含间隙副多轴电液振动试验系统的动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的进步,振动试验在产品的生产、设计以及可靠性、耐久性试验方面起到了越来越重要的作用,其中多轴电液振动试验系统是目前振动领域广泛采用的试验系统。多轴电液振动试验系统在摩托车可靠性试验中具有重要的应用价值,通过在试验台复现摩托车的在路面上实际的行驶环境,进而考核摩托车的质量和寿命。试验过程中,摩托车需要通过一套专用的夹具固定在试验系统的台面上,振动系统通过摩托车的前、后轴将运动和能量传递给摩托车。考虑到专用夹具中轴和轴承之间存在间隙,振动试验中转动副间隙会导致运动的失真,引起冲击动载荷,影响系统载荷传递,增加构件的动应力,甚至造成振动系统的破坏。因此本文对含间隙副多轴电液振动试验系统的动力学特性展开深入研究,对多轴振动试验系统的夹具设计和振动控制系统的开发有良好的工程应用价值。
     含间隙副多轴电液振动试验系统的动力学建模。首先,从夹具的角度,优先考虑夹具的重量和刚度,在试验振动频率范围内不会发生结构共振。论文多轴电液振动试验系统的激振频率在80HZ以下,通过有限元的分析方法获得夹具的一阶固有频率都远远超过实验的有效频率范围,因此,系统的动力学响应不会受到由于结构耦合共振产生的影响。其次,基于虚功原理详细推导了间隙转动副的一般动力学方程。针对多体系统的动力学方程,归纳总结出标准直接积分方法(DIM)的流程图。分析了动力学方程的求解,研究了对转动副间隙模型建模的两种方式:连续接触模式和非连续接触模式,并基于广义冲量-动量定律详细推导了含间隙系统动力学模型。
     正弦定频振动激励下系统动力学特性研究。针对间隙对多轴电液振动系统动力学响应的影响,建立了间隙转动副数学模型。考虑到基于Lankarani和Nikravesh新的非线性弹簧阻尼碰撞力学模型能够反映碰撞过程中的能量损失行为,建立了干摩擦球面接触和圆柱面接触的法线方向的碰撞力和穿透深度之间的模型。同时,对转动副间的摩擦力模型进行研究,并将整个系统嵌入到机械系统动力学分析软件ADAMS中,进行动力学仿真,分析了正弦激励下不同激振频率、相位差以及间隙尺寸对系统加速度响应的影响。通过分析运动副间隙对多轴电液振动试验系统动力学响应的影响,能够准确地预测试验系统在正弦激励下的动力学特性。
     随机振动激励下系统动力学特性研究。文中对基于LuGre间隙转动副摩擦力进行了研究,建立了带润滑间隙转动副的碰撞力学模型。考虑到轴和轴承处于接触状态时,接触区会发生变形(穿透深度)从而产生接触力,详细研究了不同恢复系数条件下以及不同初始碰撞速度条件下碰撞中能量耗散的变化规律。最后,以典型的随机激励信号El-Centro地震波和Taft地震波作为输入,相关系数作为评价指标,研究两种典型的地震波激励下,间隙对系统波形复现精度的影响。
     含间隙多轴电液振动试验系统动力学特性实验研究。根据实验的需求,归纳了含间隙副多轴电液振动试验系统的构成,明确了搭建多轴电液振动试验系统时存在的一些关键技术,并搭建了两套振动试验系统的硬件平台和软件平台。在对正弦定频激励下系统动态特性响应规律研究的基础上,在两套系统平台上进行了相关的实验研究,主要针对激振频率和不同的相位差对加速度响应的影响,验证了所构建的间隙碰撞副力学模型的的有效性。最后,针对含间隙转动副的摩托车多轴电液振动试验系统,以随机激励信号El-Centro地震波和Taft地震波作为激励信号,从输出信号和输入目标信号的时域相关系数的的角度研究了单间隙和两个间隙副对波形复现精度的影响,得出了随机振动试验过程中,间隙对系统动力学响应特性影响的一般规律,对合理设计转动副间隙从而消除由于间隙副的非线性因素的影响具有重要意义。
Vibration test plays an increasing role in design, reliability and durability of products with the development of modern science and technology, presently, Multi-axis Electro-hydraulic Vibration Test System is widely used in the field of vibration. Multi-axis Electro-hydraulic Vibration Test System witnesses significant application value in the reliability test of motorcycle, where quality and lifetime of motorcycle can be determined through replicating the actual driving environment on the road. Motorcycle is fastened on the table of vibrator via a customized clamp, and motion and energy from the Multi-axis vibrator are transferred to motorcycle through the front shaft and back shaft. Since clearance in practice unavoidably exists between journal and bearing, which leads to the distortion of motion in the course of vibration test and impact load, thus, load transferring is affected, dynamic stress is also increased, and vibration system could even be destroyed in some cases. Deep investigation on dynamics of multi-axis electro-hydraulic vibration test system with clearance joints is implemented, which no doubt brings favorable application value in designing clamp and vibration controller in terms of vibrator.
     Building model targeted to multi-axis electro-hydraulic vibration test system with clearance joints. First of all, clamp weight and stiffness are given priority based on factor that structure resonance can't be caused in the range of vibration test. Exciting frequency in research is less than80HZ, Finite element analysis indicates that the first order natural frequency of customized clamp is far greater than effective range of frequency in vibration experiment; therefore, dynamics response of system is immune to the structure coupling resonance. Secondly, general dynamics equation of system with revolute joints clearance is deduced based on virtual work principle. Aimed on the multi-body system dynamics equation, a kind of new standard integration method (DIM) is generalized. Later on, solving the dynamics equation is analyzed, two ways in the course of modeling revolute joints clearance is investigated:continuous contract model and non-continuous contract model. Dynamical model for system with clearance is deduced by applying General impulse-momentum law.
     Dynamics response investigation for system under the excitation of sinusoidal signal with a certain excitation frequency. Mathematical model for revolute joint with clearance is built aimed at clearance influence on multi-axis electro-hydraulic vibration test system. Nonlinear spring damping impact model based on Lankarani and Nikravesh takes energy loss during the impact into consideration, model related to impact force in normal direction for spherical surface contact and cylindrical surface contact with dry friction against penetration depth is built. Meanwhile, friction force in revolute joint is studied, and the whole system is embedded into dynamical analysis software ADAMS for simulating dynamics response. Simulation is carried out in terms of different exciting frequency and phase difference as well as clearance size, which respectively have a dramatic influence on acceleration response under the excitation of sinusoidal signal. Dynamics response under the excitation of sinusoidal signal for multi-axis electro-hydraulic vibration test system can be correctly predicted based on the above research.
     Dynamics investigation under random vibration excitation. Friction model of revolute joint with clearance based on LuGre model is studied, and impact model of lubricated revolute joint with clearance is also built. When the journal keeps contact with bearing, the deformation (penetration depth) in contact area occurs, the detailed investigation about energy loss under different restitution coefficients and initial impact velocity is carried out. At the end of the chapter, two typical random signals (El-Centro earthquake wave and Taft earthquake wave)from earthquake process are input to the system, clearance influence on wave reproduction accuracy in terms of correlation coefficient under their actions is investigated.
     Experimental investigation on dynamics prosperities of multi-axis electro-hydraulic vibration test system with clearance joints is implemented. Firstly, the structure of multi-axis electro-hydraulic vibration test system is introduced according to requirements of test is summarized, the critical technology in the process of setting up that system is clarified, then,two sets of hardware and software platform related to vibration test system is built. Based on research on dynamical properties under sinusoidal signal excitation, the desired experiment is carried out on two set of system respectively, the experiment involves mainly in the influence on the acceleration response under different excitation frequencies and phrase difference, the efficiency of impact model of revolute joint is verified. Finally, aimed at the multi-axis motorcycle electro-hydraulic vibration test system with clearance joints, when random El-Centro earthquake wave and Taft earthquake wave are treated as excitation signals, single clearance influence on the wave reproduction and double clearances influence on the wave reproduction are respectively investigated from the perspective of correlation coefficient in time domain between input signal and output signal, and general patterns of clearance influence on dynamical responses is obtained, which brings favorable and significant conditions for designing reasonable revolute joint with clearance in order to eliminate the nonlinear effect caused by clearance.
引文
[1]吴三灵.实用振动试验技术[M].北京:兵器工业出版社,1993,1993.
    [2]李德葆陆秋海.工程振动试验分析[M].北京:清华大学出版社,2004.
    [3]范真宦海祥等.振动环境试验设备与技术的现状及进展[J].机械设计与制造.2006(10):164-165.
    [4]戴诗亮.随机振动实验技术[M].清华大学出版社,1984.
    [5]胡志强,机械.随机振动试验应用技术[M].中国计量出版社,1996.
    [6]吴家驹.振动试验中的多台并激技术[J].强度与环境.1992(1):1-5.
    [7]昊家驹,荣克林.多维振动环境试验方法[J].导弹与航天运载技术.2003,4.
    [8]Pinson G T. Multiple axis vibration test platform[Z]. Google Patents,1989.
    [9]张志伟,毛福荣,宋锦春.电液伺服控制摩托车随机疲劳试验台的实验研究[J].东北大学学报(自然科学版).2006,27(8).
    [10]GB 10179-88.液压伺服振动试验设备特性的描述方法.
    [11]Huntley B L. Electrohydraulic- The most versatile shaker[J]. Journal of Environmental Sciences.1979,22:32-35.
    [12]傅佑民,余宗元.道路模拟试验——汽车零部件研究开发的有力手段(上)[J].重型汽车.1994,1.
    [13]傅佑民,余宗元.道路模拟试验——汽车零部件研究开发的有力手段(下)[J].重型汽车.1994,1.
    [14]袁英才.卷筒纸印刷机含间隙折页机构动力学研究及稳健设计[D].中南大学,2011.
    [15]Flores P, Ambrosio J, Claro J P. Dynamic analysis for planar multibody mechanical systems with lubricated joints[J]. Multibody System Dynamics.2004, 12(1):47-74.
    [16]Baiceanu M, Flores P, Oprisan C, et al. Study of the contact force model on the dynamic response of a four-bar mechanism with clearance joints[M]. New Trends in Mechanism and Machine Science. Springer,2013:541-548.
    [17]Erkaya S. Investigation of joint clearance effects on welding robot manipulators[J]. Robotics and Computer-Integrated Manufacturing.2012,28(4): 449-457.
    [18]Flores P, Ambrosio J, Claro J C P, et al. A study on dynamics of mechanical systems including joints with clearance and lubrication[J]. Mechanism and Machine Theory.2006,41(3):247-261.
    [19]Hamrock B J, Schmid S R, Jacobson B O. Fundamentals of fluid film lubrication[M]. CRC press,2004.
    [20]Kinnear D, Mishra R, Weston W, et al. A Design Methodology for the Prediction of Squeeze Film Stiffness and Damping Characteristics in Hybrid Journal Bearings under Pulsatile Load Conditions. [C].2010.
    [21]Haines D, Marsh H. FLUID FILM JOURNAL BEARINGS[Z]. WO Patent 1,987,007,689,1987.
    [22]Gans B E, Vohr J H. Fluid film journal bearing with squeeze film damper for turbomachinery[Z]. Google Patents,1993.
    [23]Lin J. Squeeze film characteristics of finite journal bearings:couple stress fluid model[J]. Tribology International.1998,31(4):201-207.
    [24]Das S, Guha S K, Chattopadhyay A K. Linear stability analysis of hydrodynamic journal bearings under micropolar lubrication[J]. Tribology international.2005,38(5): 500-507.
    [25]Guha S K. Linear stability performance analysis of finite hydrostatic porous journal bearings under the coupled stress lubrication with the additives effects into pores[J]. Tribology International.2010,43(8):1294-1306.
    [26]Durazo-Cardenas I S, Corbett J, Stephenson D J. The performance of a porous ceramic hydrostatic journal bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology.2010,224(1):81-89.
    [27]白争锋.考虑铰间间隙的机构动力学特性研究[D].哈尔滨:哈尔滨工业大学工学.2011.
    [28]Flores P. Modeling and simulation of wear in revolute clearance joints in multibody systems[J]. Mechanism and machine theory.2009,44(6):1211-1222.
    [29]Megahed S M, Haroun A F. Analysis of the Dynamic Behavioral Performance of Mechanical Systems With Multi—Clearence Joints[J]. Journal of computational and nonlinear dynamics.2012,7(1).
    [30]Flores P, Koshy C S, Lankarani H M, et al. Numerical and experimental investigation on multibody systems with revolute clearance joints[J]. Nonlinear Dynamics.2011,65(4):383-398.
    [31]Tasora A, Prati E, Silvestri M. Experimental investigation of clearance effects in a revolute joint[C]. Citeseer,2004.
    [32]Erkaya S, Uzmay I. Investigation on effect of joint clearance on dynamics of four-bar mechanism[J]. Nonlinear Dynamics.2009,58(1-2):179-198.
    [33]阎绍泽,陈鹿民,季林红,等.含间隙铰的机械多体系统动力学模型[J].振动工程学报.2003,16(3):290-294.
    [34]李哲,张渊.含间隙机构混沌响应的实验研究[J].北京工业大学学报.1994,20(4):33-38.
    [35]张跃明,唐锡宽.空间机构间隙滑动副模型的建立[J].清华大学学报:自然科学版.1996,36(8):99—104.
    [36]郝雪清,陈江义.不同运动副材料对间隙机构动力学特性的影响[J].振动与冲击.2012,31(12):19-21.
    [37]曹妍妍,赵登峰.间隙约束悬臂梁系统的动力学行为实验研究[J].振动与冲击.2007,4.
    [38]时兵,金烨.面向虚拟样机的机构间隙旋转铰建模与动力学仿真[J].机械工程学报.2009,45(4):299—303.
    [39]张劲夫,许庆余,张陵.曲柄滑块机构间隙反力的算法及其应用[J].应用力学学报.2001,18(4).
    [40]杨义勇,金德闻.机械系统动力学[M].清华大学出版社,2009.
    [41]Haroun A F, Megahed S M. Analysis of the dynamic behavioral performance of sptial multibody mechanical systems with Multi-clearance spherical joint[C].2010.
    [42]Flores P, Ambrosio J. On the contact detection for contact-impact analysis in multibody systems[J]. Multibody System Dynamics.2010,24(1):103-122.
    [43]Love A E H. A treatise on the mathematical theory of elasticity[M]. Cambridge University Press,2013.
    [44]Muvengei O, Kihiu J, Ikcua B. Dynamic analysis of planar rigid-body mechanical systems with two-clearance revolute joints[J]. Nonlinear Dynamics,2013:1-15.
    [45]Flores P, Ambrosio J, Claro J C, et al. Influence of the contact-impact force model on the dynamic response of multi-body systems[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics.2006, 220(1):21-34.
    [46]Landau L D, Lifshitz E M. Theory of elasticity,1970[Z]. Pergamon Press.
    [47]Goldsmith W. IMPACT, The theory and physical behavior of colliding solids[J]. 1964.
    [48]Hunt K H, Crossley F. Coefficient of restitution interpreted as damping in vibroimpact[J]. J. Appl. Mech.1975.
    [49]Mishra R, Naskar T K, Acharya S. Synthesis of coupler curve of a Four Bar Linkage with joint Clearances[J]. Synthesis,2013,3(1):1193-1199.
    [50]Lankarani H M, Nikravesh P E. Continuous contact force models for impact analysis in multibody systems[J]. Nonlinear Dynamics.1994,5(2):193-207.
    [51]Deflections S. Contact Dimensions for Normally Loaded Unlubricated Elastic Components, Engineering Sciences Data Item No.78035, Contact phenomena 1, London,1979[J]. Hertz, H.1896.
    [52]Greenwood D T. Principles of dynamics[M]. Prentice-Hall Englewood Cliffs, NJ, 1988.
    [53]Bagci C. Dynamic motion analysis of plane mechanisms with Coulomb and viscous damping via the joint force analysis[J]. Journal of Engineering for Industry. 1975,97:551.
    [54]Haug E J, Wu S C, Yang S M. Dynamics of mechanical systems with coulomb friction, stiction, impact and constraint addition-deletion—Ⅰ Theory [J]. Mechanism and Machine Theory.1986,21(5):401-406.
    [55]Shampine LF, Gordon M K. Computer solution of ordinary differential equations: The initial value problem(Book)[J]. San Francisco, W. H. Freeman and Co.,1975.328 p.1975.
    [56]Lankarani H M, Nikravesh P E. A contact force model with hysteresis damping for impact analysis of multibody systems[J]. Journal of Mechanical Design.1990,112: 369.
    [57]Miedema B, Mansour W M. Mechanical joints with clearance:a three-mode model[J]. Journal of Engineering for Industry.1976,98:1319.
    [58]Haines R S. Survey:2-dimensional motion and impact at revolute joints[J]. Mechanism and Machine Theory.1980,15(5):361-370.
    [59]Zukas J A. Impact dynamics[J]. Emerging technologies in aerospace structures, design, structural dynamics and materials.1980:161-198.
    [60]Erkaya S. Investigation of joint clearance effects on welding robot manipulators[J]. Robotics and Computer-Integrated Manufacturing.2012,28(4): 449-457.
    [61]田义宏,江雅婷,环境应力筛选中的振动试验方法[J].强度与环境.2010,37(6):18-24.
    [62]周桐,张思箭,李健,等.夹具特性与振动控制方式对试件响应的影响[J].振动.测试与诊断.2007,27(1):58-61.
    [63]Fackler Warren C.振动试验中的等效技术[Z].国防工业出版社,1979.
    [64]王浚,环境科学,黄本诚,等.环境模拟技术[M].国防工业出版社,1996.
    [65]张阿舟,张克荣,姚起杭.振动环境工程[M].航空工业出版社,1986.
    [66]马兴瑞,于登云,韩增尧,等.星箭力学环境分析与试验技术研究进展[J].宇航学报.2006,27(3):323-331.
    [67]刑天虎.力学环境试验技术[J].西安:西北工业大学出版社.2003.
    [68]Nikravesh P E. Computer-aide analysis of mechanical systems [J].1988.
    [69]Ambrosio J A C. Elastic-plastic large deformation of flexible multibody systems in crash analysis.[J].1991.
    [70]Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems[J]. Computer methods in applied mechanics and engineering.1972,1(1): 1-16.
    [71]Bayo E, Garcia De Jalon J, Serna M A. A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems[J]. Computer methods in applied mechanics and engineering.1988,71(2):183-195.
    [72]Brenan K E, Campbell S L, Petzold L R. Numerical solution of initial-value problems in differential-algebraic equations[M]. Society for Industrial and Applied Mathematics,1987.
    [73]Chang C O, Nikravesh P E. An adaptive constraint violation stabilization method for dynamic analysis of mechanical systems[C]. ASME,1985.
    [74]Jimenez J M, Avello A, Garcia-Alonso A, et al. COMPAMM—a simple and efficient code for kinematic and dynamic numerical simulation of 3-D multibody systems with realistic graphics[M]. Multibody Systems Handbook, Springer,1990, 285-304.
    [75]Lin S, Hong M. Stabilization method for numerical integration of multibody mechanical systems[J]. Journal of Mechanical Design.1998,120:565.
    [76]Park K C, Chiou J C. Stabilization of computational procedures for constrained dynamical systems[J]. Journal of Guidance, Control, and Dynamics.1988,11(4): 365-370.
    [77]Rulka W. SIMPACK—A computer program for simulation of large-motion multibody systems[M]. Multibody systems handbook, Springer,1990,265-284.
    [78]Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems[J]. Computer methods in applied mechanics and engineering.1972,1(1): 1-16.
    [79]Nikravesh P E, Chung I. Application of euler parameters to the dynamic analysis of three-dimensional constrained mechanical systems[J]. Journal of Mechanical Design.1982,104:785.
    [80]Pereira C M, Ramalho A L, Ambrosio J A. A critical overview of internal and external cylinder contact force models[J]. Nonlinear Dynamics.2011,63(4):681-697.
    [81]谭晓兰,韩建友,陈立周.考虑运动副间隙影响的函数发生机构的稳健优化设计[J].北京科技大学学报.2004,26(4):416—419.
    [82]李哲,李骊,白师贤.预测含间隙机构运动副元素分离的一种新方法[J].机械工程学报.1991,2:92-96.
    [83]李哲.考虑运动副间隙和构件弹性的平面连杆机构动力学研究[D]. 北京:北京工业大学.1991.
    [84]Machado M, Flores P, Claro J P, et al. Development of a planar multibody model of the human knee joint[J]. Nonlinear Dynamics.2010,60(3):459-478.
    [85]Flores P, Machado M, Silva M T, et al. On the continuous contact force models for soft materials in multibody dynamics[J]. Multibody system dynamics.2011,25(3): 357-375.
    [86]Swift H F. Hypervelocity impact mechanics[J]. Impact dynamics.1982:215-239.
    [87]Laursen T A. Computational contact and impact mechanics.2002[Z]. Springer-Verlag, Berlin.
    [88]Liang K, Jiang L P, Wei H Y, et al. Interference Uniformity Analysis Based on the Clearance between the Hole and Rivet[J]. Applied Mechanics and Materials, 2013,246:28-32.
    [89]Machado M, Moreira P, Flores P, et al. Compliant contact force models in multibody dynamics:Evolution of the Hertz contact theory[J]. Mechanism and Machine Theory.2012,53:99-121.
    [90]Khulief Y A, Shabana A A. Dynamic analysis of constrained system of rigid and flexible bodies with intermittent motion[C]. ASME,1986.
    [91]于慧君.电液振动试验系统长时间历程复现控制技术研究[D].杭州:浙江大学,2009.
    [92]陈家焱.多点激励振动试验系统的控制策略研究[D].浙江大学,2011.
    [93]贺旭东,陈怀海,申凡,等.多点简谐振动响应控制下的频响矩阵测试[J].航空学报.2006,27(5).
    [94]朱银龙,陈怀海,贺旭东,等.多输入多输出正弦振动试验控制系统算法研究及实现[J].振动工程学报.2008,21(1):62-65.
    [95]邱汉平,冯咬齐.双振动台正弦振动同步控制新方法研究[J].航天器环境工程.2006(6).
    [96]贺旭东,陈怀海,申凡,等.双振动台随机振动综合控制研究[J].振动工程学报.2006,19(2):145-149.
    [97]李杰,秦玉英,赵旗.多点虚拟激励法在整车随机振动分析中的应用[J].汽车工程.2010(003):254-257.
    [98]齐国强.汽车工程手册——摩托车篇[Z].北京:人民交通出版社,2001.
    [99]Sharp R S, Evangelou S, Limebeer D J. Advances in the modelling of motorcycle dynamics[J]. Multibody system dynamics.2004,12(3):251-283.
    [100]张志伟,毛福荣,宋锦春.电液伺服控制摩托车随机疲劳试验台的实验研究[J].东北大学学报(自然科学版).2006,27(8).
    [101]Lot R. A motorcycle tire model for dynamic simulations:theoretical and experimental aspects[J]. Meccanica.2004,39(3):207-220.
    [102]Sharp R S, Limebeer D J. A motorcycle model for stability and control analysis[J]. Multibody System Dynamics.2001,6(2):123-142.
    [103]Cossalter V, Dalla Torre G, Lot R, et al. An advanced multibody model for the analysis of motorcycle dynamics[C].2009.
    [104]Nehaoua L, Hima S, Arioui H, et al. Design and modeling of a new motorcycle riding simulator[C]. IEEE,2007.
    105] Chiyoda S, Yoshimoto K, Kawasaki D, et al. Development of a motorcycle simulator using parallel manipulator and head mounted display[C].2000.
    [106]Audenino A L, Belingardi G. Modelling the dynamic behaviour of a motorcycle damper[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.1995,209(4):249-262.
    [107]Hima S, Nehaoua L, Seguy N, et al. Motorcycle dynamic model synthesis for two wheeled driving simulator[C]. IEEE,2007.
    [108]Johnson K L. One hundred years of Hertz contact[J]. proceedings of the Institution of Mechanical Engineers.1982,196(1):363-378.
    [109]Roberson R E, Schwertassek R. Dynamics of multibody systems[M]. Springer-Verlag Berlin,1988.
    [110]Smith R C, Haug E J. DADS—Dynamic analysis and design system[M]. Multibody systems handbook, Springer,1990,161-179.
    [111]Lee T W, Wang A C. On the dynamics of intermittent-motion mechanisms. Part 1:Dynamic model and response[C]. ASME,1983.
    [112]Lankarani H M, Nikravesh P E. Continuous contact force models for impact analysis in multibody systems[J]. Nonlinear Dynamics.1994,5(2):193-207.
    [113]Gilardi G, Sharf I. Literature survey of contact dynamics modelling[J]. Mechanism and machine theory.2002,37(10):1213-1239.
    [114]周兴广.多轴随机振动环境的疲劳损伤机理浅析[J].航天器环境工程ISTIC.2010,27(6).
    [115]樊世超,冯咬齐.多维动力学环境模拟试验技术研究[J].航天器环境工程.2006(1).
    [116]Muvengei O, Kihiu J, Ikua B. Dynamic analysis of planar multi-body systems with LuGre friction at differently located revolute clearance joints[J]. Multibody System Dynamics.2012,28(4):369-393.
    [117]Ravn P. A continuous analysis method for planar multibody systems with joint clearance[J]. Multibody System Dynamics.1998,2(1):1-24.
    [118]Ravn P, Shivaswamy S, Alshaer B J, et al. Joint clearances with lubricated long bearings in multibody mechanical systems[J]. Journal of Mechanical Design.2000, 122:484.
    [119]Chunmei J, Yang Q, Ling F, et al. The non-linear dynamic behavior of an elastic linkage mechanism with clearances[J]. Journal of sound and vibration.2002,249(2): 213-226.
    [120]Mukras S, Kim N H, Mauntler N A, et al. Analysis of planar multibody systems with revolute joint wear[J]. Wear.2010,268(5):643-652.
    [121]Mukras S, Mauntler N A, Kim N H, et al. Modeling a Slider-Crank Mechanism With Joint Wear[J]. SAE International Journal of Passenger Cars-Mechanical Systems. 2009,2(1):600-612.
    [122]Olsson H, astrom K J, Canudas De Wit C, et al. Friction models and friction compensation[J]. European journal of control.1998,4:176-195.
    [123]Threlfall D C. The inclusion of Coulomb friction in mechanisms programs with particular reference to DRAM au programme DRAM[J]. Mechanism and Machine Theory.1978,13(4):475-483.
    [124]Rooney G T, Deravi P. Coulomb friction in mechanism sliding joints[J]. Mechanism and Machine Theory.1982,17(3):207-211.
    [125]Haug E J, Wu S C, Yang S M. Dynamics of mechanical systems with coulomb friction, stiction, impact and constraint addition-deletion—Ⅰ Theory[J]. Mechanism and Machine Theory.1986,21(5):401-406.
    [126]Wu S C, Yang S M, Haug E J. Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion—Ⅱ Spatial systems[J]. Mechanism and machine theory.1986,21(5):417-425.
    [127]Ambrosio J. Impact of rigid and flexible multibody systems:deformation description and contact models[M]. Virtual nonlinear multibody systems, Springer, 2003,57-81.
    [128]Swevers J, Al-Bender F, Ganseman C G, et al. An integrated friction model structure with improved presliding behavior for accurate friction compensation[J]. Automatic Control, IEEE Transactions on.2000,45(4):675-686.
    [129]De Wit C C, Lischinsky P. Adaptive friction compensation with partially known dynamic friction model[J]. International journal of adaptive control and signal processing.1997,11(1):65-80.
    [130]王喜明.基于LuGre模型的摩擦力矩补偿研究[D].中国科学院研究生院(西安光学精密机械研究所),2007.
    [131]Heinze A. Modelling, simulation and control of a hydraulic crane[D]. LNU, 2008.
    [132]Kermani M R, Patel R V, Moallem M. Friction identification in robotic manipulators:case studies[C]. IEEE,2005.
    [133]Ju C. Modeling friction phenomena and elastomeric dampers in multibody dynamics analysis[J].2009.
    [134]杨志东.液压振动台振动环境模拟的控制技术研究[D].哈尔滨工业大学,2009.
    [135]吴家驹.多维振动环境试验控制策略的分析基础[J].强度与环境.2008,35(4):1-6.
    [136]叶凌云.多轴向多激励随机振动高精度控制研究[D].浙江大学,2006.
    [137]游伟倩.多输入多输出振动系统H_2/H∞控制研究[D].南京航空航天大学,2010.
    [138]游伟倩,崔旭利,陈怀海,等.双振动台随机振动H∞双自由度综合控制研究[J].振动与冲击.2011,30(5):179-183.
    [139]贺旭东.多输入多输出振动试验控制系统的理论,算法及实现[D].南京:南京航空航天大学,2006.
    [140]Martin J K, Parkins D W. Fluid film bearings[Z].1995.
    [141]Huang S. Numerical Simulation of Oil-water Hydrocyclone Using Reynolds-Stress Model for Eulerian Multiphase Flows[J]. The Canadian Journal Of Chemical Engineering.2005,83(5):829-834.
    [142]Kang Y, Chen C, Lee J, et al. Foresight in static stiffness of hydrostatic bearings with various compensations by film gradient versus recess pressure[J]. Industrial Lubrication and Tribology.2010,62(5):304-319.
    [143]Kazama T, Yamaguchi A. Application of a mixed lubrication model for hydrostatic thrust bearings of hydraulic equipment[J]. Journal of tribology.1993, 115(4):686-691.
    [144]Bujurke N M, Jayaraman G. The influence of couple stresses in squeeze films [J]. International Journal of Mechanical Sciences.1982,24(6):369-376.
    [145]Kang Y, Shen P, Chang Y, et al. Modified predictions of restriction coefficient and flow resistance for membrane-type restrictors in hydrostatic bearing by using regression[J]. Tribology international.2007,40(9):1369-1380.
    [146]San Andres L. Annular Pressure Seals and Hydrostatic Bearings[R]. DTIC Document,2006.
    [147]樊鏖.基于DSP的振动分析仪的研制[D].成都:电子科技大学,2004.