurately evaluate the traffic condition and potential capacity, and to reasonably predict the developing trend of congestions.
     In this context, this dissertation is intended to study key theories and technologies, by responding to practical problems and needs of the expressway network in Beijing, attempting to support traffic management and controls, with an emphasis on the macroscopic characteristics and dynamic evolution of the traffic stream on expressways,
     In order to completely understand the traffic characteristics on expressway networks, the traffic stream relationship model for expressways is calibrated based on the actual data; the time-varying correlation between traffic flow and occupancy and their periodic feature on different workdays are comparatively analyzed. Then, the recurrent severely congested segments on expressway networks during the peak hours are obtained using the method of time rate screening, and the temporal-spatial congested rate on typical expressway links is analyzed. The survival function and Lognormal distribution function are introduced to analyze the duration distribution characteristics of recurrent congestions, and the temporal-spatial speed distribution charts are used to visually show the evolution of traffic congestions.
     In order to realize the forecasting and early warning of congestions on expressways, the traffic estimation and prediction model of the traffic evolution on expressways is developed based on the modified cell transmission model. Based on the network structure and traffic characteristics of expressways, the links are divided into cells of different lengths by introducing the parameter of variable cell length. The time interval of the clock update is expanded properly by proposing the concept of "virtual transmission capacity." Van Aerde traffic stream model, instead of the trapezoid model, is used to describe the non-linear relationship among traffic variables. Algorithms for estimating variables of the congestion intensity, breadth, duration, and extent are designed based on the basic traffic flow parameters deriving the modified cell transmission model. The nonlinear traffic state-spacial prediction model is developed for expressway networks by setting the traffic density as the state variable and the speed as the observational variable. In order to solve the nonlinear traffic model, the extended Kalman Filter is introduced to realize the state estimation and multistep prediction.
     In regards to the evaluation problems of macroscopic traffic conditions on expressway networks, the evaluation model of "Macroscopic Traffic Condition Indices (MTCI)" is developed based on the mileage distribution of travel speeds on the network. The vector algorithm is proposed to obtain the macroscopic fundamental diagram model of networks, and the relationship models between average flow, average density, and average speed are built at different times, to represent the actual traffic service level. Based on the macroscopic fundamental diagram, the macroscopic traffic conditions on expressways are divided into five levels. The distribution model of travel speeds under different network conditions is built after numerous statistical analyses, the evaluation method of MTCI is developed based on the percentile thresholds, which is tested and verified using the western3rd ring-road expressway network.
     Finally, the western3rd ring-road expressway network is selected to implement the traffic state multistep prediction. And then, the whole performance of the network is evaluated using the proposed evaluation model.
     From the practical traffic problems on the expressway network in Beijing, this dissertation completes four steps of theory analysis, feature study, model development, and model application. It also presents some recommendations on improving the model accuracy, expanding model applications, and others for further study, in order to support and serve the urban traffic managements using the reliable traffic situation assessment results.
引文
[1]White, F.E. Joint Directors of Laboratories-Technical Panel for C3I, Data Fusion Sub-panel [R]. Naval Ocean Systems Center, San Diego,1987.
    [2]宋元,章新华.战场态势估计的理论体系研究[J].情报指挥控制系统与仿真技术,2004,26(1):43-48.
    [3]赵嶷飞,史永亮.基于模糊综合评价的航路交通态势评估[J].中国民航大学学报,2011,29(1):5-8.
    [4]朱振兴.城市交通数据融合与交通态势处理方法的研究[D].济南:山东大学硕士学位论文,2011.
    [5]杨帆,萧德云,李志恒.重大突发事件下的交通评价与应急预案调用[J].中国科技论文在线精品论文,2008,1(12):1322-1327.
    [6]侯琳,杨帆,张佐,张毅.重大交通突发事件中的态势评估研究[J].交通信息与安全,2009(增刊1),27(149):67-69,73.
    [7]张鸰,张淑梅.城市综合交通态势评估方法研究[J].软件工程师,2010,6:52-55.
    [8]李琳.高速公路网交通流运行态势评估技术研究[D].西安:长安大学工程硕士学位论文,2011.
    [9]吴磊,王晓辉,杨新月,王晓原.交通态势识别及状态转换机制研究[J].交通标准化,2007,2/3:61-66.
    [10]Kaempchen, N., B. Schiele, and K. Dietmayer. Situation Assessment of an Autonomous Emergency Brake for Arbitrary Vehicle-to-Vehicle Collision Scenarios [J]. IEEE Transactions on Intelligent Transportation Systems,2009,10(4):678-687.
    [11]Schubert, R. and G Wanielik. Situation Assessment for Automatic Lane-Change Maneuvers [J]. IEEE Transactions on Intelligent Transportation Systems,2010,11(3):607-616.
    [12]Althoff, M., O. Stursberg, and M. Buss. Safety Assessment of Driving Behavior in Multi-Lane Traffic for Autonomous Vehicles [J]. IEEE Transactions on Intelligent Vehicles Symposium, 2009,893-900.
    [13]Rendon-Velez, E., I. Horvath, and E.Z. Opiyo. Progress with Situation Assessment and Risk Prediction in Advanced Driver Assistance Systems:A Survey [C]. In:Proceedings of the 16th ITS World Congress, Stockholmsmassan, Sweden,2009.
    [14]Christen, F., C. Ewald, L. Eckstein, D. Abel. Traffic Situation Assessment and Intervention Strategy of a Collision Avoidance System based on Galileo Satellite Positioning. SAE Technical Paper 2012-01-0280,2012, doi:10.4271/2012-01-0280.
    [15]Platho, M., H.M. GroB, and J. Eggert. Traffic Situation Assessment by Recognizing Interrelated Road Users [C]. In:Proceedings of the 15th Internation IEEE Conference on Intelligent Transportation Systems (ITSC), Anchorage,2012:1339-1344.
    [16]Jiang, R. and Q.S. Wu. Study on the Complex Dynamic Properties of Traffic Flow the Micro and Macro Modeling [J].中国科学院研究生院学报.2006,23(6):848-854.
    [17]Greenshields, B. A Study of Traffic Capacity [A], Highway Research Board Proceedings, 1935,14:448-477.
    [18]Greenberg, H. An Analysis of Traffic Flow [J], Operations Research,1959,7:79-85.
    [19]Underwood, R.T. Speed, Volume and Density Relationships, Quality and Theory of Traffic Flow [M], New Haven:Yale Bureau of Highway Traffic,1961.
    [20]Edie, L.C. Following and Steady-State Theory for Non-congested Traffic [J]. Operations Research,1961,9:66-76.
    [21]Dick, A.C. Speed/Flow Relationships within an Urban Area [J]. Traffic Engineering Control, 1966,8(6):393-396.
    [22]Van Aerde, M. Single Regime Speed-Flow-Density Relationship for Congested and Uncontested Highways [A], Presented at the 74th TRB Annual Conference, Washington, D.C., 1995, Paper No.950802.
    [23]Rakha, H. Validation of Van Aerde's Simplified Steady-state Car-following and Traffic Stream Model [J]. Transportation Letters:The International Journal of Transportation Research,2009, 1(3):227-244.
    [24]Lighthill, M.J. and J.B. Whitham. On Kinematic Waves, I:Flow Movement in Long Rivers. II.: A Theory of Traffic Tlow on Long Crowded Road [J]. In:Proceedings of Royal Society, 1955(A229):281-345.
    [25]Richards, P. I. Shockwaves on the Highway. Operations Research,1956(4):42-51.
    [26]Newell, G.F. A Simplified Theory of Kinematic Waves in Highway Traffic I:General Theory [J]. Transportation Research B,1993,27B(4):281-287.
    [27]Daganzo, C.F. The Cell Transmission Model:A Dynamic Representation of Highway Traffic Consistent with the Hydrodynamic Theory [J]. Transportation Research,1994,28B(4): 269-287.
    [28]Daganzo, C.F. The Cell Transmission Model, Part II:Network Traffic [J]. Transportation Research,1995,29B(2):79-93.
    [29]Prigogine, I. and R. Herman. Kinetic Theory of Vehicular Traffic [M]. Elsevier, New York, 1971.
    [30]Paveri-Fontana, S. L. On Boltzmann-Like Treatments for Traffic Flow:A Critical Review of the Basic Model and An Alternative Proposal for Dilute Traffic Analysis [J]. Transportation Research B,1975,9:225-235.
    [31]Pipes, L. A. An Operational Analysis of Traffic Dynamics [J]. Journal of Applied Physics, 1953,24:271-281.
    [32]Pipes, L. A. Car-Following Models and the Fundamental Diagram of Road Traffic [J]. Transportation Research,1967,1:21-29.
    [33]Gazis, D. C, R. Herman, and R. B. Potts. Car Following Theory of Steady State Traffic Flow [J]. Operations Research,1959,7(4):499-505.
    [34]Gazis, D. C, R. Herman, and R. W. Rothery. Non-Linear Follow the Leads Models of Traffic Flow [J]. Operations Research,1961,9:545-567.
    [35]Cremer, M. and J. Ludwig, A Fast Simulation Model for Traffic Flow on the Basis of Boolean Operations [J]. Mathematics and Computers in Simulation,1986,28:297-303.
    [36]Wolfram, S. Statistical Mechanics of Cellular Automata [J]. Reviews of Modern Physics,1983, 55:601-644.
    [37]Nagel, K. and M. Schreckenberg. A Celluar Antomaton Model for Freeway Traffic [J]. Journal of Physics I Prance,1992,2:2221-2229.
    [38]Ricket, M, K. Nagel, M. Schreckenberg, and A.Latour. Two Lane Traffic Simulations using Cellular Automata [J]. PhysicaA,1995,231(4):534-550.
    [39]Biham, O. and A. A. Middleton, D. A., Levine. Self-Organization and a Dynamical Transition in Traffic Flow Models [J]. Physical Review A,1992,46:6124-6127.
    [40]Nagatani, T. Clustering of Cars in Cellular Automaton Model of Freeway Traffic [J]. Journal of the Physical Society of Japan.1993,62(11):3837-3840.
    [41]姜桂艳.道路交通状态判别技术与应用[M].北京:人民交通出版社,2004.
    [42]Smith, B.L. and M.J. Demetsky. Traffic Flow Forecasting:Comparison of Modeling Approaches [J]. Journal of Transportation Engineering,1997,123(4):261-266.
    [43]Kirby, H.R., S.M. Watson, and M.S. Dougherty. Should We Use Neural Networks or Statistical Models for Short-term Motorway Traffic Forecasting [J]. International Journal of Forecasting,1997,13(1):43-50.
    [44]Lee, S., B. Cho, and S. Hong. Dynamic Adaptive Short-term Vehicle Speeds Prediction Models [C]. In:Proceedings of the 3rd Conference of the Eastern Asia Society fr Transportation Studies, Taipei, Taiwan,1999:273-287.
    [45]王正武,黄中祥.短时交通流预测模型的分析与评价[J].系统工程,2003,21(6):97-100.
    [46]史其信,郑为中.道路网短期交通流预测方法比较[J].交通运输工程学报,2004,4(4):68-71.
    [47]刘静,关伟.交通预测方法综述[J].公路交通科技,2004,21(3):82-85.
    [48]贺国光.ITS系统工程导论[M].北京:中国铁道出版社,2004:121-148.
    [49]王进,史其信.短时交通流预测模型综述[J].ITS通讯,2005,7(1):10-13.
    [50]姚智胜.基于实时数据的道路网短时交通流预测理论与方法研究[D].北京:北京交通大学,2006.
    [51]邵春福,熊志华,姚智胜.道路网短时交通需求预测理论、方法及应用[M].北京:清华大学出版社,2011.
    [52]Arem, B.V., H.R. Kirby, M.J.M. Van Der Vlist, and J.C. Whittaker. Recent Advances and Application in the Field of Short-term Traffic Forecasting [J]. International Journal of Forecasting,1997
    [53]Ishak, S. and H. AI-Deek. Performance Evaluation of Short-term Time-Series Traffic Prediction Model [J]. Journal of Transportation Engineering,2002,128(6):490-498.
    [54]杨兆升,王爽,马道松.基础交通信息融合方法综述[J].公路交通科技,2006,23(3):111-116.
    [55]陆海亭,张宁,黄卫,夏井新.短时交通流预测方法研究进展[J].交通运输工程与信息,2009,7(4):84-91.
    [56]董春娇.多状态下城市快速路网交通流短时预测理论与方法研究[D].北京:北京交通大学博士学位论文,2011.
    [57]Davis, G.A. and N.L. Nihan. Nonparametric Regression and Short-term Freeway Traffic Forecasting [J]. Journal of Transportation Engineering,1991,117(2):178-188.
    [58]Kopanezou, H. and T. Trivellas. Time Series Model for Daily Traffic Volume Forecasting [C]. In:Proceedings of the 4th International Conference on Civil and Structural Engineering Computing, London, England,1989:295-300.
    [59]Changkyun, K. and A.G. Hoveika. Short-Term Demand Forecasting Model from Real-Time Traffic Data [C]. In:Proceedings of the Infrastructure Planning and Management, Denver, USA 1993:540-550.
    [60]Williams, B.M., P.K. Durvasula, and D.E. Brown. Urban Freeway Traffic Flow Prediction: Application of Seasonal Autoregressive Integrated Moving Average and Exponential Smoothing Models [J]. Transportation Research Record#1644,1998:132-141.
    [61]Lee, S. and D.B. Fambro. Application of the Sub ARIMA Model for Short-Term Freeway Traffic Volume Forecasting [J]. Transportation Research Record#1678,1999:179-188.
    [62]Mecit, C. and C. Gurcan. Short-Term Traffic Flow Prediction with Regime-Switching Models [J]. Transportation Research Record#1965,2006:23-31.
    [63]朱顺应,王红,李关寿.路段上短时间区段内交通量预测ARIMA模型[J].重庆交通学院学报,2003,22(1):76-77.
    [64]谭国贤,翁小雄,姚树申,黄征.城市交叉路口的短时交通流建模预测[J].交通与计算机,2005,23(1):26-30.
    [65]高海军,宫晓燕.利用模糊时间序列进行短时交通流预测[J].信息与控制,2003,32(7):644-648.
    [66]Okutani, I. Dynamic Prediction of Traffic Volume through Kalman Filtering Theory [J]. Transportation Research,1984:1-11.
    [67]Vythoulkas, P. C. Alternative Approaches of Short Term Traffic Forecasting for Use in Driver Information Systems [J]. Transportation and Traffic Theory,1993:485-505.
    [68]Yang, F., Z. Yin, H.X. Liu, and B. Ran. Online Recursive Algorithm for Short-Term Traffic Prediction[J]. Transportation Research Record#1879,2004:1-8.
    [69]Ye, Z.M., Y.L. Zhang, and D.R. Middleton. Unscented Kalman Filter Method for Speed Estimation Using Single Loop Detector Data [J]. Transportation Research Record#1968,2006: 117-125.
    [70]Wang, Y.B. and M. Papageorgiou. Real-Time Freeway Traffic State Estimation based on Extended Kalman Filter:A General Approach [J]. Transportation Research Part B 2005,39(2): 141-167.
    [71]Chen, H. and H. Rakha. Data-Driven Particle Filter for Travel Time Prediction [C]. In: Proceedings of the 92nd Transportation Research Board Annual Meeting, Washington DC, 2013.
    [72]杨兆升,朱中.基于卡尔曼滤波理论的交通流量实时预测模型[J].中国公路学报,1999,12(3):63-67.
    [73]邵春福,张魁麟,谷远利.基于实时数据的网状城市快速路行驶时间预测方法研究[J].土木工程学报,2003,36(1):16-20.
    [74]戴施华,周欣荣.Kalman滤波理论在短时交通预测上的应用[J].哈尔滨商业大学学报(自然科学版),2005,21(6):728-730.
    [75]Smith, B. L. and M.J. Demertsky. Short-Term Traffic Flow Prediction:Neural Network Approach [J]. Transportation Research Record#1453,1994:98-104.
    [76]Doughetry, M.S. and M. R. Cobbett. Short-Term Inter-Urban Traffic Forecasts Using Neural Networks [J]. International Journal of Forecasting,1997,13(1):21-31.
    [77]Maschavan, D.V., M. Dougherty, and S. Watson. Combining Kohonen Maps with ARIMA Time Series Models to Forecast Traffic Flow [R]. Transportation Research,1996:307-318.
    [78]Ledoux, C. An Urban Traffic Flow Model Integration Neural Networks [J]. Transportation Research Part C:Emerging Technologies,1997,5(5):287-300.
    [79]Park, B., C.J. Messer, and T. Urbanik. Short-Term Freeway Traffic Volume Forecasting Using Radial Basis Function Neural Network [J]. Transportation Research Record#1651,1998: 39-41.
    [80]Yin, H., S.C. Wong, J. Xu, and C.K. Wong. Urban Traffic Flow Prediction Using a Fuzzy-Neural Approach. Transportation Research Part C:Emerging Technologies,2002,10(2): 85-98.
    [81]Yuan, Z.Z., W.Y. Li, and H.D. Liu. Forecast of Dynamic Traffic Flow [C]. In:Proceedings of the 2nd International Conference on Traffic and Transportation Studies, Beijing, ASCE,2000: 507-512.
    [82]Vlahogianni, E.I., M.G. Karlaftis, and J.C. Golias. Optimized and Meta-Optimized Neural Networks for Short-Term Traffic Flow Prediction:A Genetic Approach [J]. Transportation Research Part C:Emerging Technologies,2005,13(3):211-234.
    [83]Davis, GA. and N.L. Nihan. No Nonparametric Regression and Short-Term Freeway Traffic Forecasting [J]. Journal of Transportation Engineering,1991,117(2):178-188.
    [84]Turochy, R.E. and B.D. Pierce. D. Relating Short-Term Traffic Forecasting to Current System State Using Nonparametric Regression [C]. In:Proceedings of th 7th International IEEE Conference on Intelligent Transportation Systems, Washington, USA,2004:239-244.
    [85]Vanajakshi, L. and L.R. Rilett. A Comparison of the Performance of Artificial Neural Networks and Support Vector Machines for the Prediction of Traffic Speed [C]. In: Proceedings of 2004 IEEE Intelligent Vehicles Symposium, Parma, Italy,2004:194-199.
    [86]朱中,杨兆升.实时交通流量人工神经网络预测模型[J].中国公路学报,1998,11(4):89-92.
    [87]杨兆升,谷远利.实时动态交通流预测模型研究[J].公路交通科技.1998,15(3):4-7.
    [88]尹宏宾,徐建闽,周其节.城市交通网络交通量自适应模糊预测方法[J].公路交通科技,1998,15(3):34-36.
    [89]裴玉龙,张宁.城市道路路网节点短时段交通量预测模型研究[J],土木工程学报,2003,36(1):12-15.
    [90]达庆东,段里仁.交通流非参数同归模型[J].数理统计与管理,2003,22(4):41-46.
    [91]宫晓燕,汤淑明.基于非参数回归的短时交通流预测与实践检测综合算法.中国公路学报.2003,16(1):82-86.
    [92]郑为中,史其信.基于贝叶斯组合模型的短期交通量预测研究.中国公路学报,2005,18(1):85-89.
    [93]徐启华,杨瑞.支持向量机在交通流量实时预测中的应用[J].公路交通科技,2005,22(12):131-134.
    [94]姚智胜,邵春福,高永亮.基于支持向量同归机的交通状态短时预测方法研究[J].北京交通大学学报(自然科学版),2006,30(3):19-22.
    [95]杨兆升,王嫒,管青.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006,36(6):881-884.
    [96]贺国光,马寿峰,李宇.基于小波分解与重构的交通流短时预测法[J].系统工程理论与 实践,2002,9:101-106.
    [97]杨立才,贾磊,孔庆杰,林妹.粗正交小波网络及其在交通流预测中的应用.系统工程理论与实践.2005,8:124-129.
    [98]Lan, C.J. and S.P. Miaou. Real-Time Prediction of Traffic Flows Using Dynamic Generalized Linear Models [J]. Transportation Research Record#1678,1999:168-178.
    [99]Lin, W. H. A Gaussian Maximum Likelihood Formulation for Short-Term Forecasting of Traffic Flow [C]. In:Proceedings of 2001 IEEE Intelligent Transportation Systems Proceedings. Oakland, USA,2001:150-155.
    [100]Sun, H.Y., H.X. Liu, and H. Xiao. Use of Local Linear Regression Model for Short-Term Traffic Forecasting [J]. Transportation Research Record#1783,2003:143-150.
    [101]王殿海,曲大义,一种实时动态交通量的预测方法研究[J].中国公路学报,1998,11(增刊):102-107.
    [102]尹宏宾,徐建闽,周其节.城市交通网络交通量自适应模糊预测方法[J].公路交通科技,1998,15(3):34-36.
    [103]偶吕宝,俞弧南.短时交通漉预测的多层递阶方法[J].城市道桥与防洪,2004,5:21-22.
    [104]邓志龙,李全,陈茜.基于灰色系统理论的短时交通流预测[J].公路交通技术,2006,1:117-119.
    [105]王晓原,刘海红.基于投影寻踪自同归的短时交通流预测[J],系统工程,2006,24(3):20-24.
    [106]Whittaker, J., S. Garside, and K. Lindveld. Tracking and Predicting a Network Traffic Process [J]. International Journal of Forecasting,1997,13(1):51-61.
    [107]Williams, B.M. Multivariate Vehicular Traffic Flow Prediction Evaluation of ARIMAX Modeling [J]. Transportation Research Record#1776,2001:194-200.
    [108]Stathnpoulos, A. and M.G Karlaftis. Temporal and Spatial Variations of Real-Time traffic Data in Urban Areas [J]. Transportation Research Record#1768,2001:135-140.
    [109]Stathnpoulos, A. and M.G Karlaftis. A Multivariate State Space Approach for Urban Traffic Flow Modeling and Prediction [J]. Transportation Research Part C:Emerging Technologies, 2003,11(2):121-135.
    [110]Kamananakis, Y. and P. Prastaeos. Forecasting Traffic Flow Conditions in All Urban Network: Comparison of Multivariate and Univariate Approaches [J]. Transportation Research Record #1857,2003:74-84.
    [111]Kamananakis, Y. and P. Prastaeos. Space-Time Modeling of Traffic Flow [J]. Computers & Geosciences,2005,31(2):119-133.
    [112]Vlahogianni, E.I. and Karlaflis M.G Optimization of Hybrid Neural Network Predictor for Spatial Traffic Flow Data Treatment:Genetic Phase-Space Reconstruction [C]. Application of Advanced Technologies in Transportation Engineering:Proceedings of the 8th International Conference. Beijing, China,2004:18-22.
    [113]马毅林.基于非参数回归的路网短时交通状态预测[D].北京:北京交通大学硕士学位论文.2008(5).
    [114]董春娇,邵春福,熊志华,李娟.基于Elman神经网络的道路网短时交通流预测方法[J].交通运输系统工程与信息,2010,10(1):145-151.
    [115]Albours, S. Estimation of Travel Time from Occupancy on an Urban Network [C]. Second International Conference on Road Traffic Control, Institution of Engineers, London, UK, 1986.
    [116]Dailey, D.J. Travel Time Estimation Using Cross-Correlation Techniques [R]. Transportation Research Part B:Methodological,1993,27(2):97-107.
    [117]Anderson, J.M. The Short-term Prediction of Link Travel Time in Signal Controlled Road Networks [J]. Transportation Systems:Theory and Application of Advanced Technology,1994, 2:621-626.
    [118]Rouphail, N.M. and D. Navaneet. Estimation Travel Time Distributions for Signalized Links [C]. In:Proceedings of the 1995 Annual Meeting of ITS, America,1995.
    [119]Nam, D.H. and D.R. Drew. Traffic Dynamics:Method for Estimation Freeway Travel Time in Real Time from Flow Measurements [J]. Journal of Transportation Engineering,1996,122(3): 185-191.
    [120]Rice, J.A. and E.W. Van Zwet. A Simple and Effective Method for Predicting Travel Time on Freeways [C]. In:Proceedings of the IEEE Transactions on Intelligent Transportation Systems, 2004,5(3):200-207.
    [121]初连禹,杨兆升.基于模糊神经网络的实时路段行程时间估计[J].系统工程理论与实践.2000,20(11):111-116,124.
    [122]杨兆升,朱中.基于BP神经网络的路径行程时间实时预测模型[J].系统工程理论与实践,1999,19(8):59-64.
    [123]杨兆升,孙喜梅.实时动态路段行程时间预测的一种实用方法[J].公路交通科技,2001,18(2):44-46,65.
    [124]杭明升,杨晓光,彭国雄.基于卡尔曼滤波的高速道路行程时间动态预测[J].同济大学学报(自然科学版),2002,30(9):1068-1072.
    [125]Transportation Research Board. Monograph on Traffic Flow Theory [M]. Washington, D.C.: Traffic Flow Theory Committee,2000.
    [126]Michalopoulos, P.G. and V.B. Pishaody. Derivation of Delays based on Improved Macroscopic Traffic Models [J]. Transportation Research Part B:Methodological,1981,5:299-317.
    [127]Morales, J.M. Analytical Procedure for Estimating Freeway Traffic Congestion [J]. Public Road,1986,50(2):55-61.
    [128]Newell, G.F. A Simplified Theory of Kinematic Waves in Highway Traffic Ⅰ:General Theory [J]. Transportation Research B:Methodological,1993,27B(4):281-287.
    [129]Lawson, T.W., D.J. Lovell, and C.F. Daganzo. Using the Input-Output Diagram to Determine the Spatial and Temporal Extents of a Queue Upstream of a Bottleneck [J]. Transportation Research Record#1572,1997:140-147.
    [130]Transportation Research Board. Highway Capacity Manual 2000[M]. Washington, D.C.: National Academy of Sciences,2000.
    [131]Fu, L.P. An Adaptive Model for Real-time Estimation of Overflow Queues on Congested Arterials [C]. In:Proceedings of the 2001 IEEE Intelligent Transportation Systems Conference,2001:219-226.
    [132]Sheu, J.B. and Y.H. Chou. Stochastic Modeling and Real-time Prediction of Incident Effects on Surface Street Traffic Congestion [J]. Applied Mathematical Modeling,2004,28:445-468.
    [133]郭冠英.用集散波法计算道路交通阻塞长度[J].上海公路,1998:39-41.
    [134]隽志才.信号交叉口排队长度宏观模拟的自适应分析法[J].中国公路学报,2000,13(1):77-80.
    [135]黄晓敏,等.两种公路瓶颈问题分析方法的比较[J].同济大学学报,2001,29(2):205-209.
    [136]荣建.信号交叉口排队长度动态计算方法研究[J].中国公路学报,2002,15(3):101-103.
    [137]臧华,彭国雄.高速道路异常状况下车辆排队长度的预测模型[J].交通与计算机,2003(3):10-12.
    [138]姚荣涵.基于二流理论的拥挤交通流当量排队长度模型[J].东南大学学报(自然科学版),2007,37(3):521-526.
    [139]Golob, T.F., W.W. Recher, and D. John. Leonard. An Analysis of the Severity and Incident Duration of Truck-Involved Freeway Accidents [J]. Accident Analysis & Prevention,1987, 19(4):375-395.
    [140]朱琳,于雷,宋国华.基于浮动车数据的交通拥堵时间维度特征[J].北京交通大学学报(自然科学版).2011,35(6):7-12.
    [141]Ozbay, K. and P. Kachroo. Incident Management in Intelligent Transportation System [M]. Boston, MA:Artech House,1999.
    [142]Garib, A., A.E. Radwan, and H. Al-Deek. Estimation Magnitude and Duration of Incident Delays [J]. Journal of Transportation Engineering,1997,123(6):459-466.
    [143]Jones, B., L. Janssen, and F. Mannering. Analysis of the Frequency and Duration of Freeway Accidents in Seattle [J]. Accident Analysis & Prevention,1991,23(4):238-255.
    [144]Nam, D.H. and F. Mannering. An Exploratory Hazard-Based Analysis of Highway Incident Duration [J]. Transportation Research Part A:Policy and Practice,2000,34A(2):85-102.
    [145]Khattak, A.J., J.L. Schofer, and M.H. Wang. A Simple Time Sequential Procedure for Predicting Freeway Incident Duration [J]. IVHS Journal,1995,2(2):113-138.
    [146]刘伟铭,管丽萍,尹湘源.基于多源回归分析的时间持续时间预测[J].公路交通科技,2005,22(11):126-129.
    [147]Schrank, D. and T. Lomax.2002 Urban Mobility Report [R]. Texas Transportation Institute, Texas,2002.
    [148]Schrank, D. and T.J. Lomax.2003 Urban Mobility Report [R]. Texas Transportation Institute, Texas,2003.
    [149]Schrank, D. The 2004 Urban Mobility Report [R]. Texas Transportation Institute, the Texas A&M University, Texas,2004.
    [150]Lomax, T.J. and D.L. Schrank. The 2005 Urban Mobility Report [R]. Texas Transportation Institute, the Texas A&M University, Texas,2005.
    [151]Schrank, D. The 2007 Urban Mobility Report [R]. Texas Transportation Institute, the Texas A&M University,2007.
    [152]Schrank, D. The 2009 Urban Mobility Report [R]. Texas Transportation Institute, The Texas A&M University, Texas,2009.
    [153]Schrank, D. and T. Lomax. The Keys to Estimating Mobility in Urban Area (A White Paper Prepared for the Urban Transportation Performance Measure Study) [R]. Texas Transportation Institute, the Texas A&M University, Texas,2005.
    [154]Lisco, T. E. A Procedure for Predicting Queues and Delays on Expressways in Urban Core Areas [R]. Central Transportation Planning Staff, Boston, MA,1983.
    [155]Schrank, D. Urban Roadway Congestion Annual Report [R]. Texas Transportation Institute, College Station, Texas,1998.
    [156]Lomax, T., and S. Turner. Monitoring Urban Roadways:Using Archived Operations Data for Reliability and Mobility Measurement [R]. Texas Transportation Institute, College Station, Texas,2001.
    [157]Boarnet, M.G, E.J. Kim, and E. Parkany. Measuring Traffic Congestion [J]. Transportation Research Record#1634.1998:93-99.
    [158]Boarnet, M.G, E. Kim, and E. Parkany. Measuring Traffic Congestion [C]. California University, Irvine, California:1998.
    [159]Lomax, T., S. Turner, and G Shunk. Quantifying Congestion. Volume 2:User Guide [R]. Transportation Research Board; Texas Transportation Institute,1997.
    [160]Lomax, T., S. Turner, and G Shunk. Quantifying Congestion. Volume 1:Final Report [R]. Transportation Research Board; Texas Transportation Institute,1997.
    [161]Turner, S.M. Examination of Indicators of Congestion Level [J]. Transportation Research Record 1360.1992:150-157.
    [162]Lindley, J.A. Urban Freeway Congestion:Quantification of the Problem and Effectiveness of Potential Solutions [J]. ITE Journal.1987,1:27-32.
    [163]Lindley, J.A. Quantification of Urban Freeway Congestion Analysis of Remedial Measures [R]. Washington, DC:FHWA, U.S. Department of Transportation,1987.
    [164]Lindley, J.A. A Methodology for Quantifying Urban Freeway Congestion [M]. Washington, DC:Transportation Research Board,1987:1-7.
    [165]Epps, A., A.D. May, and C. Cortelyou. Developing a Methodology for Quantifying Non-recurring Freeway Congestion Delay:Phase One, Identification of Alternative Methodologies [M]. California:Partners for Advanced Transit and Highways (PATH),1993: 111-126.
    [166]Epps, A. and A.D. May. Developing a Methodology for Quantifying Non-Recurring Freeway Congestion Delay:Phase II Working Paper:Initial Analysis for Non-Recurring Freeway Congestion Delay Methodologies [M]. California:Institute of Transportation Studies; California Department of Transportation,1993.
    [167]Chin, S., D. Greene, and J. Hopson. Towards National Indicators of VMT and Congestion Based On Real-Time Traffic Data [C]. In:Proceedings of the 78th Annual Meetings of the Transportation Research Board, Washington, D.C.,1999.
    [168]Mekky, A. Measuring Congestion in the Greater Toronto Area[C].83rd Annual Meetings of the Transportation Research Board, Washington, D.C.,2004.
    [169]Durham-Chapel Hill-Carrboro Metropolitan Planning Organization. Congestion Management System Procedures and Responsibilities Report [R], Transportation Advisory Committee, Durham,1999.
    [170]Abadie, R.R. and T. Ehrlich. Contrasting the Use of Time-Based and Distance-Based Measures to Quantify Traffic Congestion Levels:An Analysis of New Jersey Counties[C]. In: Proceedings of the 81st Annual Meetings of the Transportation Research Board, Washington, D.C.,2002.
    [171]张和生,张毅,胡东成.区域交通状态分析的时空分层模[J].清华大学学报(自然科学版). 2007,1:157-160.
    [172]Stathopoulos, A. and M.G. Karlaftis. Modeling Duration of Urban Traffic Congestion [M]. American Society of Civil Engineers,2002:587-590.
    [173]Emam, E.B. and H.M. Al-Deek. Using Real-Life Dual-Loop Detector Data to Develop New Methodology for Estimating Freeway Travel Time Reliability [J]. Transportation Research Record:Journal of the Transportation Research Board#1959,2006:140-150.
    [174]Emam, E.B. and H.M. Al-Deek. Freeway Travel Time Reliability Stochastic Models Development [D]. In:Proceedings of the 86th Annual Meetings of the Transportation Research Board, Washington DC,2007.
    [175]Vaughan, R. and V.F. Hurdle. A Theory of Traffic Flow for Congested Conditions on Urban Arterial Streets I:Theoretical Development [J]. Transportation Research Part B: Methodological.1992,26:381-396.
    [176]邵春福,魏丽英,贾斌.交通流理论[M].北京:电子工业出版社,2012.
    [177]Wardrop, J.G. Some Theoretical Aspects of Road Traffic Research [J]. Proceeding of the Institution of Civil Engineers,1952,1(3):325-362.
    [178]Godfrey, J.W. The Mechanism of A Road Network [J]. Traffic Engineering and Control,1969, 11(7):323-327.
    [179]Williams, J.C., H.S. Mahmassani, and R. Herman. Urban traffic network flow models [J]. Transportation Research Record:Journal of the Transportation Research Board#1112,1987: 78-88.
    [180]Ardekani, S. and R. Herman. Urban Network-Wide Traffic Variables and Their Relations [J]. Transportation Science,1987,21(1):1-16.
    [181]Olszewski, P., H.S. Fan, and Y.W. Tan. Area-wide traffic speed-flow model for the Singapore CBD [J]. Transportation Research Part A:Policy and Practice.1995,29 (4):273-281.
    [182]Geroliminis, N. and C.F. Daganzo. Existence of Urban-Scale Macroscopic Fundamental Diagrams:Some Experimental Findings [J]. Transportation Research Part B:Methodological. 2008,42:759-770.
    [183]Gonzales, E.J., C. Chavis, Y. Li, and C.F. Daganzo. Multimodal Transport in Nairobi, Kenya: Insights and Recommendations with a Macroscopic Evidence-based Model [C].90th Transportation Research Board Annual Meeting CD-ROM,#11-3045, Washington D.C.,2011.
    [184]Geroliminis, N. and J. Sun. Properties of a Well-Defined Macroscopic Fundamental Diagram for Urban Traffic [J]. Transportation Research Part B:Methodological.2011,45:605-617.
    [185]Edie, L.C., Discussion of Traffic Stream Measurements and Definitions [C]. In:Proceedings of the 2nd International Symposium on the Theory of Traffic Flow, Paris,1963:139-154
    [186]Herman, R. and I. Prigogine. A Two-Fluid Approach to Town Traffic [J]. Science,1979, 204(4389):148-151.
    [187]Herman, R. and S. Ardekani. Characterizing Traffic Conditions in Urban Areas [J]. Transportation Science,1984,18(2):101-140.
    [188]王殿海,陈松,魏强.基于二流理论的路网宏观交通状态判别模型[J].东南大学学报(自然科学版),2011,41(5):1098-1103.
    [189]田亮,刘其鑫.基于二流理论的宏观交通评价模型的建立[J].交通科技与经济,2008,1:83-84,93.
    [190]陈松.基于二流理论的城市路网敏感区域交通需求控制研究[D].长春:吉林大学硕士学位论文,2008.
    [191]姚智胜,邵春福.基于状态空间模型的道路交通状态多点时间序列预测[J].中国公路学报,2007,20(4):113-117.
    [192]江龙晖.城市道路交通状态判别及拥挤扩散范围估计方法研究[D].长春:吉林大学交通学院,2007.
    [193]邹亮,徐建闽,朱玲湘.基于融合技术的道路交通状态判别模型[J].清华大学学报(自然科学版),2007,47(2):1822-1825.
    [194]朱琳,于雷,宋国华.基于MFD的路网宏观交通状态及影响因素研究[J].华南理工大学学报(自然科学版),2012,40(11):138-146.
    [195]中华人民共和国住房和城乡建设部.CJJ129-2009城市快速路设计规程[S].北京:中国建筑工业出版社,2009.
    [196]中华人民共和国建设部.GB50200-95城市道路交通规划设计规范[S].北京:中国计划出版社,1995.
    [197]北京交通发展研究中心.DB11/T785-2011城市道路交通运行评价指标体系[S].北京市质量技术监督局,2011.
    [198]Stathopoulos, A. and M.G. Karlaftis. Modeling the Duration of Urban Traffic Congestion [D]. Transportation Research Board Annual Meeting CD-ROM, Washington, D C,2002.
    [199]Hensher, D.A. and F.L. Mannering. Hazard-based Duration Models and their Application to Transport Analysis [J]. Transport Review,1994,14(1):63-82.
    [200]胡晓健,王炜,盛慧.基于可变元胞传输模型的城市道路交通流估计方法[J].交通运输系统工程与信息.2010(8),10(4):74-78.
    [201]Mufloz, L., X. Sun, and R. Horowitz. Traffic Density Estimation with the Cell Transmission Model [C]. In:Proceedings of the 2003 American Control Conference. Denver, Colorado, U.S.,2003:3750-3755.
    [202]龙建成.城市道路交通拥堵传播规律及消散控制策略研究[D].北京:北京交通大学交通运输学院,2009.
    [203]高自友,龙建成,李新刚.城市交通拥堵传播规律与消散控制策略研究[J].上海理工大学学报,2011,33(6):701-708.
    [204]姬杨蓓蓓.交通事件持续时间预测方法研究[D].上海:同济大学交通运输工程学院,2008.
    [205]陈茜,王炜.大型活动中突发事件对交通流的时空影响[J].交通运输工程学报,2009,9(3):81-85.
    [206]Chen, Q. and W. Li. Influence rang of emergency under special events based on CTM [J]. Journal of Southeast University (English Edition),2009,25(2):257-261.
    [207]尚华艳,黄海军,高自友.基于元胞传输模型的实时交通信息设计[J].北京航空航天大学学报,2008,34(2):234-238.
    [208]曾建勤,王家捷,唐良,等.基于CTM-RH的城市交通信号线控制[J].中国科学技术大学学报,2006,36(11):1232-1236.
    [209]黄玮,沈峰,杨晓光.基于细胞传输模型的交通流仿真特征及实用性研究[J].交通与计算机,2008,26(1):19-23.
    [210]Daganzo, C.F. The Lagged Cell-Rransmission Model [C]. In:Proceedings of the 14th International Symposium on Transportation and Trattic Theory, Jerusalem, Israel,1997: 81-104.
    211] Chen, X., Q. Shi, and L. Li. Location Specific Cell Transmission Model for Freeway Traffic [J]. Tsinghua Science and Technology.2010,15(4):475-480.
    212] Blandin, S., D. Work, and P. Goatin. A Class of Perturbed Cell-Transmission Models to Account for Traffic Variability [C]. In:Proceedings of the 89th Transportation Research Board Annual Meeting,#10-3622, Washington DC, U.S.,2010.
    213] Wang, P. Conditional Cell Transmission Model for Two-Way Arterials in Oversaturated Conditions [D]. Tuscaloosa:Department of Civil, Environmental, and Construction Engineering, The University of Alabama,2010.
    [214]Munoz, L., X. Sun, and D. Sun. Methodological Calibration of the Cell Transmission Model [C]. In:Proceedings of the 2004 American Control Conference, Boston, Massachusetts, U.S., 2004:798-803.
    [215]Lin, W. and C. Daganzo. Technical Description of NETCELL:General Framework and Data Structure [R]. California:California PATH& University of California, Berkeley,1994.
    [216]Lin, W. and D. Ahanotu. Validating the Basic Cell Transmission Model on a Single Freeway Link [R]. California:California PATH & University of California, Berkeley,1995.
    [217]Cassidy, M.J., K. Jang, and C.F. Daganzo. Macroscopic fundamental diagram for freeway networks:theory and observation [D].90th Transportation Research Board Annual Meeting CD-ROM,#11-0657. Washington D C, US,2011.
    [218]Van Aerde, M. and R. Hesham, Multivariate Calibration of Single Regime Speed-Flow-Density Relationships [C]. In:Proceedings of the Vehicle Navigation and Information systems (VNIS) Conference, Seattle, Washington,1995.
    [219]赵娜乐.基于物理属性的城市快速路交通流特征参数模型[D].北京:北京交通大学博士学位论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700