用户名: 密码: 验证码:
基于数字图像处理的风蚀地表颗粒特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在完善利用数字图像处理技术获取地表颗粒信息的基础上,开发了基于ERDAS软件的地表颗粒信息提取模块;对粗粒化地表风蚀特征进行了风洞模拟;对内蒙中西部农牧交错区几种典型风蚀地表颗粒特征进行了样方调查和统计分析,并用地统计学方法对吉兰泰粗粒化地表空间分布特征进行了研究;提出了土壤潜在风蚀风险指数并用其对各研究区的潜在风蚀风险进行了评价。主要结论如下:
     (1)确定了利用便携数码相机获取地表图像,然后根据颗粒影像的RGB灰度值特征进行决策树图像分类,并用面积补偿方程修正分类提取结果,最终估算出地表不同径级颗粒含量的技术体系,最终结果误差小于5%。
     (2)在ERDAS9.0中集成开发了提取地表颗粒信息的功能模块,还建立了适合不同地区的多步骤批处理模板,简化了地表颗粒图像处理的操作步骤。
     (3)相比质量含量,颗粒的覆盖特征更能准确地反映风蚀地表土壤颗粒状态。随着粗颗粒随机式覆盖度的增加,沙表风蚀速率呈现按指数规律逐渐降低的趋势;随着风速的增加,粗颗粒的防护效果会得到加强,表现为地表相对风蚀速率的降低。而随着地表粗颗粒径级的增大,沙表风蚀速率呈增大趋势,特别是当颗粒径级超过3mm且随机式覆盖度为10%左右时,有明显促进地表风蚀的效应,这导致在砾石盖度较小的风蚀初期,会出现较高的侵蚀速率。因此,固沙用砾石沙障应达到足够大的覆盖度水平,建议砾石沙障最好在防止积沙的地段用于输沙用途。
     (4)吉兰泰裸露戈壁样地内>0.84mm的不可蚀颗粒、0.84-0.42mm的半可蚀颗粒以及<0.42mm的高度可蚀颗粒三者含量的半方差函数模型均为线性模型,表现为随机分布状态;灌丛林地总体粗粒化程度较轻,三种风蚀颗粒表现为聚集分布。
     (5)单株的沙冬青(Ammopiptanthus mongolicus (Maxim.) Cheng f.)和白刺(Nitraria Tangutorum Bobr.)灌丛堆均有明显的防土壤风蚀作用。白刺迎风侧阻沙明显,沙冬青则是背风侧积沙最多,且沙冬青的水平防护距离大于白刺,两者周边的高度可蚀颗粒空间异质性尺度分别为8.41m和14.91m,都达到或超出了灌丛林地内灌丛的平均间距8.77m(包括灌丛半径),说明当前研究区内的灌丛在防止土壤风蚀方面,存在一定程度相互促进的联合关系,利于该区植被的稳定与发展。
     (6)利用地表风蚀颗粒含量信息和地区大风日数资料,建立的土壤潜在风蚀风险指数方程为Q=(1-P_1-P_(0.5)×0.5)×D/3.65,用其对各研究区风蚀地表的潜在风蚀风险性现状进行了评价结果表明:武川农耕区潜在风蚀风险最大,应该加大这些地区的植被保护和保护性耕作实施力度。
The module of surface particle information extraction which integrated with ERDASwas developed based on the previous studies; the wind tunnel was used to simulate theerosion characteristics of coarse graining surface; the characteristics of several typicalerosion surface particles of the agro-pastoral transition area in the middle west of InnerMongolia was studied through quadrat survey and statistics analysis, the geostatistics wasused to study the spatial distribution features of coarse graining surface in Jilantai. Thepotential risk index of soil erosion was raised and used to analysis the potential erosionrisk of the research areas. The main conclusions are as follows:
     (1) First, portable digital camera is used to obtain surface image. Then,decision-making tree classification is conducted based on the characteristics of RGB grayvalue of particle image. In the next step, the classified and extracted result is revised byarea compensation equation. Finally, technology system to estimate particle content ofdifferent diameter class on surface is established, and the final result error is less than5%.
     (2) The function module to extract particle information on earth surface is integrateddeveloped. Meanwhile, multi-step batching template is also built to be appropriate fordifferent area, and operating steps of particle image processing on earth surface aresimplified.
     (3) Compared with quality content, cover characeristics of particle can accuratelyreflect the state of soil particle on wind erosion surface. With the increase of cover degreeof coarse particle, wind erosion rate on surface presents gradually depressed tendency inaccordrance with index regular pattern; with the increase of wind speed, protecting effectof coarse particle can be strengthened, which shows that relatively wind erosion rate onsurface reduces. But, with the increase of coarse particle class on surface, wind erosionrate presents enlargement tendency. Especially when the particle size exceeds3mm andrandom cover degree is10%around, suface wind erosion can be obviously promoted,which resutls in higher erosion rate in initial stage of wind erosion when gravel coverdegree is lesser. The suggest is that gravel sand barrier should reach the big enough coverdegree, and it would be better to be used to sediment transport in prevent sandaccumulated area.
     (4) Semmivariance funtion models of three soil particle (>0.84mm,0.42-0.84mmand<0.42mm) contents are all linear models in bareness Gobi sample in Jilantai, which shows random distribution stage; coarse graning degree is totally lighter in scrub forestland, that three particles show aggregated distribution.
     (5) Single Ammopiptanthus mongolicus (Maxim.) Cheng f. and NitrariaTangutorum Bobr. are all present obvious prevent soil wind erosion effect. Blocking sandis obvious on windward side around Nitraria tangutorum Bobr.. On the contratry, thatappeared on leeward side around Ammopiptanthus mongolicus (Maxim.) Cheng f., and itshorizon protection distance is greater than that of Nitraria Tangutorum Bobr.. The spatialheterogeneity scale of highly erodible soil particles are respectively8.41m and14.91m,which both reach or exceed the average space of nebkhas(8.77m which includedsemidiameter of nebkhas). Given preventing soil wind erosion, that illustrated mutualstimulative united relation existed between nebkhases of constructive species in researcharea, which is benefit for the stabilization and development of vegetations of this area.
     (6) The indicial equation of soil potential wind erosion risk isQ=(1-P_1-P_(0.5)×0.5)×D/3.65, which is based on the particle content information on winderiosin surface and the data of the days of high wind in district. The equation is used toevaluate potential wind erosion risks in different research area. The results shows thatpotential wind erosion risk is maximum in Wuchuan farming area, which suppose that weshould increase the force of plant protect and protective farming implementation in thisarea.
引文
1李红俊,韩冀皖.数字图像处理技术及其应用[J].计算机测量与控制,2002.10(9):620-622
    2唐向阳,张勇,李江有,等.机器视觉关键技术的现状及应用展望[J].昆明理工大学学报(理工版),2004,29(2):36-39
    3刘曙光,刘明远,何钺.机器视觉及其应用[J].河北科技大学学报,2000,21(4):11-15
    4章毓晋.图像理解与计算机视觉[M].北京:清华大学出版社,2003
    5董璐.数字图像处理与识别系统的开发[D].东南大学硕士学位论文,2004
    6安宁,林树忠,刘海华,等.图像处理方法研究及其应用[J].仪器仪表学报,2006.27(6)(增刊):792-793
    7宁天夫.数字图像处理技术的应用与发展[J].舰船电子工程,2009,29(1):38-41,91
    8陈炳权,刘宏立,孟凡斌.数字图像处理技术的现状及其发展方向[J].吉首大学学报(自然科学版),2009,30(1):63-70
    9郁志宏.基于机器视觉的种蛋筛选及孵化成活性检测研究[D].内蒙古农业大学博士学位论文,2006
    10刘中合,王瑞雪,王锋德,等.数字图像处理技术现状与展望[J].计算机时代,2005,(9):6-8
    11马世威,高永.荒漠化与沙漠化概念的争议及学术意义[J].内蒙古林学院学报(自然科学版),1998,20(1):64-69
    12高永.内蒙古荒漠化现状及防治对策[J].北方经济,1999,(3):14-15
    13王涛,赵哈林,肖洪浪.中国沙漠化研究的进展[J].中国沙漠,1999,19(4):299-311
    14哈斯.河北坝上地区土壤风蚀物理化性质初步研究[J].水土保持通报,1997,17(1):1-6
    15赵焕勋,王学东.内蒙古土壤侵蚀灾害研究[J].干旱区资源与环境,1994,8(4):35-42
    16陈杰,龚子同.干旱地区草场荒漠化及其评价[J].地理科学,2000,(1):176-181
    17林进,周卫东.中国荒漠化监测综述[J].世界林业研究,1998,11(5):58-63
    18王力威,石晓燕,李国忠.对风蚀机理的分析与认识[J].水利科技与经济,1997,3(2):90-91
    19李玉宝.干旱半干旱区土壤风蚀评价方法[J].干旱区资源与环境,2000,14(2):48-52
    20D.J.MacKinnon, Pat S. Chavez, Jr. Extraction of the geometry of surface clastsfrom ground-based digital images: Application to studies of wind erosion [J].Proc. of International Conference on Aeolian Research.2002Lubbock, Texas, USAPublication02-2:127-129
    21李锦荣.沙袋沙障的防风固沙效应研究[D].内蒙古农业大学,2008.7
    22Ehrenberg C G.The Sirocco dust that fell at Genoa on the16th May1846[J].QuarterlyJournal of Geological Society London.1947,3:25-26
    23Sokolov N. A. Dunes development formation and inner structures[J].St Petersburg.1884,286
    24Udden, J. A.. Erosion, transportation and sedimentation performed by the atmosp-here[J].The Geographic Journal,1894,2,318-331
    25Gilbert, G. K.. Lake basins created by wind erosion[J].The Geographic Journal,1895,3:47-49
    26Cornish,V.. On the formation of sand dunes[J].The Geographic Journal,1897,9,278-309
    27King, W. J. H.. The nature and formation of sand by wind[J].Civil Eng,1916,6:325-327
    28Cornish V. On the formation of sand-dunes[J]. The Geographic Journal,1897,Ⅸ:278-309
    29Cornish V. Waves of sand and snow and the eddies which make them[J], T. FisherUnwin, London,1914,383
    30Olsson-Seffer, P.. Relation of wind to topography of coastal drift sands[J]. TheGeographic Journal,1908,16:549-564
    31Free, E. E.. The movement of soil material by the wind[R]. USDA Bur. Soils Bull,1911:68
    32Bagnold R A.. The Movement of desert sand[J]. Geographical Journal.1935,85:342-369
    33Bagnold R A.. The Movement of desert sand[C]. Proceedings of the Royal Societyof London A,1936,157(892):597-620
    34Bagnold R A.. The transport of sand by wind[J]. Geographical Journal.1937,89:409-438
    35Begnold R A.. The measurement of sand storms[C].Proceedings of the Royal Societyof London A,1938,169(929):282-291
    36Bagnold R A.The Physics of BIown Sand and Desert Dunes[M].London:Methuen.1941
    37Tsoar H.. Classics in physical geography revisited-Begnold A R.1941. The physicsof blown sand and desert dunes[J]. Progress in Physical Geography.1994,18(1):91-96
    38河村龙马.飞砂の的研究.东京大学理工学研究所报告[R].1951(5):3-4
    39Zingg A W. Wind-tunnel studies of the movement of sedimentary material[J].Proceedings of the Fifth Hydraulics Conference,1953,34:111-135
    40兹纳门斯基,著.杨郁华,译,朱震达,校.沙地风蚀过程的实验研究和沙堆防止问题[M].北京;科学出版社,1960
    41Chepil W S, Woodruff N P. The physics of wind erosion and its control[J]. Advancesin Agronomy.1963,15:211-302
    42Horikawa K, Shen H W. Sand movement by wind action(on the characteristics of sandtraps)[R]. US Army Corps of Engineers, Beach Erosion Board. Tech., Memo,119,1960:51
    43Owen P R. Sahation of uniform grains in air[J].Fluid Mech.1964,20:225-242
    44Belly P Y. Sand movement by wind(with Addendum II by A A Kadib)[R].U.S.Army. Corpsof Engineers, Coastal Engineering Research Center. Tech. Memo. No.1,1964.79
    45Williams G.. Some aspects of the eolian sahation load[J]. Sedimentology,1964,3:357-287
    46Kadib AL.. A function of sand transport by wind[R]. Technical Report, HE-2-8.Hydraulics Engineering Laboratory, University of California, Berkeley, CA,1965:38
    47Cook R U,Warren A. Geomorpholgy in Desert[M]. London:Batsford,1973
    48朱震达,陈治平,吴正等.塔克拉玛干沙漠风沙地貌研究[M].北京:科学出版社.1981
    49Barndodf-Nielsen O Et Moiler J T. Willetts B B(eds.)Proceedings of InternationalWorkshop on the Physics of Blown Sand[C]. Department of Theoretical StatisticsUniversity of Aarhus.1985:253-269
    50Nickling W G, ed. Aeolian Geomorphology[M]. Boston:Allen&Unwin,1986
    51El-Bes F, Hassan M H A. Physics of Desertification[M]. Martinus Nijhoff.1986
    52Pye K. Aeolian Dust and Dust Deposits[M]. London:Academic Press.1987
    53El-Bes F. El-Tayeb I A,Hassan M H A.Sand Transport and Desertification in AridLands[J]. Word Scientific,1989:419-437
    54刘贤万.实验风沙物理与风沙工程学[M].北京:科学出版社,1995
    55Goudie A S, Livingstone I. Stokes S. Aoelian environments, Sediments andLandforma[M].Chichester: Jonhn Wille&Sons LTD,1998
    56Lee J. A., Zobeck T. M.. Proceedings of the ICAR5/GCTE-SEN Joint Meeting [C].Lucbbock.Texas.2002
    57Living stone I. Niekling W G. Aeolian research[J]. Geomorphology.2004,59:1-2
    58钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社.1983
    59Pye K. Tsoar H. Aeolian Sand and Sand Deposits[M].. London:Unwin Hyman.1990
    60Cooke R, Warren A, Goudie A. Desert Geomorpholgy[M].. London:UCL Press.1993
    61Lancaster N. Geomorpholgy of Desert Dunes[M].. London:Routtedge.l995
    62Livingstone I, Warren A. Aeolian Geomorphology Lan Introduction[M]. Harlow:Addison Wesley Long-man.1996
    63Shao Y P. Physics and Modelling of Wind Erosion[M]. Dordreeht: Kluwer AcademicPublishers.2000
    64董治宝,高尚玉,董光荣.土壤风蚀预报研究述评[J].中国沙漠,1999,19(4):312-317
    65Li Z S, Ni J R. Sampling efficiency of vertical array aeolian sand traps[J].Geomorphology.2003,52:243-253
    66吴正编著.风沙地貌与治沙工程学[M].北京:科学出版社,2003
    67Ni J R, Li Z S, Mendoza C. Biown-sand transport rate[J]. Earth Surface Processesand Landforms.2004,29:1-14
    68王涛主编.中国沙漠与沙漠化[M].石家庄:河北科学技术出版社,2003
    69夏训诚.罗布泊科学考察与研究[M].北京:科学出版社,1987:7-45
    70Dong Z B.,Wang X M.,Liu L Y..Wind erosion in arid and semiarid China:an overview[J].Journal of Soil and Water Conservation,2000,55(4):439-444
    71黄秉维.陕甘黄土区土壤侵蚀的因素与方式[J].地理学报,1953,19(2):28-35
    72凌裕泉,吴正.风沙运动的动态摄影实验[J].地理学报,1980,35(2):174-181
    73朱震达,陈治平,吴正等.塔克拉玛干风沙地貌研究[M].北京:科学出版社,1981:96-106
    74谢贤群.呼伦贝尔草原开垦地的热量平衡特征及其对土壤风蚀的影响[J].中国草原,1981,(1):156-162
    75朱震达,刘恕.中国北方地区的沙漠化过程及其治理区划[R].北京:中国林业出版社,1981:1-83
    76贺大良,邹本功,李长治等.地表风蚀过程风洞实验的初步研究[J].中国沙漠,1986,6(1):25-31
    77董光荣,李长治,金炯等.关于土壤风蚀风洞实验的某些结果[J].科学通报,1987,32(4):277-301
    78陈广庭.北京平原土壤机械组成和抗风蚀能力的分析[J].干旱区资源与环境,1991,5(1):103-113
    79董治宝.土壤风蚀预报简述[J].中国水土保持,1999,6:17-19
    80哈斯.河北坝上高原土壤风蚀物垂直分布初步研究[J].中国沙漠,1997,17(1):9-13
    81哈斯.坝上高原土壤不可蚀性颗粒与耕作方式对风蚀的影响[J].中国沙漠,1994,14(1):92-97
    82哈斯,陈渭南.耕作方式对土壤风蚀的影响—以河北坝上地区为例[J].土壤侵蚀与水土保持学报,1996,2(1):10-16
    83哈斯.河北坝上地区土壤风蚀物理化性质初步研究[J].水土保持通报,1997.17(1):1-6
    84Inglis. D R.. Particle sorting and stone migration by freezing and thawing[J].Science1965(14):1616-1617
    85Berg N H. Field evaluation of some sand transport models[J]. Earth SurfaceProcesses and Landforms.1983(8):101-114
    86Tsoar H, Yallon D H. Deflection of sand movement on a sinuous longitudinal(seif)dune: use of fluorescent dye as tracer[J]. Sedimentary Geology,1983,36:25-39
    87Barndorff-Nielsen O. E. Jensen J. L., Nielsen H. L., Rasmussen K. R. SorensenM. Wind tunnel tracer studies of grain progress [C]. In: Barndorff-Nielsen O E,Moiler J T, Willetts B B, Proceedings of International Workshop on The Physicsof Blown Sand. University of Aarhus. Denmark, Memoirs No.8,1985,243-252
    88Bristow C S, Bailey, Lancaster N.. The sedimentary structure of linear sanddunes[J].Nature,2000,406:56-59
    89吴世亮,倪晋仁,李振山.颗粒分析中筛分析法与粒径计法之比较[J].泥沙研究,2002,1:60-65
    90Chepil W.S..Soil conditions that influence wind erosion[J]. USDA Tech. Bull,1958,1185
    91Terrence J. Toy, George R. Foster, Kenneth G. Renard.. Wind Erosion: Process,Prediction, Measurement and Control[M]. John Wiley&Son, Inc. New York.2002
    92Woodruff, N.P, Siddoway, F H.. Soil science society. American Proceedings,1965,29(3):602
    93Chepil W S.. Influence of moisture on erodibility of soil by wind[J]. Soil ScienceSociety of American Proceeding,1956.20:288-292
    94Merrill S.D., A.L. Black, D.W. Fryrear, et al. Soil wind erosion hazard of springwheat-fallow as affected by long-term climate and tillage[J]. Soil Sci. Soc. Am.J,1999,63:1768-1777
    95Blumberg D.G.,Greeley.R..Field studies of aerodynamic roughness of fixed sandybeds[J].Arid Environ,1993,25:39-48
    96Fryrear D W..Soil ridges clods and wind erosion[J].Trans of the ASAE,1984,27(2):445-448
    97Kirkby, M.J.. Implications for sediment transport[J]. In: Hillslop Hydrology,Wiley, Chichester,1978:325-363
    98Wasson R.J., Nanninga PM.. Estimating wind transport sandon vegetated surface[J].Earth Surface Processes and Landforms,1986,11:505-514
    99Chepil W.S.Properties of soil which influence wind erosion: I.The governingprinciple of surface roughness[J].Soil Sci,1950,69:149-162
    100Chepil.W.S..Factors that influence clod structure and erodibilicty of soil byWind[J]. Water–stable structure soil science,1953,(76):389-399
    101Chepil W.S.Factors that influence clod structure and erodi-ability of soil bywind: IV. Sand silt and clay[J].Soil Sci,1955,80:155-162
    102T·雅库布夫.土壤风蚀及其防治[M].北京:中国农业出版社,1955,15-26
    103D. W. Fryrear,C.A. Krammes.土壤风蚀度的综合计算[J].土保持科技情报,1995,(2):38-41
    104陈广庭.北京平原土壤机械组成和抗风蚀能力的分析[J].干旱区资源与环境,1991,5(1):103-113
    105董治宝,李振山.风成沙粒度特征对其风蚀可蚀性的影响[J].土壤侵蚀与水土保持学报.1998,4(4):68-74
    106赵焕勋,王学东.内蒙古土壤侵蚀灾害研究[J].干旱区资源与环境,1994,8(4):35-42
    107董治宝,陈广庭.内蒙古后山地区土壤风蚀问题初论[J].土壤侵蚀与水土保持学报,1997,3(2):84-90
    108李晓丽.阴山北麓土壤风蚀的影响因素及运动特性的试验研究[D].内蒙古农业大学,2007,5
    109刘连友,王建华等.耕作土壤可蚀性颗粒的风洞模拟测定[J].科学通报,1998,8(15):1663-1666
    110刘连友,刘玉璋等.砾石覆盖对土壤吹蚀的抑制效应[J].中国沙漠,1999,19(1):60-63
    111董治宝,屈建军,刘小兵等.戈壁表面阻力系数的实验研究[J].中国科学,2001,31(11):953-958
    112刘小平等.砾石覆盖组合措施的防风蚀作用[J].水土保持学报,2000,14(1):7-11
    113张春来,邹学勇等.耕作土壤表面的空气动力学粗糙度及其对土壤风蚀的影响[J].中国沙漠,2002,22(5):473-475
    114张华,李锋瑞等.科尔沁沙地不同下垫面风沙流结构与变异特征[J].水土保持学报,2002,16(2):20-23,28
    115臧英,高焕文.旱地保护耕作土壤风蚀模型研究[J].干旱地区农业研究,2006,2(24):1-7
    116史培军.中国土壤风蚀研究的现状与展望[R].第十二届国际水土保持大会邀请学术报告,2002,(5):1-14
    117张胜邦,董旭,刘玉璋,等.柴达木盆地东南部土壤风蚀研究[J].中国沙漠,1999,19(3):293-295
    118叶笃正,丑纪范,刘纪远,等.关于我国华北沙尘天气的成因与治理对策[J].地理学报,2000,55(5):513-521
    119慕青松,苗天德等.沙漠风蚀中不均匀沙的起动[J].兰州大学学报,2000,36(6):34-39
    120董治宝,高尚玉,Fryrear D W.直立植物—砾石覆盖组合措施的防风蚀作用[J].水土保持学报,2000,14(1):7-11,17
    121刘小平,董治宝.砾石床面的空气动力学粗糙度[J],中国沙漠.2003,23(1):38-45
    122薛娴,张伟民,王涛.戈壁砾石防护效应的风洞实验与野外观测结果—以敦煌莫高窟顶戈壁的风蚀防护为例[J].地理学报,2000,55(3):375-383
    123岳乐平,杨利荣,李智佩,等.西北地区干枯湖床沉积粒度组成与东亚沙尘天气[J].沉积学报,2004,22(2):325-331
    124梅凡民,张小曳,曹军骥,等.定量评价中国北方粉尘源区地表覆盖类型对表土风蚀强度的影响[J].海洋地质与第四纪地质,2004,24(1):119-124
    125周建忠,路明.不同类型地表沙尘量的比较研究[J].作物杂志,2006,(4):1-5
    126范锦龙,潘志华,赵举,等.风蚀强度的空间差异及影响分析[J].水土保持学报,2003,17(2):100-102,136
    127刘树林,王涛.浑善达克沙地春季风沙活动特征观测研究[J].中国沙漠,2006,26(3):357-361
    128武生智,马崇武,苗天德.沙粒级配和沙丘分布的分形分析[J].中国沙漠,1999,19(3):247-250
    129武生智,魏春玲,马崇武,等.沙粒粗糙度和粒径分布的分形特性[J].兰州大学学报(自然科学版),1999,35(1):53-56
    130赵文智,刘志民,程国栋.土地沙质荒漠化过程的土壤分形特征[J].土壤学报,2002,39(6):877-881
    131范燕敏,朱进忠,武红旗.北疆退化荒漠草地土壤颗粒的分形特征[J].草原与草坪,2008,(4):10-13,19
    132杨秀春,刘连友,严平.土壤短期吹蚀的粒度分维研究[J].土壤学报,2004,41(2):176-182
    133苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报,2004,24(1):71-74
    134章予舒,谢高地,肖玉.弃耕农田土壤分形特征研究:以内蒙古自治区伊金霍洛旗为例[J].中国生态农业学报,2005,13(3):42-44
    135张国瑞.农田风蚀土壤的颗粒分形特征研究[D].内蒙古农业大学,2007,6
    136文海燕,傅华,赵哈林.退化沙质草地开垦和围封过程中的土壤颗粒分形特征[J].应用生态学报,2006,17(1):55-59
    137郭冬梅,白英,郭炜.表层风蚀土壤粒径分布的分形特征研究[J].内蒙古农业大学学报,2005,26(1):84-86
    138齐雁冰,常庆瑞,惠泱河.人工植被恢复荒漠化逆转过程中土壤颗粒分形特征[J].土壤学报,2007,44(3):566-569
    139任雪,褚贵新,王国栋,等.准噶尔盆地南缘绿洲-沙漠过渡带“肥岛”形成过程中土壤颗粒的分形研究[J].中国沙漠,2009,29(2):298-304
    140高君亮,李玉宝,虞毅,等.毛乌素沙地不同土地利用类型土壤分形特征[J].水土保持研究,2010,17(6):220-223
    141李占宏,海春兴,丛艳静.毛乌素沙地表土粒度特征及其空间变异[J].中国水土保持科学,2009,7(2):74-79
    142李艳,史舟,徐建明,等.地统计学在土壤科学中的应用及展望[J].水土保持学报,2003,17(1):178-182
    143侯景儒.地质统计学在我国的应用及其发展[J].地质与勘探,1991,27(4):36-38
    144王政权.地统计学及其在生态学中的应用[M].北京:科学出版社,1999
    145陈亚新,史海滨.渠床土壤入渗率局部估计的点Kriging插值问题[J].水利学报,1991,(2):11-18
    146陈亚新,史海滨,魏占民,等.土壤水盐信息空间变异的预测理论与条件模拟[M].北京:科学出版社,2005
    147陈亚新,徐英,魏占民,等.基于稳健统计学的水盐空间变差函数逼近方法[J].水利学报,2004,(9):44-49
    148张仁铎.空间变异理论及应用[M].北京:科学出版社,2005
    149王政权,王庆成.森林土壤物理性质的空间异质性研究[J].生态学报,2000,20(6):945-950
    150刘付程,史学正,潘贤章,等.苏南典型地区土壤颗粒的空间变异特征[J].土壤通报,2003,34(4):246-249
    151陈伏生,曾德慧,陈广生,等.不同土地利用方式下沙地土壤水分空间变异规律[J].生态学杂志,2003,22(6):43-48
    152马风云,李新荣,张景光,等.沙坡头固沙植被若干土壤物理因子的空间异质性研究[J].中国沙漠,2005,25(2):208-215
    153贾晓红,李新荣,周海燕,等.黄灌沙区农田耕层土壤性状空间异质性分析[J].水土保持学报,2005,19(5):101-104
    154王利兵,胡小龙,余伟莅,等.沙粒粒径组成的空间异质性及其与灌丛大小和土壤风蚀相关性分析[J].干旱区地理,2006,29(5):688-693
    155马黎春,盛建东,蒋平安,等.克拉玛依地区土壤速效微量养分空间变异特征[J].干旱区地理,2004,27(2):202-206
    156贾晓红,李新荣,张景光,等.沙冬青灌丛地的土壤颗粒大小分形维数空间变异性分析[J].生态学报,2006,26(9):2827-2833
    157刘耘华.新疆三种荒漠植被“肥岛”的土壤颗粒空间异质性研究[D].新疆农业大学,2009,6
    158姚月锋,满秀玲.毛乌素沙地不同林龄沙柳表层土壤水分空间异质性[J].水土保持学报,2007,21(1):111-115
    159张继义,王娟,赵哈林.沙地植被恢复过程土壤颗粒组成变化及其空间变异特征[J].水土保持学报,2009,23(3):153-157
    160邱开阳,谢应忠,许冬梅,等.毛乌素沙地南缘沙漠化临界区域土壤养分的空间异质性[J].生态学报,2010,30(22):6052-6062
    161胡云锋,刘纪远,庄大方.土壤风力侵蚀研究现状与进展[J].地理科学进展,2003,22(3):288-295
    162Berry L, Ford, R B.. Recommendations for a system to monitor critical indicatorsin areas prone to desertification[M]. In: Worcester M. Program for internationalDevelopment, Clark University,1977
    163高志海.荒漠化评价研究综述[J].中国沙漠,2004(1):17-22
    164何清,杨兴华,艾力·买买提明,等.塔中地区土壤风蚀的影响因子分析[J].干旱区地理,2010,33(4):502-508
    165李晓丽,申向东,张雅静.内蒙古阴山北部四子王旗土壤风蚀量的测试分析[J].干旱区地理,2006,29(2):292-296
    166哈妮帕·阿布拉别克,苏里坦,努尔模达·达拉拜.古尔班通古特沙漠南缘土壤风蚀与其抑制因子的空间变异性[J].水土保持研究,2010,17(4):24-28,33
    167党安荣等.Erdas imagine遥感图像处理方法[M].北京:清华大学出版社,2003
    168Tucker, C.J., J.A.Gatlin, and S.R.Schnider.. Monitoring vegetation in the Niledelta with NOAA-6and NOAA-7AVHRR imagery.Photo. Eng. Remote Sens.,1984,(50):53-61
    169N.G.Kharin and Natsag,Results of studying desertification of arid territoriesin Mongolia[J],Problems of Desert development,1992,(5):52-55
    170Kuehl R O,Breckenridge R P,Panda M.. Integrated response plot designs forindicators of desertification[C]. Proceedings of the international symposiumand workshop in Tucson,Arizona,VSA,1994
    171Tripathy G K, et al. Monitoring of desertification process in Karnatakastateof India using multi-temporal remote sensing and ancillary information usingGIS[J]. INT. J.Remote Sensing,1996,17(12):2243-2257
    172高尚武等.中国沙质荒漠化土地监测评价指标体系[J].林业科学,1998,34(2):1-10
    173刘安麟等.陕北地区植被、土地利用类型遥感分类方法研究[J].测绘技术装备,2007,3:23-27
    174曾永年,冯兆东,向南.基于地表定量参数的沙漠化遥感监测方法[J].国土资源遥感,2005,64(2):40-44
    175汪潇,张增祥,王长有,亢庆,于嵘.新疆艾比湖绿洲土地退化遥感动态监测[J].干旱区研究,2007,24(6):741-746
    176Walkor J. H., Saunders R. D., Tackson J. K., Mielenz R. D.. Report to the BIPMCom[C]. Cons Phot. Radiometrie,12th Meeting,1990: Working DocumenL CCPR/90-11
    177C. Crasa, J. C. Abanades.. A calilbration procedure to obtain solid concentrali-ons from digital images of bulk powders[J]. Powder technology,2001,114,125-128
    178Zhijun Wu,et al.. An image-shifting technique based on grey-scale classificationfor particle image velocimetry[J]. Optics and Lassers in Engineering,2002,38,567-575
    179蓝章礼,梁爽,田文玉.基于数字显微图像处理的水泥粒度分析[J].材料导报,2008,22(10),88-90
    180孙朝云,姚秋玲等.沥青混合料数字图像特征提取边缘跟踪算法[J].计算机应用与软件,2007,24(3),156-158
    181苗春卫,李玉祥,王克家,等.基于数字图像处理的煤粉颗粒检测[J].应用科技,2003,30(2):1-3
    182张秀芳,于爱兵,贾大为,等.应用数字图像识别法检测金刚石磨粒的形状与粒度[J].金刚石与磨料磨具工程,2007,(1):47-49,52
    183徐科,张肖宁,王端宜.利用数字图像处理技术量测针片状颗粒含量[J].交通与计算机,2005,23(5):46-48
    184周新聪,萧汉梁,严新平,等.基于分形理论的磨粒图像定量分析[J].材料保护,2002,35(8):1-2
    185王绍怀,李智,邹桂莲,等.小岛法分析沥青混合料图像中级配颗粒组成的分形特性[J].交通与计算机2007,25(6):70-73
    186王毅力,李乐勇,邓式阳,等.图象法确定底泥颗粒物的表面分形维数(DS)[J].环境化学,2006,25(4):400-404
    187李晓东,董吉文,杨波.基于数字图像的水泥物相特征提取方法的研究[J].济南大学学报(自然科学版),2004,18(1):58-60
    188王伟,何小元,杨福俊,等.基于数字光测的表面裂缝宽度图像分析法[J].测控技术,2006,25(7):23-25,33
    189施祺,孙东怀,张叶春.珊瑚骨骼生长特征的数字影像分析[J].海洋通报,2004,23(4):19-23
    190王鲁敏.基于图像分析方法的颗粒粒度测量[J].化工装备技术,2005,26(4):65-67
    191杨华东,简淼夫.一种数字图像颗粒统计的算法[J].电子测量与仪器学报,2005,19(5):41-44
    192涂新斌,王思敬.图像分析的颗粒形状参数描述[J].岩土工程学报,2004,26(5):659-662
    193于庆磊,唐春安,唐世斌.基于数字图像的岩石非均匀性表征技术及初步应用[J].岩石力学与工程学报,2007,26(3):551-559
    194赵玉峰,周又和.沙粒图像中沙粒粒径的检测与识别[J].兰州大学学报(自然科学版),2007,43(1):41-45
    195于翔,宋家驹,刘连君.利用Adobe Photoshop对悬沙颗粒图像预处理[J].海洋技术,2007,26(4):23-26
    196彭勇,孙立军,王元清,等.数字图像处理在沥青混合料均匀性评价中的应用[J].吉林大学学报(工学版),2007,37(2):334-337
    197黄碧霞,陆阳.基于数字图像处理的粗集料颗粒分布分析[J].路基工程,2008,(1):23-25
    198刘柳,梁乃兴,王乐.数字图像技术在露石混凝土路面中的应用[J].重庆交通大学学报(自然科学版),2008,27(5):733-735
    199朱元骏,邵明安.黄土高原水蚀风蚀交错带小流域坡面表土砾石空间分布[J].中国科学D辑:地球科学,2008,38(3):375-383
    200王献礼,张永双,曲永新,等.基于数字图像处理技术的冰川堆积物粒度分析—以川西贡嘎山冰川堆积物为例[J].地质通报,2010,29(2-3):469-475
    201王鹿振.基于数字图像处理技术的风蚀地表粗化信息提取研究[D].中国林业科学研究院,2010.6
    202高君亮.风蚀地表土壤颗粒的图像表征及空间变异特征[D].内蒙古农业大学,2011.7
    203王淮亮,李玉宝,高君亮,高永,虞毅,王鹿振.风蚀地表颗粒含量提取技术—基于决策树图像分类[J].农机化研究,2013(2):134-137
    204王淮亮,李玉宝,虞毅,高永,王鹿振,高君亮.基于ERDAS的地表粗粒信息提取模块设计与客户化[J].山东农业大学学报(自然科学版),2012,43(3):413-418
    205春喜,王宗礼,夏敦胜,等.吉兰泰盐湖的形成及指示的环境意义[J].盐湖研究,2008,16(3):11-18
    206胡春元.试论吉兰泰盐湖的发育与资源保护问题[J].内蒙古林学院学报,1998,20(2):54-60
    207吉兰泰盐化集团公司志编纂领导小组.吉兰泰盐化集团公司志[M].呼和浩特:内蒙古人民出版社,2003
    208北京大学地理系,中国科学院自然资源综合考察委员会,中国科学院兰州沙漠研究所.毛乌素沙区自然条件及其改良利用[M].北京:科学出版社,1983
    209李博.内蒙古鄂尔多斯高原自然资源与环境研究[M].北京:科学出版社,1990
    210朱灵益,宝音.毛乌素沙地乔灌木立地质量评价[Z].北京:中国林业出版社,1993
    211杨持.生态学试验与实习指导[M].北京:高等教育出版社,2003
    212杜永明,秦其明.不同分辨率对遥感影像中识别人造地物的影响[J].遥感技术与应用,2001,16(4):214-217
    213周兴东,等.徐州市遥感图像土地利用分类方法研究[J].中国水土保持,2007,(4):57-58
    214杨冰.基于不同分类方法土地利用/覆盖分类精度分析[D].内蒙古农业大学,2008
    215章孝灿,黄智才,赵元洪.遥感数字图像处理[M].杭州:浙江大学出版社.1997:187-90
    216张伐伐,李卫忠,卢柳叶,等.SPOT-5遥感影像土地利用信息提取方法研究[J].西北农林科技大学学报(自然科学版),2011,39(6):143-147
    217朱宏波.一种基于决策树的SPOT-5影像分类方法[J].勘测设计电力,2010,3:19-22
    218高玉蓉.基于决策树的土地利用现状信息提取研究[D].浙江,浙江大学,2006
    219ESRI中国(北京)有限公司.ERDASIMAGINE遥感图像处理系统产品介绍[G].2004
    220刘俊杰,贾永红,柯美忠.Erdas Imagine二次开发与客户化方法研究[J].地理空间信息,2003,12,01(4):29-30,33
    221ERDAS,Inc.Atlanta,Georgia.ERDAS Macro Language Reference Manual[G].2003
    222谷光宗,任静,孟城,等.基于ERDAS IMAGINEC Toolkit的二次开发[J].测绘工程,2008.8,17(4):66-69,73
    223刘丹丹,刘合林.建立经验统计遥感信息模型时数据处理中的C Toolkit方法[J].东北林业大学学报,2008.12,36(12):36-38
    224党安荣,王晓栋,陈晓峰,等.ERDAS IMAGINE遥感图像处理方法[M].北京:清华大学出版社,2003
    225高海东,王涛.ERDAS IMAGINE空间模型参数客户化的实现方法[J].测绘与空间地理信息,2009,2,32(1):120-122
    226黄翠华,王涛,张伟民,等.沙质地表与砾质戈壁风沙运动对比研究—以敦煌莫高窟窟顶风沙运动为例[J].干旱区研究.2007,24(4):556-562
    227吕萍,董治宝.戈壁风蚀面与植被覆盖面地表性质粗糙度长度的确定[J].中国沙漠,2004,24(3):279-285
    228杨婷婷,姚国征,王满才,等.乌兰布和沙漠天然灌丛防风阻沙效益研究[J].干旱区资源与环境,2008,22(01):194-197
    229乌拉,张国庆,辛智鸣.单个天然灌丛防风阻沙机理与效应[J].内蒙古林业科技,2008,34(2):36-39
    230屈志强,张莉,丁国栋,等.毛乌素沙地常见灌木单株对土壤风蚀的影响[J].中国水土保持科学,2008,6(4):66-70
    231唐艳,刘连友,哈斯,等.毛乌素沙地南缘3种灌草丛形态与阻沙能力的对比研究[J].水土保持研究,2008,15(2):44-48
    232贾丽娜.几种不同灌木矮林防风阻沙效能对比研究[D].北京林业大学,2010
    233Chepil W S,et al. Climatic factor for estimating wind erodibility fields[J].Journal of Soil and Water Conservation,1962,17(4):162-165
    234程天文.农田蒸发与蒸发力的测定及其计算方法[A],地理集刊第12号[C].北京:科学出版社,1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700