樟子松外生菌根真菌多样性及菌根生物技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究包括樟子松外生菌根的形态学、组织学特征分析,外生菌根分子鉴定,外生菌根真菌对樟子松苗木生长的影响,樟子松组培苗菌根化等四部分内容,现分述摘要如下:
     (一)外生菌根形态学、组织学特征分析
     外生菌根中真菌组织形态学和解剖学特征的稳定性,为外生菌根的分类鉴定创造了条件和可能性,在进行外生菌根分类鉴定时,重点应放在真菌组织的特征上。本研究从樟子松为出发点,以菌根共生体为研究对象,系统地从形态学和解剖学的角度研究了之共生的外生菌根类型,详细描述了19种外生菌根类型,并根据图鉴对所分出的外生菌根的颜色、外部形态、菌套表面结构及内部解剖结构等特征进行了归纳总结;探索了以宏观的形态、颜色和显微结构中菌套菌丝排列图式、菌套表面结构及菌丝和菌索内部结构等特征为主要依据进行外生菌根分类鉴定的可行性。
     (二)外生菌根根尖分子鉴定研究
     本研究在分出基本类型的基础上,以樟子松的菌根共生体的根尖为材料,提取DNA,利用真菌特有引物ITS1F和ITS4,在PCR基础上对外生菌根真菌rDNA的ITS区段进行碱基序列测定,然后互联网上DNA序列数据库中的信息资源进行比较,确定其外生菌根真菌的多样性。本研究中共分出19个菌根类型,并鉴定科和属或者到种的水平,鉴定到科水平的有3个类型,鉴定到属的有1个类型,其余14个类型都鉴定到了种;其中属于担子菌亚门的有15株,子囊菌亚门的有4株。
     本研究在进行分子鉴定的同时,充分的利用了互联网上的生物信息资源,构建了分类报告,并对其进行了分析。
     (三)外生菌根真菌对樟子松苗木生长的影响
     本研究在室内条件下对樟子松幼苗点柄乳牛肝菌、褐环乳牛肝菌、块菌、绒边乳菇、黄孢红菇、兰丝膜菌、彩色豆马勃和土生空团菌的菌根人工合成进行了比较全面的试验研究。通过观测苗木生长、根系和菌根的发育、生物量累积,研究了樟子松外生菌根的形成及对苗木生长效应的影响,并对樟子松优良菌根真菌的筛选进行尝试。试验结果表明:点柄乳牛肝菌褐环乳牛肝菌樟子松根系快速形成菌根,对樟子松幼苗的早期生长有明显的促进作用,是樟子松菌根化育苗首选的菌根真菌。接种该两种菌种的樟子松幼苗的平均苗高、地径、生物累积量均因菌根的形成而明显增加,生物累积量甚至可达到未接种苗的2~3倍。另外,对樟子松菌根化苗(合成130d)进行了自然干旱胁迫研究,目的是探讨菌根化樟子松苗木的抗旱机理。结果表明,菌根化苗木可以通过提高苗木光合速率、增加苗木根茎比,提高叶片SOD活性、Pro.含量、降低MDA在植物体内的积累等多种生理、生化代谢途经提高樟子松苗木的抗旱性,其中抗旱性最强的菌种为褐环乳牛肝菌,其菌根化苗较对照苗临界致死时间推迟61h。
     (四)组培苗菌根化
     本研究以樟子松成熟胚为外植体,研究了不同生长调节剂组合对樟子松愈伤组织诱导及分化的影响,并获得了完整的再生植株。建立了樟子松植株再生体系,确立了樟子松组织培养各阶段的最优条件:诱导愈伤组织的最佳培养基组合为1/2MS+1.5mg L~(-1)2,4-D+0.5mg L~(-1)6-BA;愈伤组织增殖的最佳培养基组合为1/2MS+1.0mg L~(-1)2,4-D+0.2mg L~(-1)6-BA;愈伤组织分化的最佳培养基组合为1/2MS+0.1mg L~(-1)IBA+1.0mg L~(-1)6-BA;不定芽伸长生长的适宜培养基为1/2MS+0.1%活性炭,诱导生根的最佳培养基组合为1/4MS+0.5mg L~(-1)NAA+0.2mg L~(-1)IBA。对移栽后樟子松组培苗接种外生菌根真菌S.g和G-S.g,5个月以后,其菌根化率均达到了98%,其菌根侵染率均达到了75%以上,菌根化樟子松组培苗苗高、地茎、干重对照相比均有显著性提高,组培苗菌根化,可以显著促进宿主苗木的生长,尤其是地下生物量的增加。
This research including morphological and anatomical characteristic analysis of Pinussylvestris var. mongolica Litv ectomycorrhizal types;study on molecular identification tothese ectomycorrhizae.; effect of ectomycorrhizae on the growth of Pinus sylvestris varmongolica Litv seedlings and the mycorrhizal formation of tissue cultured plantlets onpinus sylvestris var. mongolica Litv Now respectively abstract writes as follow:
     1.Morphological and anatomical characters analysis of ectomycorrhizae
     Ectomycorrhizal fungus classification and identificaton shoud be put emphasis on thesymbiotic fungus organizational characteristic with tree species, because the morphologicaland anatomical feature of fungus organization is stable and it was proved to providingqualification and possiblility for ectomycorrhizal fungus classification and identifi cation.In this study, taking mycorrhizal sysbiosis as the study object, from Pinus sylvestris var.mongolica Litv starting and from the morphological and anatomical angle, studied theseectomycorrhizal types systematicly, and comprehensive characteristic of19ectomycorrhiz-al types were described using photographs and words. At the same times, on this basis,made a generalization and drawn a conclusion on ectomycorrhizal colour, morphologicalcharacters, surface structure of mantle and anatomical characters in plan views and so on;Further probed in the feasibility of ectomycorrhizal classification and identification in thelight of exterior hyphae, mycorrhizal colour, interior microstructure shuc as arrangedpatterm of mantle hyphae, mantle surface structure and anatomical structure of hyphae andrhizomorphs mainly. On the basis of this study have make a species identification on all19ectomycorrhizal types by means of molecular technology.
     2. Molecular identification reseach on the ectomycorrhizal root tips
     This research was on the premise of having been sorted out basal ectomycorrhizaltypes, took the mycorrhizal symbiosis root tips of Pinus sylvestris var. mongolica Litv asstudied material, extracted DNA of symbiosis, then ITS regions of DNA of identifiedectomycorrhizal fungi were amplified using the special pairs of primers ITS1F/ITS4andsequenced, the sequences determined were compared with those registered in rDNAsequence database on Internet, then identification results were obtained according tocomparing results and other biological information in DNA sequence database on Internet. At last, ectomycorrhizal fungi diversity of several trees species in Inner mongolia wereconfirmed. The results write as follow: of the total of19morphology and anatomaticaltypes of Pinus sylvestris var. mongolica Litv,19types were identified to the level of family,genus and species respectively, ectomycorrhizal types of Pinus sylvestris var. mongolicaLitv belonging respectively to family level is3, genus level is1and rest of15is identifiedto species level; At the same times, among19identified ectomycorrhizal types,15speciesbelong to Basidiomycotina and4species belong to Ascomycotina.
     This research have finished species identifications, as well as by using the biologicalinformation resources on Internet adequately, constructed the taxonomy report, andanalysed the compared results and taxonomy report.
     3. Effect of ectomycorrhizae on the growth of pinus sylvestris var. mongolica Litvseedings
     In this research,the mycorrhizae synthesis between Pinus sylvestrisvar. mongolicaLitv and Suillus granulatus O.Kurttee、Suillus grevillei Sing、Tuber liaotongense、Lactariuspubescens、Cortinarius caerulescens Fr、Russula xerampelina Cenococcum geophilum Fr、Pisolithus tinctorius Coker&Couch.and Paxillus involulus Fr.was studied under potculture conditions.The results showed that Suillus granulatus O.Kurttee and Suillusgrevillei Sing most probably belonged to one ectomycorrhizal fungus the same family,andthe rapid mycorrhizae formation produced strong stimulation on seeding in heightgrowth,radial growth and dry biomass accumulation,especially the increasing of drybiomass for the inoculated seeding was2-3times higher than that of the controlled ones.Drought stress was studied Pinus sylvestris var. mongolica Litv mycorrhizal seedlings(syn-thesized for130day), with the purpose of ascertaining their drought resistance mechanism.The result indicated that mycorrhizul seedlings increased their drought resistance by man-ifold physiological and biochemical mechanisms that enhancing photosynthesis speed,augmenting the root top ratio, increasing the proline content and the activity of SOD andreducing the MDA.Among all the strains,Suillus granulatus O.Kurttee had the strongestdrought resistance capacity.Critical dead time of mycorrhizal seedlings was postponed61hours than the contrast.
     4. The mycorrhizal formation of tissue cultured plantlets
     The effect of hormone on the callus induction and differentiation of mature embryoof Pinus sylvestris var. mongolica Litv was studied. And an efficiency regeneration Systemof the plant was estable.lished. The optimal conditions of each tissue culture stage wereestable.lished: The best proportion of medium of callus induction of Pinus sylvestris var. mongolica Litv are:1/2MS+2,4-D1.5mg·L~(-1)+6-BA0.5mg·L~(-1)The best proportion of mediu-m of the proliferated callus leaded of Pinus sylvestris var.mongolica Litv are:1/2MS+2,4-D1.0mg·L~(-1)+6-BA0.2mg·L~(-1).The best proportion of medium of callus differentiation ofPinu-s sylvestris var. mongolica Litv are:1/2MS+IBA0.1mg·L~(-1)+6-BA1.0mg·L~(-1);Thebestpropor-tion of medium of Adventitious buds elongation growththe of Pinus sylvestris var. mongol-ica Litv are:1/2MS+0.1%activated carbon; The best proportion of medium of rooting of Pi-nus sylvestris var. mongolica Litv are:1/2MS+NAA0.5mg·L~(-1)+IBA0.2mg·L~(-1).After inocul-ated S.g and G-S.g for5months to the plantlets of Pinus sylvestris var. mongolica Litvafter transplanting, the mycorrhizal formation rates of S.g and G-S.g both were up to95%.The infection rates of S.g and G-S.g on the Pinus sylvestris var. mongolica Litv were up to75%. The heights,the ground diameters and the total dry weights of mycorrhizal plantletsof Pinus sylvestris var. mongolica Litv were Significantly improved than the contrast.All ofthe results manifested that after inoculated G-S.g, the growth of host plants were improveddefinitely.
引文
1金樑,赵洪,李博.我国菌根研究进展及展望[J].应用环境生物学报,2004,10(4):515-520
    2刘润进,陈应龙.菌根学.北京:科学出版社,2007.
    3Li XL,Christie P. Changes in soil solution Zn and pH and uptake of Zn by arbuscularmycorrhizal red clover in Zncontaminated soil. Chemosphere,2001,42(2):201-207.
    4Feng G,Zhang FS,Li XL, et al. Uptake of nitrogen from indigenous soil pool by cottonplant inoculated with arbuscular mycorrhizal fungi[J]. Commun Soil Sci Plant Anal,2002,33:3825-3836
    5Sedman RS,Sheehan KB,Stout RG et al. Thermotolerance generated by plant fungisymbiosis[J]. Science,2002,298:1581
    6Blum JD,Klaue A,Nezat CA,et al. Mycorrhizal weathering of apatite as an importantcalcium source in basepoor forest ecosystems[J]. Nature,2002,417:729-31
    7Bidartondo MI,Redecker D,Hijri,et al. Epiparasitic plants specialized on arbuscularmycorrhizal ungi.Nature,2002,419:389-92
    8Smith MD,Hartnett DC,Wilson GWT. Interacting influence of mycorrhizal symbiosis andcompetition on plant diversity in tallgrass rairie[J]. Oecologia,1999,121:574-82
    9Sylvia DM,Alagely AK,Chellemi DO,et al. Arbuscular mycorrhizal fungi influencetomato competition with bahiagrass[J]. Biol Fertil Soils,2001,34:448-452
    10Wilson GWT,HartnettDC,Smith MD, et al. Effects of mycorrhizae on growth anddemography of tallgrass prairie forbs[J]. Am J Bot,2001,88(8):1452-1457
    11Van der Heijden MGA,Wiemken A,Sanders IR. Different arbuscular mycorrhizalfungialter coexistence and resource distribution between cooccurring plant[J]. NewPhytol,2003,157:569-578
    12Callaway RM,Newingham B,Zabinski CA,et al. Compensatory growth and competitiveability of an invasive weed are enhanced by soil fungi and native neighbours[J].Ecollett,2001,4:429-433
    13汪杏芬,李世仪,白克智等.泡囊丛枝菌根真菌侵染强度对植物根表面CO2浓度变化的影响.科学通报,1999,44(1):63-64
    14赵文智,程国栋.菌根在土地沙漠化修复中的应用.应用生态学报,2001,12(6):947-950
    15Egger KN,Fortin JA.Identification of taxa of Estrain mycorrhizal fungi byrestriction fragment analysis[J]. Canadian Journal of Forestry Research,1990,68:1482-1488
    16Erland S. Abundance of Tylospora fibrillose ectomycorrhizas in a South Swedish spruceforest measured by RFLP analysis of the PCR-amplified r-DNA ITS region[J].Mycological Research,1995,99:1425-1428.
    17Hsiang T,Wu C. Genetic relationships of pathogenic Typhula species assessed by RAPD,ITS-RFLP and ITS sequencing[J]. Mycological Research,2000,104(1):16-22
    18白淑兰,闫伟,马荣华等.大青山、蛮汗山外生菌根真菌资源调查[J].山地学报,2001,19(1):44-47.
    19Unger F. Beitrage zur Kenntniss der Parasitischen fuer Pflanzen[J].Anatomischphysilogische Theli.Ann. wien. Nus. Naturgeschichte,1840,2:13-60
    20Lees E. On the parasitic growth of Wonotropa hypopitys[J].The phytologist,1841,1:97-101
    21Ryland T.G. On the parasotic growth of the byssoid substance found invensting theroots of Monotropa hypopitys[J]. The Phytologist,1842,1:341-348
    22Kamienski F.M. Die vegetation sorganen der Monotpopa hypopitys L[J]. Bot.Zeit,1841,39:458-461
    23Frank A.B. Uber die auf Wurze symbiose beruhende Ernahrunggewisser Baume durchUnterirdische Pilze[J]. Ber.Deut.Bot.Ges.,1885,3:128-145
    24Frank,A.B.Uber neue mycorrhiza-formen[J]. Ber.deut.Bot.Ges.,1887,5:359-409
    25Kidston R.&Lang W. H. On old red sandtone plants showing structure from theRhynichert bed, Aberdeenshire. Party.The thallophyta ocurring in the peat bed, thesurccession of the plants throughout avertical section of the bed, and the conditionsof accumulation and preservation of the deposit[J]. Trans.R. Soc.Edin,1921,52:855-902
    26Osborn, T.G. B. The lateral roots of Amyelon radicans Will. and their mycorrhizae[J].Ann.Bot.(lond.),1909,23:603-611
    27Halket,A.C.,The rootlets of Amyelon radicans Will.,their anatomy,their apices andtheir endophytic fungu[J]s. Ann. Bot.(Lond.),1930,44:865-905
    28Maeda, M..The meaning of mycorrhizae in regard to systematic botany[J]. Kumamoto.J.Sci.B.,1954,3:57-84
    29Gerdemain J.W. Vesicular-arbascular mycorrhisae and plant growth[J]. Ann. Rer.Phytopath,1968,6:397-418
    30郭秀珍,毕国昌.林木菌根及应用技术[M].北京:中国林业出版社,1989,1-305
    31Harkey J. L.&Smith S. E. Mycorrhizal Symbiosis[M]. Acad. Press. Inc.(London)Itd.1983
    32Marx D. H.&Beattie D. J. Mycorrhizaepromising aid to timber growers[J]. For Farmer.1983,36:6-9
    3333Miller, O. K. Jr. Taxonomy of ecto and Ecterdomycorrhizal fungi[J]. In“Methods&Principles of Mycorrhizal Research”(Ed.Schenk).1982,(3):91-102
    34弓明钦,陈应龙,仲崇禄.菌根研究及应用[M].北京:中国林业出版社.1997,21-83
    35桂阳,刘作易.外生菌根菌植多样性及其进化[J].种子,2006,25(3):44-46
    36Smith SE, Read DJ..Mvcorrhizal Symbiosis(2nd Ed)[M]. California ACADEMICPRESS.1997.
    37蒲训.甘肃陇南地区的外牛菌根菌[J].甘肃林业科技,2000,25(2):2-9
    38谭方河,王云璋.四川松树、桉树外生菌根菌种类调查[J].四川林业科技,2000,21(3):65-69
    39王淑清,徐丽华.东北主要用材树种外生菌根真菌资源调查研究[J].辽宁林业科技,2002,(3):17-20
    40孟繁荣,邵景文.东北主要林区针叶林下外生菌根真菌及生态分布[J].菌物系统,2001,20(3):413-419
    41于富强,纪大干,刘培贵.云南松外生菌根真菌分离培养研究[J].植物研究,2003,23(1):66-71
    42Colpaaert JV, Muller LAH, Lanbaerts M, et al.Evolutionary adaptation to Zn toxicityin populations of Suilloid fungi[J]. New Phytologist.2004,162(2):549-559
    43Morton.J.B. Revised classification of arbuseular mycorrhizal fungi(zygoycetes): ANew order, Glomales,two new familids, Acaulosporaceae, and Gigasporaeceae, with anemendation of Glomaceae[J]. Mycotaxon,1990,37:471-491
    44刘乐.紫金山树木菌根多样性调查研究[D].南京农业大学,2011.
    45朱教君,徐慧,许美玲等.外生菌根菌森林树木的相互关系[J].生态学杂志,2003,22(6):70-76
    46Brundrett M. Mycorrhizal associations and other means of nutrition of vascular plants:understanding the global diversity of host plants by resolving conflictinginformation and developing reliable means of diagnosis[J]. Plant soil,2009,320:37-77.
    47景跃波.我国树木外生菌根菌资源状况及生态学研究进展[J].西部林业科学,2007,36(2):135-140
    48Tedersoo L, May T W, Smith M E. Ectomycorrhizal life style in fungi: global diversity,distribution and evolution of phylogenetic lineages[J]. Mycorrhiza,2010,20:217-263
    49曹凤娟.土生空团菌的培养特性及其对宿主植物促生作用研究[D].内蒙古农业大学,2011
    50Cavender Bares J, Izzo A, Robinson R. Changes in ectomycorrhizal community structureon two containerized oak hosts across an experimental hydrologic gradient[J].Mycorrhiza,2009,19:133-142
    51王铁牛.大青山几种主要树种外生菌根真菌生态调查研究[D].内蒙古农业大学.2002
    52Wang Q, Gao C, Guo L D. Ectomycorrhizae associated with Castanopsis fargesii(Fagaceae) in a subtropical forest China[J]. Mycol Progress,2011,10:323-332
    53饶本强,钱晓鸣.武夷山自然保护区马尾松菌根群落研究[D].厦门大学.2000
    54桂阳,刘作易.外生菌根菌植多样性及其进化[J].种子,2006,25(3):44-46
    55于富强,刘培贵.外生菌根研究及展望[J].生态学报,2002,22(12):2217-2225
    56王艺,丁贵杰.外生菌根对马尾松幼苗生长的影响[J].中国林业科技大学学报,2011,31(4):74-78
    57朱天辉,张健,胡庭兴.四川桉树菌根类型及林分密度对菌根真菌的影响[J].四川农业大学学报,2001,19(3):222-22.
    58王成彬,林久志.中国外生菌根资源的研究进展展望[J].中国林副特产,2006,83(4):105-106.7
    59樊永军.内蒙古地区四种树木外生菌根形态多样性及分子鉴定[D].内蒙古农业大学,2009
    60闫伟,樊永军,王黎元.贺兰山地区青海云杉外生菌根的形态类型及分子鉴定[J].林业科学,2011,47(6):108-113
    61Wei J. Ectomycorrhizal diversity of Chinese pine (Pinus Table.ulaeformis) in NorthChina[D]. Ludwig-Maximilians-University,2010
    62Jiao H, Chen Y L, Lin X G, et al. Diversity of arbuscular mycorrhizal fungi ingreenhouse soils continuously planted to watermelon in North China[J].Mycorrhiza,2011,23(4):45-56
    63Nara K, Nakaya H, Wu B, et al. Underground primary succession of ectomycorrhizalfungi in a volcanic desert on Mount Fu ji[J]. New Phytol,2003,(159):743-7
    64马大龙.赤松幼苗外生菌根形态学研究[D].东北林业大学,2008
    65邢树堂,李玉花,瓦里奥.银杉外生菌根形态观察法探讨[J].北华大学学报,2005,6(4):348-349
    66Agerer R.Fungal relationships and structural identity of theiectomycorrhizae[J].Mycological Progress,2006,5:67-107
    67许美玲,朱教君,孙军德等.树木外生菌根真菌多样性研究方法进展[J].土壤通报,2005,36(6):969-974
    68Beatriz A, Javier Parlade, Ana Mara Miguel, et al. Characterization andidentification of field ectomycorrhizae of Boletus edulis and Cistus ladanifer[J].Mycologia,2006,98(1):23-30
    69梁洪萍.四川巨桉外生菌根研究[D].四川农业大学,2010
    70林晓民,王少先,李振岐.真菌rDNA的特点及在外生菌根菌鉴定中的应用[J].西北农业学报,2005,14(2):120-125
    71Peintner U, Moser M M, Thomas K A, et al. First records of ectomycorrhizal Cortinariusspecies(Agaricales,Basidiomycetes) from tropical India and their phylogeneticposition based on rDNA ITS sequences[J]. Mycological Research,2003,107(4):485-494
    72Jonathan M, Palmer, Daniel L. Lindner Ectomycorrhizal characterization of anAmerican chestnut (Castanea dentata)-dominated community in WesternWisconsin[J].Mycorrhiza,2008,19(27):3625-3630
    73Mazzaglia A, Anselmi N, Vicario S, et al. Sequence analysis of the5.8S rDNA andITS regions in evaluating genetic relationships among some species of Hypoxylon andrelatedgenera[J]. Mycological Research,2001,105(6):670-675
    74Garnica S, Weib M, Oberwinkler F. Morphological and molecular phylogenetic studiesin South American Cortinarius species[J]. Mycological Research,2003,107(10):1143-1156
    75Brundrett M C. Mycorrhizal associations and other means of nutrition of vascularplants,understanding the global diversity of host plants by resolving conflictinginformation and developing reliable means of diagnosis[J]. Plant Soil,2009,320:37-77
    76李墨婵,徐建平.外生菌根菌的分子生态学:分子标记基因、遗传个体及生态意义[J].云南植物研究,2009,31(3):193-209
    77Chilver. Ectoendomycorrhizal fungi with in the same root system[J]. New Phytol.,1987,107:441-448
    78Lodge DJ.Ector arbuscular mycorrhizas which are best [J].New Phytol.,2000,146:353
    79Jumpponen A,Trappe JM,Cazares E.Ectomycorrhizal fungi in Lyman Lake Basin:acompare-son between primary and secondary successional sites[J]. Mycologia.1999,91(4):575-582
    80Harvey AE,Jurgensen MF,Larsen MJ.Seasonal distribution of ecorrhizae in amatureDougLasfir,Larch forest soil in Western Montana[J]. For. Sci.,1978,24:203-208
    81吴炳云,梁乃申.外生菌根对油松苗木抗旱性的影响[J].北京林业大学学报,1991,13(增刊):281-289
    82吕全,雷增普.外生菌根提高板栗苗木抗旱性能及其机理的研究[J].林业科学研究,2000,3(3):249-256
    83唐明,薛蒹,任嘉红等. AMF提高沙棘抗旱性的研究[J].西北林学院学报,2003,18(4):29-31
    84Bradley R, Burt AJ, Read DJ.Mycorrhiza infection and resistance to heavy metaltoxicity in Callaunan vulgarism[J]. Nature,1981,292:336-337
    85Richen B, Hofner W. Effects of arbuscular mycorrhizal fungi on heavy tolerance ofalfalfa and oak on a sewagesludge txeated soil[J]. Pflanzenernahr Bodenk,1996,159:189-194
    86Claudia G, Marb K.Identification of the copper region in saccharonyces cerevisiaeby microarrays[J]. Biolchem,2000,275(41):32310-32316
    87黄艺,陈有键,陶澎.菌根植物根际环境对污染土壤中Cu, Zn, Pb, Cd形态的影响[J].应用生态学报,2000,11(3):431-434
    88白淑兰,赵春杰,房耀维等.粘盖牛肝菌不同菌种对Zn2+、Cd2+的吸附及其对油松Zn2+、Cd2+的耐受性[J].生态学报,2005,25(2):220-224
    89Duponnois R,Garbaye J. Effect of dual inoculation of Douglas fir with ectomycorrhizalLaccaria laccarta and mycorrhization helper bacteria(MHB) in two bare-root[J]. Plantand soil,1991,138:169-176
    90Garbaye J. Helperr bacteria: A new dimension to the mycorrhizal symbiosis[J]. NewPhytol.,1994,128,197-210
    91赵之伟.菌根真菌在陆地生态系统中的作用[J].生物多样性,1999,7(3):240-244
    92徐冰,李白,秦岭等.不同外生菌根真菌对难容性磷的活化[J].吉林农业大学学报,2000,22(4):76-80
    93Dahlberg A.Community ecology of ectomycorrhizal fungi: an advancinginterdisciplinary field[J]. New phytol.,2001,150:555-562
    94Nehls U,Mikolajewski S,Magel E et al. Carbohydrate meTable.olism in ectomycorrhizas:gene expression, monosaccharide transport and meTable.olic control[J]. New Phytol.,2001,150:533-541
    95Johnson D, Ijdo M, Genney D R et al. How do plants regulate the function, communitystructure, and diversity of mycorrhizal fungi?[J]. Journal of Experimental Botany,2005,56(417):1751-1760
    96Silvia D S, Michael S, Margret E et al. Mycorrhiza helper bacterium AcH505inducesdifferential gene expression in the ectomycorrhizal fungus Amanita muscaria[J]. NewPhytol.,2005,168:205-216
    97赵忠,王真辉.菌根真菌根际微生物间的关系及其对宿主植物的影响[J].西北林学院学报,2001,16(4):70-75
    98Malajczuk N.,Grove T.S.,Tomson B.T.et al. Ectomycorrhizas In Microoganisms thatPromote Plant Productivity[M]. Klever Press, Amsterdam,1992
    99郭秀珍.松树外生菌根真菌对防治油松幼苗瘁倒病的作用[J].云南植物研究,1991,3(3):359-366
    100雷增普.外生菌根对油松苗木瘁倒病生物防治效应[J].北京林业大学学报,1983,11(1):81-89
    101王昌温,罗晓芳等.外生菌根对油松苗木生物产量的影响[J].林业科学,1985,19(3):375-382
    102童竟新,杨肇兴等.纯培养彩色豆马勃菌丝体接种国外松研究初报[J].林业科学,1983,19(3):332-334
    103杨坚.外生菌根对松苗瘁倒的影响[J].森林病虫通讯,1988,(1):20-21
    104陈祥欣.人工纯培养菌根真菌对马尾松幼苗生长效应的研究[J].林业科技通讯,1986,2(1):11-14
    105陈连庆,裴致达等.接种菌根对马尾松育苗和造林的影响[J].林业科技通讯,1992,23(1):27-29
    106朱伟兴,胡嘉琪等.黄山松和外生菌根菌的相互关系及其菌根建成[J].植物学报,1991,33(5):76-78
    107弓明钦,王凤珍等.桉树幼苗菌根接种及其生长效应研究[J].林业科学研究,1992,5(6):639-645
    108周崇连,韩桂芝.几种松树外生菌根真菌的研究[J].生态学报,1983,3(2):103-105
    109陈连庆.马尾松共生菌根真菌调查研究[J].林业科学研究,1989,2(4):357-362
    110唐振尧,赖毅,何首林. VA菌根真菌对柑桔吸收钙素效应的研究初报[J].真菌学报,1989,8(2):133-139
    111雷增普,王昌温.生物制剂在油松侧柏造成林中的作用[J].北京林业大学学报,1991,13卷增刊:80-89
    112吴炳云.水分胁迫下的外生菌根对油松容器苗的影响[J].林业科学研究,1991,13卷增刊89-93
    113赵志鹏,郭秀珍.外生菌根真菌纯培养的生物学研究[J].林业科学,1993,29(1):12-18
    114张美庆,王幼珊,邢礼军. VA菌根优良抗旱菌种CX-91[J].土壤学报,1994,31:79-83
    115王幼珊,张美庆等. VA菌根真菌抗盐碱菌种的筛选[J].土壤学报,1994,31:79-83
    116裴致达,陈连庆.马尾松共生真菌(PT)增殖培养条件[J].林业科学研究,1992,5(2):231-235
    117周玉芝,何兴元等.外生菌根真菌利用碳源和氮源营养的研究[J].土壤学报,1994,31:208-211
    118韩桂云,何兴元等.名贵食用菌真菌松茸的初步研究[J].土壤学报,1994,31:182-184
    119李晓林,曹一平. VA菌根菌丝对土壤磷和铜的吸收及其相关性[J].中国农业科学,1992,25(2):65-72
    120李晓林,曹一平. VA菌根吸收矿物质养分的机理[J].土壤学报,1993,25:274-277
    121杨茂秋,冯固等. VA菌根对玉米吸收磷肥的影响[J].土壤肥料,1992,4:36-41
    122毕国昌,郭秀珍,臧穆.在纯培养条件下温度对外生菌根真菌生长的影响[J].林业科学研究,1989,2(3):247-253
    123李传涵.在不同PH土壤上接种菌根对湿地松幼苗生长的影响[J].湖北林业科技,1986,1:27-30
    124黄亦存,王有智等.东灵山地区外生菌根真菌的调查[J].广东开平国际菌根研讨会交流文献,1994
    125栗庆书,王景和等.农药对外生菌根的影响综述[J].生态学杂志,1996,15(3):56-63
    126刘营,孔繁翔等.菌根及酸沉降对菌根影响的研究进展[J].环境科学研究,1997,10(6):15
    127何绍昌.贵州林木外生菌根真菌种类及生态分布的初步研究[J].贵州科学,1991,9(1):51
    128Agerer R. Daielson RM. Eglis. et al..(eds) Discriptions of ectomycorrhizae[J]. NovaHedwigia1996,23-183
    129Haug I.,Pritsch K..Ectomycorrhizal types of spruce (Picea abies CL.karst.)in theBlack forest[J]. A microscopical atlas. Tubingen, Germany: Kernforschung-szentrunKarlsruhe,1992:1-89
    130Chilver. Ectoendomycorrhizal fungi with in the same root system[J]. New Phytol.,1987,107:441-448
    131Lodge DJ.Ectoor arbuscular mycorrhizas which are best?[J].New Phytol.,2000,146:353-354
    132Jumpponen A,Trappe JM,Cazares E.Ectomycorrhizal fungi in Lyman Lake Basin:acompareison between primary and secondary successional sites[J]. Mycologia.1999,91(4):575-582
    133闫伟,韩秀丽,白淑兰等.虎榛子几种菌根苗抗旱机制的研究[J].林业科学,2006,42(12):73-76.
    134韩秀丽.虎榛子外生菌根真菌的筛选及抗旱机理的研究[D].内蒙古农业大学,2005.
    135Nehls U,Mikolajewski S,Magel E et al..Carbohydrate meTable.olism in ectomycorrhiz-as:gene expression, monosaccharide transport and meTable.olic control[J]. New Phyt-ol.,2001,150:533-541
    136Johnson D, Ijdo M, Genney D R et al. How do plants regulate the function, communitystructure, and diversity of mycorrhizal fungi?[J]. Journal of Experimental Botany,2005,56(417):1751-1760
    137Silvia D S, Michael S, Margret E et al. Mycorrhiza helper bacterium AcH505inducesdifferential gene expression in the ectomycorrhizal fungus Amanita muscaria[J]. NewPhytol.,2005,168:205-216
    138赵忠,王真辉.菌根真菌根际微生物间的关系及其对宿主植物的影响[J].西北林学院学报,2001,16(4):70-75
    139Malajczuk N.,Grove T.S.,Tomson B.T.et al. Ectomycorrhizas In Microoganisms thatPromote Plant Productivity[M]. Klever Press, Amsterdam,1992
    140Mark C. Brundrett.Coevolution of roots and mycorrhizal of land plants[J]. New Phytol.2002,154:275-304
    141Thomas R,Horton T,Bruns D. Multiplehost fungi are the most frequent and abundantectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) andBishop pine (Pinus muricata)[J]. New Phytol.1998,139:331-339
    142Brundrett M,Bougher N,Dell B, et al. Working with Mycorrhizas in Forestry andAgriculture[M]. Canberra: ACIAR Monograph.1996.
    143Allaway WG. Amplification of intersymbiont surface by root epidermaltransfer cellin the Pisonina mycorrhiza[J]. Protoplasma.1985,125(2/3):227-231.
    144Blasius. Hartig net structure and formation in fully sheathed ectomycorrhizas[J].Nordic J. Bet.1986,6(6):837-842
    145Strullu DC. Contribution to the ultrastructure study of basidimycete ectomycorrhizasof Pseudotsuga menziesii(Mirb.)France[J]. Buii.Soc.France.1976,123(1/2):5-16
    146Bending GD,Read DJ. Lignin and soluble phenolic degradarion by ectomycorrhizal andericoid mycorrhizal fungi [J]. Mycological Research.1997,101:1348-1354
    147Newton AC, Haigh JM. Diversity of ectomycorrhizal fungi in Britain: a test of thespecies-area relationship, and the role of host specificity [J]. New Phytol.1998,138:619-627
    148Gogala N. Regulation of mycorrhizal infection by hormonal factors produced by hostsand fungi[J]. Experiential.1991,47:331-39
    149Thierry B, Frederic L. Host plant stimulates accumulation in Pisolithus tinctoriushyphae during ectomycorrhizal infection while excreted fungal hypaphorine controlsroot hair development [J]. New PhytoL,1997,136:525-532
    150Gay G, Normand L, Marmeisse R et al. Auxin overproducer mutants of Hebeloma cylinder-osporum Romagnesi have increased mycorrhizal activity[J].New Phytol,1994,128:645-657
    151Heath IB. Integration and regulation of hyphal tip growth[J]. Canadian journal ofBotany.1995,73(1):5131-5139
    152Gow N A R.Growth and guidance of the fungal hyphae[J]. Microbiology.1994,140:3193-3205
    153Ashford AE,Allaway WG,Peterson CA et al.Nutrient transfer and the fungus-rootsinterface[J]. Australian Journal of Plant Physiology.1989,16:85-97
    154Smith SE, Smith FA. Structure and Function of the interfaces in biotrophic symbiosesas they relate to nutrient transport[J]. Microbiology.1990,114:1-38
    155赵志鹏,郭秀珍.外生菌根真菌纯培养的生态学研究[J].林业科学研究,1989,2(2):136
    156Dixon P K,Wright C M Water deficits and root growth of ectomycorrhizal white oakseedlings[J].Can.J For Ree..l980,10:545-548
    157Brtmdrett M,Bougher N,Dell B et al.Working Wth Myeorrhizas in Forestry and Agricul-ture[M].Canberra:ACIAR Monograph,1996
    158敬一宾.外生菌根的生理学特征[J].生物学通报,l998,33(1):7-18
    159宝月岱造.外生菌根对森林生态系统的影响[J].蛋白质、核酸、酵索,1998,43(9):1246-1253
    160花晓梅.林木菌根生物工程[J].世界林业研究,2001,14(l):22-29
    161陈辉,唐明外生菌根真菌对杨树抗溃疡病的影响[J].植物病理学报,l995.26:370
    162Ruizlozano J M,Azeon R Superoxide dismutase aetivity in arbuscular myeorrhizalLacluce sativa plantsubjected to drought stress[J].New Phytol,1996,134(2):327-333
    163周崇莲,许光辉.菌根真菌植物的共生[J].陆地生态,1980,153-164
    164花晓梅.菌根概论.林木菌根研究(花晓梅主编)[C].中国科学技术出版社,北京,1995
    165蒋家淡,林延生,詹正宜等.菌根生物技术应用现状研究进展[J].江西农业大学学报,2001,23(2):26-29
    166栾庆书.外生菌根真菌应用技术研究现状[J].辽宁林业科技,1994,(3):67-69
    167栾庆书,李希桥.中国外生菌根研究的20年成就[J].辽宁林业科技,2000,(6):36-39
    168刘润进,刘智军.中国菌根研究40年回顾展望[J].植物病理学报,1998,28(3):201-208
    169郭秀珍,毕国昌.林木菌根及应用技术[M].北京:中国林业出版社,1989
    170韦仕岩.菌根性食用菌研究概况[J].广西农业大学学报,1996,15(2):167-172
    171李海鹰,周兴,王桂文等.食用菌根真菌的研究进展团,广西科学院学报,1995,11(3):43-47
    172172黄亦存,黄永青,王有智.乳菇属真菌松属植物形成的外生菌根[J].真菌学报,1996,115(4):278-283
    173刘庆昌,吴国良.植物细胞组织培养[M].中国农业大学出版社,2010
    174卞连荣.植物组织培养技术发展简况[J].安徽农学通报,2007,13(5):42
    175刘慧民,胡冰.花卉类植物组织培养技术发展概述[J].北方园艺,2000,130(1):62
    176周维燕.植物细胞工程原理技术[M].北京:中国农业大学出版社,2003
    177李永欣,王义强.植物组织培养的应用研究概述[J].江苏林业科技,2005,32(3):44-46
    178邬荣领,尹佟明,黄敏仁等.分子标记辅助选择在林木育种中的应用[J].林业科学,2000,36(1):103-112
    179Liu S M,Sykes S R,Clingeleffer P R.Improved in Ovulo Embryo Culture for Stenospermoc-arpic Grapes(Vitis vinif era L.)[J].Australia Journal of Agricultural Research,2003(54):869-876
    180Chu Ching. Contributions of Chinese Botanists to Plant Tissue Culture in the20thCentury[J]. Acta Botanica Sinica,2002,44(2):1075-1084
    181张东旭,周增产,卜云龙等.植物组织培养技术应用研究进展[J].北方园艺,2011(6):209
    182马慧,张立军,阮燕烨等.植物组织培养技术的现状及发展趋势[J].安徽农业科学,2007,35(6):1602-1604
    183尹晓阳,朱忠荣.马尾松菌根化苗水分胁迫生理耐旱性研究[J].林业资源管理,2008,6(3):63-67
    184王蒂.植物组织培养[M].北京:中国农业出版社,2004:1
    185郝玉华.我国植物组织培养的发展现状前景展望[J].江苏农业科学,2008,(4):20-23
    186梁一池,杨华.植物组织培养技术的研究进展[J].福建林学院学报,2002,22(1):1-3
    187李爱平,李生俊.北美兰云杉菌根化育苗技术研究[J].内蒙古林业科技,2006(1):9-11
    188王殿东,潘丽梅,姜贵全.赤松菌根化育苗技术的研究[J].北方园艺,2007(7):198-200
    189郑来友.菌根化育苗造林技术促进植被恢复的一项有效措施[J].林业实用技术,2010,5:58-60
    190王真辉.菌根真菌在植物组培苗生产技术中的应用[J].热带农业科学,2010,10(5):71-78
    191赵兴梁,李万英编著.樟子松[M].北京:农业出版社,1963
    192张锦春,汪杰等.樟子松根系分布特征及其生长适应性研究[J].防护林科技,2000,(3):46-49
    193金连成.樟子松林衰退的原因及防治对策[J].辽宁林业科技,2000,(2):8-9
    194赵文智,刘志民等.降水量下限引种区沙地樟子松幼林种群树高分布偏斜度和分布整齐性[J].应用生态学报,2002,13(1):6-10
    195雷泽勇,张学丽等.沙地樟子松抗旱性的研究[J].林业科技通讯,1996,(1):6-8
    196张桂梅,孙国臣等.防止樟子松生理干旱造林技术的研究[J].内蒙古林业科技,2000(3):36-39
    197苑辉,尤文忠等.樟子松人工固沙林天然更新的探讨[J].辽宁林业科技,2001,(6):26-28
    198曾德慧,姜凤岐等.樟子松人工固沙林稳定性的研究[J].应用生态学报,1996,7(4):337
    199曾德慧,尤文忠等.樟子松人工固沙林天然更新障碍因子分析[J].应用生态学报,2002,13(3):257-261
    200张锦春,赵明.建立樟子松农田防护林可行性分析[J].甘肃林业科技,2000,25(1).24-27
    201李爱德,汪杰等.樟子松在河西农田防护林上的应用前景[J].防护林科技,2001,(1):50
    202荔克让,孙宏义等.干旱荒漠地区沙地樟子松育苗试验研究[J].中国沙漠,2000,20(1):98-101
    203孙长忠,沈国舫等.我国主要树种人工林生产力现状及潜力的调查研究Ⅱ桉树、落叶松及樟子松人工林生产力研究[J].林业科学研究,2001,14(6):657-667
    204齐力旺,杨云龙.油松封顶芽的组织培养[J].植物生理学通讯,1995,31(1):40-41
    205郑均宝,潘冬梅,陈正华.油松离体胚子叶的组织分化和无根试管苗的形成[J].河北林学院学报,1994,9(2):97-101
    206阙国宁,房建军,葛万川等.火炬松、湿地松、晚松组培繁殖的研究[J].林业科学研究,1997,10(3):227-232
    207Druart P,Wulf O D. Activated charcoal catalses sucrose hydrolysis during autoclaving[J].Plant Cell, Tissue and OrganCulture,1991,32(1):97
    208Saborio F,DvorakW,Donahue J,et al. In vitro regenerationof plantlets from matureembryos of Pinus ayacahuite[J]. Tree Physiology,1997(17):787-796
    209张守英,杜小光,李玲.兴安落叶松组织培养不定根诱导的研究[J].林业科技通讯,1993(5):8-10
    210王虹,张金凤.针叶树组织培养繁殖技术研究进展[J].河北林业科技,2004(4):14-18
    211康明,田建强,郑均宝.樟子松成熟胚的离体培养不定芽的形成[J].河北林学院学报,1993,8(4):273-276.