用户名: 密码: 验证码:
水文过程对黄河口湿地景观格局演变的驱动机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水文过程控制着湿地的形成与演化,是塑造湿地生态系统结构与功能、湿地景观格局动态特征的重要驱动力。本文遵循河口水文过程与湿地景观格局间相互影响的内在规律,基于驱动—状态—响应模型,提出了水文过程与湿地景观格局响应的基本理论框架。结合黄河口湿地的实际,采用具有生态学意义的水文变化指标分析河口段生态水文情势的变化,结合3S技术研究河口湿地景观格局的动态演变特征。构建了生态水文因子与关键景观格局指标之间的定量关系,探讨水文情势变化情景下湿地景观格局特征的响应规律,总结河口环境水流需求,提出了河口湿地生态修复的水文措施与建议。
     论文的研究内容与主要成果包括以下几个方面:
     (1)湿地生态系统是由不同类型植被群落与地貌单元形成的景观镶嵌体,水是湿地生态系统的控制性环境因子。湿地水文过程一方面直接影响湿地植被的不同生活史行为,作用于镶嵌体格局;另一方面通过影响湿地的环境条件,如生物、物理化学、地貌特征,间接引起湿地植被群落的结构与功能特征的动态变化,提出湿地水文过程—物理化学与地貌特征—景观的时空异质性与格局特征的驱动—状态—响应概念模型。
     (2)采用具有生态学意义的包括3种环境水流组分与5种水文要素的生态水文指标定量评估了黄河水量统一调度与调水调沙对河口段生态水文情势的影响。评价结果为:利津断面流量年内分配情况发生明显变化,5-11月份月均流量变化显著,6月份月均流量增加幅度最大;年极小值流量与基流指数大幅度增加,年极大值流量略有增加,年最大流量出现时间提前15天;低流量持续时间增加,水文过程的变化率降低,洪水漫滩过程消失,水文过程趋于平缓。与水量统一调度前相比,水量统一调度与调水调沙后利津断面水文情势有所改善,年极小值流量明显增加,但是水文过程变化率降低,洪水漫滩过程消失,水文过程趋于平缓。
     (3)环境水流是河流生态保护与修复的有效管理工具。环境水流不仅是单独的生态环境需水量或是适宜生态流量,而是包含多种水文要素特征、具有脉冲式涨落变化的动态水文过程。目前河口径流条件在枯水期能够满足适宜生态流量需求;汛前4-5月关键期无法满足鱼类产卵繁殖的生态流量需求与流量脉冲过程;汛期能够满足河道输沙的洪峰量级,但是无法实现淤滩刷槽与漫滩的洪水需求。
     (4)采用3S技术与景观格局指数分析法,研究了实施调水调沙以来河口湿地景观格局特征的演变趋势。自2002年以来,湿地水域、芦苇沼泽、翅碱蓬草甸、河流水体四种景观类型呈增加趋势,2002-2010年时期芦苇沼泽、湿地水域面积分别增加84.81km2、50.92km2,退化的潮滩地、裸地逐步被湿地水域、芦苇沼泽替代。2002-2010年研究区域景观类型多样性与异质性增加,整体景观破碎化状况非常微弱,基本保持着自然原貌。从重点景观类型层次看,湿地水域斑块聚合度增加,趋向黄河两侧分布;芦苇沼泽聚集度、连通度、形状复杂性增加;翅碱蓬草甸斑块内聚力指数与连接度指数保持平稳,灌丛林景观类型存在一定的破碎化与细化过程。依据景观格局指标的生态学意义及对河口环境因子的敏感性,从整体景观、重点景观类型2个水平选取了关键景观格局指标:景观水平多样性指数、连接度指数、蔓延度指数、分离度指数、形状指数,重点景观类型水平连接度指数、丛聚指数、分离度指数、形状指数、核心区面积。
     (5)采用相关关系法与逐步回归分析法,识别影响景观格局特征的关键水文因子,构建了关键水文因子与格局指标的定量关系。研究表明,整体景观水平、湿地水体的景观格局特征与洪峰过程(流量≥3500m3/s)具有非常显著的相关性;芦苇沼泽景观格局特征与4-5月流量、4-5月水文变化率、极大值流量、洪峰流量过程均具有较强的相关性;翅碱蓬草甸景观格局指数与生态水文指标间的相关性较差。通过逐步回归法识别的影响湿地景观格局特征的最关键生态水文因子为Qav-3500。
     (6)采用情景分析法,探讨景观格局特征在关键水文因子变化情景下的响应规律,提出了河口湿地生态修复的水文措施建议。洪峰流量增加500m3/s的情景下,整体景观多样性指数、景观蔓延度指数增加,景观生态状况有所改善;湿地水域与芦苇沼泽景观类型的核心面积分别增加4.51km2、4.25km2;当4-5月水文退水率降低5%时,芦苇沼泽连通性增加15.6%。结合本文研究成果与环境水流需求分析,提出改善河口湿地生态状况的水文措施与建议:4-5月适当塑造一定流量脉冲过程,脉冲流量达800m3/s,持续时间7d以上,退水率降低5%以上;借助黄河调水调沙活动,洪峰流量增加500m3/s以上,并尽可能出现洪水漫滩过程。
     本文对水文过程与湿地景观格局特征之间相互关系的研究,丰富与拓展了我国湿地生态水文学与河流生态修复理论的理论方法体系。同时,结合黄河口湿地具体情况,初步验证了水文过程—湿地景观格局响应的理论框架的合理性与可行性,并为今后黄河口湿地生态修复提供理论支持与依据。
Hydrological processes control the formation and evolution of wetlands. They are recognized as the significant driving forces of shaping structure, function and landscape pattern characteristics of wetland ecosystems. According to the interaction relationships between hydrological processes and wetland landscape pattern, a theoretical framework combining hydrological processes and the responses of wetland landscape pattern is proposed based on the drive-state-response model. The theoretical method is applied to the wetland ecosystem of the Yellow River Estuary. Firstly, the Indicators of Hydrological Alteration with great ecological significance are adopted to estimate the alteration of eco-hydrologic regime of river estuary. Secondly, the evolution characteristics of estuarine wetland landscape pattern are analysed using remote sensing and geographic information system technology. Thirdly, the quantitative relationships between eco-hydrologic factor and key landscape pattern index are established. Additionally, the response regularities of wetland landscape pattern characteristics are discussed under the circumstances of hydrological regime alteration. Finally, the environmental flow demands for estuarine wetland are summarized for ecological restoration.
     The primary contents and results of this research are described as follows.
     (1) The wetland ecosystem is a landscape mosaic consisting of various types of marsh plant communities and geomorphic units, where water serves as the controlling environmental factor. First, wetland hydrological processes influence the life history behaviors of plant communities and mosaic pattern directly. On the other hand, the hydrological processes act on environmental conditions, for example, biological, chemical and geomorphic characteristics, and induce dynamic change of structural and functional characteristics of wetland plant landscape indirectly. In view of this, conceptual model about wetland hydrological processes-chemical and geomorphic characteristics--landscape spatial-temporal heterogeneity is established based on the drive-state-response model.
     (2) The eco-hydrological index including five flow components with great ecological significance are adopted to estimate the effects of the integrated water regulation and water-sediment regulation on the eco-hydrology of river estuary. The results indicate that the distribution of estuarine monthly discharge within the year has changed obviously. The averaged discharge from May to November has significant change, and the averaged discharge of June has the greatest increasing extent. The annual minimum flows and base flow index have substantial increase simultaneously. The timing of annual1-day maximum flow is15days in advance, while the mean duration of low pulses has moderate increase. The rising rate and falling rates of two adjacent days are decreased, meanwhile, the flood pulse process disappears. After the integrated water regulation and water-sediment regulation, the estuarine hydrologic regime has improved effectively, while the hydrologic processes become flat due to the decrease of change rate and disappearance of flood pulse.
     (3) Environmental flows are effective management tools for river ecological conservation and restoration. Environmental flows are not only the simple ecological water requirements or suitable flow magnitude, but also the dynamic hydrograph with various hydrological elements and pulsing fluctuation.The current hydrological regime of estuary could meet the appropriate ecological flows during the dry period and that of the flood period could achieve the river channel scouring except for the lack of flood pulse process. While, the hydrological processes during April to June are incapable of meeting the ecological flows and short of the flow pulsing for fish reproduction.
     (4) The evolution characteristics of wetland landscape pattern after the water-sediment regulation are quantified using remote sensing technology and landscape pattern metrics. From2002to2010, the area of Wetland water, Reed swamp, Suaeda meadow and River increase, and the former two landscape types have increased by50.92km2and84.81km2respectively. It suggests that the degraded bare lands are replaced by wetland and swamp gradually. At the whole landscape level, landscape diversity and heterogeneity have improved. The landscape maintains natural features basically with rather feeble fragmentation. At the major landscape types level, aggregation of Wetland water patches increases accompanying by the distribution of patches close to the Yellow River; the aggregation, connectivity and structural complexity of Reed swamp also have an increasing trend; while, the aggregation and connectivity metrics of Suaeda meadow remain stable; moreover, the Shrub forest is subject to fragmentation and division processes. According to the ecological significance and sensitivity to environmental factors, the key landscape pattern metrics are selected at the level of whole landscape and major landscape types. The key pattern metrics include the diversity, connectivity, contagion, division and shape metric of the whole landscape, the connectivity, clumping, division, shape metric and total core area of the major landscape types.
     (5) The critical hydrological factors influencing landscape pattern characteristics are recognized based on the correlation method and stepwise regression analysis. Then the quantitative relationships between critical hydrological factors and pattern metrics are established. The results demonstrate that the pattern characteristics of whole landscape and Wetland water have significant correlations with flood peak processes, especially with the hydrological processes whose peak discharge is more than3500m3/s. The pattern characteristics of Reed swamp correlate with the flow discharge and change rates of April and May, the maximum discharge and flood peak processes. While, there is no obvious correlations between eco-hydrological factors and pattern characteristics of Suaeda meadow. The most critical eco-hydrological metric recognized by the stepwise regression models is the averaged peak discharge above3500m3/s.
     (6) The response regularities of landscape pattern characteristics to critical eco-hydrological factors are discussed based on the stepwise regression models. In addition, the hydrologic measures for estuarine wetland ecological restoration are proposed incorporating the environmental flow demands. When the flood peak discharge increases by500m3/s, the diversity and contagion metrics of whole landscape would improve obviously, and the total core areas of Wetland water and Reed swamp would increase by4.51km2and4.25km2respectively. If the falling rate of hydrological processes during April to May decrease by5%, the connectivity metric of Reed swamp would increase by15.6%. Combining the research results with environmental flow demands, the hydrological measures for improving the wetland ecological conditions are summarized as follows:flow pulsing processes taking place at least once during April to May with the pulsing discharge above800m3/s, the duration of pulsing process more than7days, the falling rate of pulsing process decreasing by5%; in addition, in virtue of the water-sediment regulation, the flood peak discharge increasing by500m3/s and the flood overbank process taking place as much as possible.
     The researches of relationships between hydrological processes and wetland landscape pattern extend the theoretical system of wetland eco-hydrology and river ecological restoration. The example of the Yellow River estuary wetland validates the reasonability and practicability of the theoretical framework combining hydrological processes and the responses of wetland landscape pattern. In addition, the results will provide theoretical foundations and references for estuarine wetland ecological restoration in the future.
引文
[1]陈爽,马安青,李正炎,等.基于RS/GIS的大辽河口湿地景观格局时空变化研究[J].中国环境监测,2011,27(3):4-8.
    [2]邓伟,胡金明.湿地水文学研究进展及科学前沿问题[J].湿地科学,2003,1(1):12-19.
    [3]董李勤,章光新.全球气候变化对湿地生态水文的影响研究综述[J].水利学报,2011,22(3):429-436.
    [4]董哲仁,等著.河流生态修复工程[M].北京:中国水利水电出版社.2013.
    [5]董哲仁,孙东亚,等.生态水利工程原理与技术[M].北京:中国水利水电出版社.2007.
    [6]董哲仁,孙东亚,赵进勇,等.河流生态系统结构功能整体性概念模型[J].水科学进展,2010,21(4):550-559.
    [7]董哲仁,孙东亚,彭静.河流生态修复理论技术及其应用[J].水利水电技术,2009,10(1):4-7.
    [8]董哲仁,张晶.洪水脉冲的生态效应[J].水利学报,2009,40(03):281-288.
    [9]董哲仁.河流生态恢复的目标[J].中国水利,2004,(10):5-9.8.
    [10]董哲仁.河流生态修复的尺度、格局和模型[J].水利学报,2006,37(12):1476-1481.
    [11]范晓梅,刘高焕,束龙仓,等.调水调沙对河口地区地下水动态的影响[J].人民黄河,2009,31(9):34-36.
    [12]冯士筰,李凤岐,李少菁.海洋科学导论[M].北京:高等教育出版社.1999.
    [13]傅伯杰,陈利顶.景观多样性的类型及其生态意义[J].地理学报,1996,51(5):454-462.
    [14]傅伯杰,陈利项,马克明,等.景观生态学原理及应用(第二版)[M].北京:科学出版社.2011.
    [15]高常军,周德民,栾兆擎,张海英.湿地景观格局演变研究评述.长江流域资源与环境,2010,19(4):460-464.
    [16]郭跃东,何岩,邓伟,等.扎龙湿地水体N,P营养物质空间异质性研究[J].环境科学研究,2005a,18(2):51-56.
    [17]郭跃东,何岩,邓伟,等.水文过程对乌裕尔河河滨湿地缓冲带表层土壤养分空间分异的影响[J].土壤通报,2005b,36(6):831-835.
    [18]海燕,贾忠华,罗纨.滨河湿地地表水文评价指标与实例分析.湿地科学,2008年,6(2):173-178.
    [19]韩美.黄河三角洲湿地生态研究[M].济南:山东人民出版社.2009.
    [20]贺丽媛,赵麦换.黄河水量统一调度实施效果分析[C].黄河水资源综合调度实践与探索研讨会会议论文集,2012年11月,郑州.
    [21]黄河勘测规划设计有限公司.黄河水资源综合调度与调水调沙[C].黄河水资源综合调度实践与探索研讨会会议论文集,2012年11月,郑州.
    [22]黄河三角洲自然保护区管理局.山东黄河三角洲国家级自然保护区湿地恢复的原理、方法及实践[R].2011年.
    [23]黄河水利科学研究院.调水调沙对河口水沙条件及湿地的影响研究[R].2011年.
    [24]黄青.塔里木河中游景观格局与生态水文过程的耦合分析[J].干旱区资源与环境,2008,22(9):83-87.
    [25]蒋卫国,李京,李加洪,等.辽河三角洲湿地生态系统健康评价[J].生态学报,.2005,25(3)408-414.
    [26]蒋晓辉,何宏谋,曲少军,等.黄河干流水库对河道生态系统的影响及生态调度[M].郑州:黄河水利出版社.201.
    [27]李崇巍,刘世荣,孙鹏森,等.岷江上游景观格局及生态水文特征分析[J].生态学报,2005,25(4):691-698.
    [28]李秀珍,肖笃宁,胡远满,等.辽河三角洲湿地景观格局对养分去除功能影响的模拟[J].地理学报,2001,56(1):32-43.
    [29]李玉凤,刘红玉,朱丽娟.挠力河流域平原区湿地景观完整性评价[J].生态学报,2009,29(9):4857-4864.
    [30]刘高焕,Drost H J.黄河三角洲可持续发展图集[M].北京:测绘出版社.1997.
    [31]刘明,王克林.洞庭湖流域中上游地区景观格局变化的水文响应[J].生态学报,2008,28(12):5970-5979.
    [32]刘娜,王克林,段亚锋.洞庭湖景观格局变化及其对水文调蓄功能的影响[J].生态学报,2012,32(15):4641-4650.
    [33]刘晓燕,等著.黄河环境流研究[M].郑州:黄河水利出版社.2009.
    [34]刘正茂,孙永贺,吕宪国,等.挠力河流域龙头桥水库对坝址下游湿地水文过程影响分析[J].湿地科学,2007,5(3):201-207.
    [35]陆健健,何文珊,童春富,等.湿地生态学[M].北京:高等教育出版社.2006.
    [36]毛战坡,王雨春,彭文启,等.筑坝对河流生态系统影响研究进展水科学进展,2005,16(1):134-140.
    [37]毛战坡,彭文启,王世岩,等.三门峡水库运行水位对湿地水文过程影响研究[J].中国水利水电科学研究院学报,2006,4(1):36-41.
    [38]芮孝芳,等著.水文学原理[M].北京:中国水利水电科学研究院.2004.
    [39]石军南,徐永新,刘清华.洞庭湖湿地保护区景观格局变化及原因分析[J].中南林业科技大学学报,2010,30(6):18-26.
    [40]孙贤斌,刘红玉.基于生态功能评价的湿地景观格局优化及其效应--以江苏盐城海滨湿地为例[J].生态学报,2010,30(5):1157-1166.
    [41]谭学界,赵欣胜.水深梯度下湿地植被空间分布与生态适应[J].生态学杂志,2006,25(12):1460-1464.
    [42]王高旭,陈敏建,丰华丽,等.黄河中下游河道生态需水研究[J].中山大学学报(自然科学版),2009,48(5):125-130.
    [43]王根绪,刘桂民,常娟.流域尺度生态水文研究评述[J].生态学报,20005,25(4):892-903.
    [44]王根绪,钱鞠,程国栋.生态水文科学研究的现状与展望[J].地球科学进展,2001,16(3):314-323.
    [45]王俊娜,李翀,廖文根.三峡-葛洲坝梯级水库调度对坝下河流的生态水文影响[J].水力发电学报,2011,30(2):84-90.
    [46]王俊娜.基于水文过程与生态过程耦合关系的三峡水库多目标优化调度研究[D].北京:中国水利水电科学研究院,2011.
    [47]王朗,徐延达,傅伯杰,等.半干旱区景观格局与生态水文过程研究进展[J].地球科学进展,2009,24(11):1238-1246.
    [48]王丽,胡金明,宋长春,等.水位梯度对三江平原典型湿地植物根茎萌发及生长的影响[J].应用生态学报,2007,18(11):2432-2437.
    [49]王瑞玲,黄锦辉,韩艳丽,等.黄河三角洲湿地景观格局演变研究[J].人民黄河,2008,30(10):50-53.
    [50]王盛萍,张志强,孙阁,等.黄土高原流域土地利用变化水文动态响应—以以甘肃天水吕二沟流域为例[J].北京林业大学学报,2006,28(1):48-54.
    [51]王焱,刘国东,秦远清,等.基于水分运移的若尔盖湿地SPAC模型研究[J].四川大学学报(工程科学版),2007,39(5):16-20.
    [52]王育礼,王炬,孙涛.湿地生态水文模型研究进展[J].生态学杂志,2008,27(10):1753-1762.
    [53]邬建国.景观生态学--格局、过程、尺度与等级(第2版)[M].北京:高等教育出版社.2007.
    [54]相桂权,张洪岩,吴景才,等.莫莫格湿地景观格局变化对白鹤停歇种群动态的影响[J].东北师大学报(自然科学版),2010,42(3):126-131.
    [55]肖纯超,张龙军,杨建强.2004-2009年黄河口近岸海域低盐区面积的变化趋势研究[J].中国海洋大学学报,2012,42(6):40-46.
    [56]肖复明,张学玲,蔡海生.鄱阳湖湿地景观格局时空演变分析[J].人民长江,2010,41(19):56-59.
    [57]徐天宝.河流生态水文指标体系及其在长江中上游的应用研究[D].北京:中国水利水电科学研究院,2007.
    [58]徐治国,闫百兴,何岩,等.三江平原湿地植物的土壤环境因子分析[J].中国环境科学,2007, 27(1):93-96.
    [59]严登华.东辽河流域景观格局及其动态变化研究[J].资源科学,2004,26(1):31-37.
    [60]杨海波,贺添,李建峰.基于模糊集对分析的黄河三角洲景观评价研究[J].人民黄河,2010,32(5):1-3.
    [61]杨敏,刘世梁,孙涛,等.黄河三角洲湿地景观边界变化及其对土壤性质的影响[J].湿地科学,2009,7(1):67-74.
    [62]尹延鸿.潮沟研究现状及进展[J].海洋地质动态,1997,13(7):1-4.
    [63]于欢,何政伟,张树清,等.基于元胞自动机的三江平原湿地景观时空演化模拟研究[J].地理与地理信息科学,2010,26(4):90-94.
    [64]于守兵,王万战,王开荣,等.现阶段黄河人海流路输沙动态平衡研究[J].人民黄河,2012,34(6):10-15.
    [65]于文颖,周广胜,迟道才,等.湿地生态水文过程研究进展[J].节水灌溉,2007,(1):19-23.
    [66]岳书平,张树文,闫业超.吉林西部泽湿地景观变化及其驱动机制分析[J].中国环境科学,2008,28(2):163-167.
    [67]张洪波,黄强,彭少明,等.黄河生态水文评估指标体系构建及案例研究[J].水利学报,2012,43(6):675-683.
    [68]张昆,田昆,莫剑锋,等.水文周期对纳帕海高原湿地草甸土壤碳素的影响[J].湖泊科学,2007,19(6):705-709.
    [69]张美美,张荣群,张晓东,等.基于ANN—CA的湿地景观变化时空动态模拟研究[J].计算机工程与设计,2013,34(1):377-381.
    [70]章光新.水文情势与盐分变化对湿地植被的影响研究综述[J].生态学报,2012,32(13):4254-4260.
    [71]赵锐锋,周华荣,肖笃宁,等.塔里木河中下游地区湿地景观格局变化[J].生态学报,2006,26(10):3470-3478.
    [72]赵延茂,宋朝枢.黄河三角洲自然保护区科学考察集[M].北京:中国林业出版社.1995.
    [73]周德民,宫辉力,胡金明,等.三江平原淡水湿地生态系统景观格局特征研究—以洪河湿地自然保护区为例[J].自然资源学报,2007,22(1):86-96.
    [74]周德民,宫辉力,胡金明,等.湿地水文生态学模型的理论与方法[J].生态学杂志,2007,26(1):108-114.
    [75]周德民,宫辉力.洪河保护区湿地水文生态模型研究[M].北京:中国环境科学出版社.2007.
    [76]宗秀影,刘高焕,乔玉良,等.黄河三角洲湿地景观格局动态变化分析[J].地球信息科学学报,2009,11(1):91-97.
    [77]Acreman M, Blake J, Booker D, et al. A simple framework for evaluating regional wetland ecohydrological response to climate change with case studies from Great Britain[J]. Ecohydrology, 2009,2(1):1-17.
    [78]Acreman MC. Hydro-ecology:Linking Hydrology and Aquatic Ecology[M]. Wallingford:IAHS Press.2001.
    [79]Allan J D. Landscape and riverscapes:the influence of land use on stream ecosystems[J]. Annual Review of Ecology and Systematics,2004,35:257-284.
    [80]Amlin N M, Rood S B. Comparative tolerances of riparian willows and cottonwoods to water-table decline[J]. Wetlands,2002,22:338-346.
    [81]Auble G T, Friedman J M, Scott M L. Relating riparian vegetation to present and future streamflows[J]. Ecological applications,1994,4:544-554.
    [82]Auble GT. Vegetation model to inform stream flow alteration decisions[A].//Linking hydrological change and ecological response in streams and rivers of the Eastern United States, USGS Workshop. Herndon, Virginia,2005.
    [83]Bacon P E, Stone C, Binns D L, et al. Relationships between water availability and Eucalyptus camaldulensis growth in a riparian forest[J]. Journal of hydrology,1993,150:541-561.
    [84]Banaszuk P, Kamocki A. Effects of climatic fluctuations and land-use changes on the hydrology of temperate fluviogenous mire[J], Ecological Engineering,2008,32(2):133-146.
    [85]Barnes W J. Vegetation dynamics on the floodplain of the lower Chippewa River in Wisconsin[J]. Journal of the torrey botanical society,1997,124:189-197.
    [86]Barrett R, Nielsen D L, Croomea R. Associations between the plant communities of floodplain wetlands, water regime and wetland type[J]. River research and applications,2010,26:866-876.
    [87]Beauchamp V B, Stromberg J C. Flow regulation of the Verde River, Arizona encourages Tamarix recruitment but has minimal effect on Populus and Salix stand density[J]. Wetlands,2007,27(2): 381-389.
    [88]Benke AC. Importance of flood regime to invertebrate habitat in an unregulated river-floodplain Ecosystem [J]. Journal of the North American benthological society,2001,20(2):225-240.
    [89]Bithell M, Brasington J. Coupling agent-based models of subsistence farming with individual-based forest models and dynamic models of water distribution[J]. Environmental modeling and software, 2009,24:173-190.
    [90]Bovee K D, Scott L. Implications of flood pulse restoration for populus regeneration on the upper Missouri River[J]. River Research and Application,2002,18(3):287-298.
    [91]Braatne J H, Jamieson R, Gill K M, et al. Instream flows and the decline of riparian cottonwoods along the Yakima River, Washington, USA[J]. River Research and Applications,2007,23(3): 247-267.
    [92]Camporeale C, Ridolfi L. Riparian vegetation distribution induced by river flow variability:a stochastic approach [J]. Water resources research,2006,42:W10415.
    [93]Deiller A F, Walter J M, Tremolieres M. Effects of flood interruption on species richness, diversity and floristic composition of woody regeneration in the Upper Rhine alluvial hardwood forest[J]. Regulated rivers:research and management,2001,17(4-5):393-405.
    [94]Dimitry N, Schmidt A P, Tockner K, et al. Inundation dynamics in braided floodplains:Tagliamento River, Northeast Italy [J]. Ecosystems,2002,5:636-647.
    [95]Fausch K D, Torgersen C E, Baxter C V, et al. Landscapes to riverscapes:bridging the gap between research and conservation of stream fishes[J]. BioScience,2002,52:483-498.
    [96]Fernandez J A, Martinez C, Sanchez F J, et al. IHARIS:new software to assess hydrological alteration[A], ECRR. The proceedings of 4th ECRR conference on river restoration[C]. Venice: European Center for River Restoration,2008.
    [97]Forman R T, Godron M. Landscape ecology[M]. New York:John Wiley & Sons.1986.
    [98]Forman R T. Land Mosaics:The ecology of landscapes and regions[M]. Cambridge:Cambridge University Press.1995.
    [99]Friedman J M, Auble G T, Andrews E D, et al. Transverse and longitudinal variation in woody riparian vegetation along a montane river[J]. Western North American Naturalist,2006,66:78-91.
    [100]Friedman J M, Osterkamp W R, Scott M L, et al. Downstream effects of dams on channel geometry and bottomland vegetation:regional patterns in the Great Plains[J]. Wetlands,1998,18: 619-633.
    [101]Gippel C J, Blackham D. Review of environmental impacts of flow regulation and other water resorce developments in the River Murray and Lower Darling River System[R]. Canberra(Australian Capital Territory):Fluvial Systems Pty Ltd, Stockton to Murray-Darling Basin Commission,2002.
    [102]Growns J, Marsh M. Characterisation of flow in regulated and unregulated streams in eastern Australia[R]. Cooperative Research Centre for Freshwater Ecology Technical Report,2000.
    [103]Guntner A, Bronstert A. Representation of landscape variability and lateral redistribution processes for large-scale hydrological modelling in semi-arid areas[J]. Journal of hydrology,2004, 297(1-4):136-161.
    [104]Hannah D M, Wood P J, Sadler J P. Ecohydrology and hydroecology:A'new paradigm'? [J]. Hydrological Processes,2004,18:3439-3445.
    [105]Hobbs R J, Cramer V A. Natural ecosystems:pattern and process in relation to local and landscape diversity in southwestern Australian woodlands[J]. Plant and soil,2003,257(2):371-378.
    [106]Holzkamper A, Seppelt R. A generic tool for optimizing land use patterns and landscape structures[J]. Environmental modeling and software,2007,22(12):1801-1804.
    [107]http://www.umass.edu/landeco/research/fragstats/downloads/fragstats_downloads.html
    [108]Hu W W, Wang G X, Deng W, et al. The influence of dams on ecohydrological conditions in the Huaihe River basin, China[J]. Ecological engineering,2008,33(3-4),233-241.
    [109]Huckelbridgea K H, Staceyb M T. Glennb E P. et al. An integrated model for evaluating hydrology, hydrodynamics, salinity and vegetation cover in a coastal desert wetland[J]. Ecological engineering,2010,36:850-861.
    [110]Hudon C, Wilcox D, Ingram J. Modeling wetland plant community response to assess water-level regulation scenarios in the Lake Ontario-St, Lawrence River Basin[J]. Environmental monitoring and assessment,2006,113(1-3):303-328.
    [111]Hughes F, Rood S B. Allocation of river flows for restoration of floodplain forest ecosystems:a review of approaches and their applicability in Europe[J]. Environmental management,2003,32(1): 12-33.
    [112]Hupp C R, Osterkamp W P. Riparian vegetation and fluvial geomorphic processes[J]. Geomorphology,1996,14(4):277-295.
    [113]Johnson W C. in the Equilibrium response of riparian vegetation to flow regulation Platte River, Nebraska[J]. Regulated rivers:research and management,1997,13:403-415.
    [114]Johnson W C. Woodland expansion in the Platte River, Nebraska:Patterns and causes[J]. Ecological monographs,1994,64:45-84.
    [115]Junk W J, Bayley P B, Sparks R E. The flood pulse concept in river-floodplain systems[J]. Canadian special publication of fisheries and aquatic sciences,1989,106:110-127.
    [116]Junk W J. Structure and function of the large central Amazonian River floodplains:synthesis and discussion.//Junk W J, ed. The Central Amazonian Flodplain[M]. Berlin:Springer.1997.
    [117]Karim F, Henderson A K, Wallace J, et al. Modelling wetland connectivity during overbank flooding in a tropical floodplain in north Queensland, Australia[J]. Hydrological process,2011, 26(18):2710-2723.
    [118]Karrenberg S, Edwards P J, Kollman J. The life history of Salicaceae living in the active zone of floodplains[J]. Freshwater biology,2002,47:733-748.
    [119]Krysanova V, Hattermann F, Wechsung F. Implications of complexity and uncertainty for integrated modeling and impact assessment in river basins[J]. Environmental modeling and software, 2007,22(5):701-709.
    [120]Linhoss A C, Munoz-Carpena R, Allen M S, et al. A flood pulse driven fish population model for the Okavango Delta, Botswana[J]. Ecological Modelling,2012,228,27-38.
    [121]Lopez R D, Heggem D T, Sutton D, et al. Using landscape metrics to develop indicators of Great Lakes coastal wetland condition[R].2004.
    [122]Mahoney J M, Rood S B. Streamflow requirements for cottonwood seedling recruitment-an integrative model[J]. Wetlands,1998,18:634-645.
    [123]Malard F, Tockner K, Dole-Olivier M J, et al. A landscape perspective of surface-subsurface hydrological exchanges in river corridors[J]. Freshwater biology,2002,47:621-640.
    [124]Mathews R, Richter B D. Application of the Indicators of Hydrologic Alteration Software in Environmental Flow Setting[J]. Journal of the American water resources association,2007,43(6): 1400-1413.
    [125]Merritt D M, Scott M L, Poff N L, et al. Theory, methods and tools for determining environmental flows for riparian vegetation:riparian vegetation-flow response guilds[J]. Freshwater Biology,2010,55(1):206-225.
    [126]Milzow C, Burg V, Kinzelbach W. Estimating future ecoregion distributions within the Okavango Delta Wetlands based on hydrological simulations and future climate and development scenarios[J]. Journal of Hydrology,2010,38(1-2):89-100.
    [127]Mitsch W J, Gosselink J G. Wetlands(4th Revised edition)[M]. New York:John Wiley& Sons. INC.2007.
    [128]Mitsch W J, Wang N M. Large-scale coastal wetland restoration on the Laurentian Great Lakes: Determining the potential for water quality improvement[J]. Ecological Engineering,2000,15: 267-282.
    [129]Mortenson S G, Weisberg P J. Does river regulation increase the dominance of invasive woody species in riparian landscapes[J]. Global ecology and biogeography,2010,19(4):562-574.
    [130]Murray K R, Riemann R, Murdoch P, et al. Landscape characteristics affecting streams in urbanizing regions of the Delaware River Basin (New Jersey, New York, and Pennsylvania, U.S.)[J]. Landscape Ecology,2010,25(10):1489-1503.
    [131]Naiman R J, Decamps H, Pollock M. The role of riparian corridors in maintaining regional biodiversity[J]. Ecological applications,1993,3:209-212.
    [132]Nathan T, Doeg T, Voorwinde L. Towards defining sustainable limits to winter diversions in Victorian catchments[J]. Australian Journal of Water Resources,2002,5:49-60.
    [133]Naveh Z, Lieberman A S. Landscape ecology:Theory and application(2nd edition). New York Springer-Verlag,1994.
    [134]Nielsen D L, Brock M A. Modified water regime and salinity as a consequence of climate change:prospects for wetlands of Southern Australia[J]. Climatic Change,2009,95(3-4):523-533.
    [135]Nuttle W K. Eco-hydrology's past and future in focus[J]. Ecosystem,2002,83:2-5.
    [136]Olden J D, Poff N L. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes [J]. River Research and Applications,2003,19(2):101-121.
    [137]Peters D P, Bestelmeyer B T, Turner M G. Cross-scale interactions and changing pattern-process relationships:consequences for system dynamics[J]. Ecosystems,2007,10: 790-796.
    [138]Peterson E E, Sheldon F, Darnell R, et al. A comparison of spatially explicit landscape representation methods and their relationship to stream condition[J]. Freshwater biology,2011,56: 590-610.
    [139]Pettit N E, Froend R H, Davies PM. Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers[J]. River research and application,2001,17(3):201-215.
    [140]Pinto B C T, Araujo F G, Hughes R M. Effects of landscape and riparian condition on a fish index of biotic integrity in a large southeastern Brazil river[J]. Hydrobiologia,2006,556:69-83.
    [141]Poff N L, Allan J D, Bain M B, et al. The natural flow regime-a paradigm for river conservation and restoration[J], Bioscience,1997,47:1163-1174.
    [142]Poff N L, Bledsoe B P, Cuhaciyan C O. Hydrologic variation with land use across the contiguous United States:Geomorphic and ecological consequences for stream ecosystems[J]. Geomorphology,2006,79:264-285.
    [143]Poff N L, Richter B D, Arthington A H, et al. The ecological limits of hydrologic alteration (ELOHA):A new framework for developing regional environmental flow standards[J]. Freshwater Biology,2010,55(1):147-170.
    [144]Poff N L, Zimmerman J K. Ecological responses to altered flow regimes:a literature review to inform the science and management of environmental flows[J]. Freshwater biology,2010,55(1): 194-205.
    [145]Poole G C. Stream hydrogeomorphology as a physical science basis for advances in stream ecology[J]. Journal of the North American benthological society,2010,29(1):12-25.
    [146]Porporato A, Odorico P D, Laio F, et al. Eco-hydrology of water controlled ecosystems [J]. Advances in water resources,2002,25:1335-1348.
    [147]Postel S, Richter B. Rivers for life:managing water for people and nature[M]. Washington: Island press,2003.
    [148]Randhir T O, Tsvetkova O. Spatio-temporal dynamics of landscape pattern and hydrologic process in watershed systems[J]. Journal of Hydrology,2011,404:1-12.
    [149]Raulings E J, Morris K, Roache M C, et al. The importance of water regimes operating at small spatial scales for the diversity and structure of wetland vegetation[J]. Freshwater Biology,2010,55: 701-715.
    [150]Richter B D, Baumgartner J V, Powell J, et al. A method for assessing hydrologic alteration within ecosystems[J]. Conservation biology,1996, (10):1163-1174.
    [151]Richter B D, Thomas G A. Restoring environmental flows by modifying dam operations[J]. Ecology and society,2007,12(1):12.
    [152]Richter B D, Richter H E. Prescribing flood regimes to sustain riparian ecosystems along meandering rivers[J]. Conservation biology,2000,14(5):1467-1478.
    [153]Robbins C S, Dawson D K, Dowell B A. Habitat Area Requirements of Breeding Forest Birds of the Middle Atlantic States[J]. Wildlife Monographs,1989,103:3-34.
    [154]Roberts J. Regeneration and growth of Coolibah, Eucalyptus coolabah Subsp Arida, a riparian tree, in the Cooper Creek region of South Australia[J]. Australian Journal of ecology.1993.18: 345-350.
    [155]Rodriguez I. Eco-hydrology:A hydrological perspective of climate-soil-vegetation dynamics[J]. Water Resources Research,2000,36:3-9.
    [156]Rood S B, Gourley C R, Ammon E M, et al. Flows for floodplain forests:a successful riparian restoration[J]. BioScience,2003,53:647-656.
    [157]Rood S B, Mahoney J M. Collapse of riparian poplar forests downstream from dams in western prairies:Probable causes and prospects for mitigation[J]. Environmental management,1990,14: 451-464.
    [158]Rood S B, Samuelson G M, Braatne J H, et al. Managing river flows to restore floodplain forests[J]. Frontiers in ecology and the environment,2005,3(4):193-201.
    [159]Sanchez-Perez J M, Tremolieres M. Change in groundwater chemistry as a consequence of suppression of floods:the case of the Rhine floodplain[J]. Journal of hydrology,2003,270(1-2): 89-104.
    [160]Steel E A, Hughes R M, Fullerton A H, et al. Are we meeting the challenges of landscape-scale riverine research?--A Review[J]. Living rev. Landscape research,2010,4:1.
    [161]Stroh C L, Steven D D, Guntenspergen G R. Effect of climate fluctuations on long-term vegetation dynamics in carolina bay wetlands[J]. Wetlands,2008,28(1):17-27.
    [162]Stromberg J C, Beauchamp V B, Dixon M D, et al. Importance of low-flow and high-flow characteristics to restoration of riparian vegetation along rivers in arid south-western United States[J]. Freshwater Biology,2007,52(4):651-679.
    [163]Stromberg J C, Tiller R, Richter B. Effects of groundwater decline on riparian vegetation of semiarid regions:the San Pedro River, Arizona, USA[J]. Ecological applications,1996,6:113-131.
    [164]Stromberg J C. Influence of stream flow regime and temperature on growth rate of the riparian tree, Platanus wrightii, in Arizona[J]. Freshwater biology,2001,46:227-240.
    [165]Su M, Stolte W J, Vander K G. Modelling Canadian prairie wetland hydrology using a semi-distributed streamflow model[J]. Hydrological processes,2000,14(14):2405-2422.
    [166]Suen J P, Herricks E E, Eheart J W. Eco-hydrologic indicators for rivers of Northern Taiwan[C] //ASCE/EWRI World Water and Environmental Resources Congress, Salt Lake City, UT, USA: ASCE,2004:143-151
    [167]Tabo M, Martin K, Otlogetswe T, et al. Influence of seasonal flooding on soil total nitrogen, organic phosphorus and microbial populations in the Okavango delta, Botswana[J]. Journal of arid environments,2003,54(2):359-369.
    [168]Tang Z, Engel B A, Pijanowski B C, et al. Forecasting land use change and its environmental impact at a watershed scale[J]. Journal of Environmental Management,2005,76:35-45.
    [169]Taylor P D, Fahrig L, Henein K, et al. Connectivity Is a vital element of landscape structure[J]. Oikos,1993,68(3):571-573.
    [170]The Nature Conservancy. Indicators of Hydrologic Alteration Version 7User's Manual.2007.
    [171]Thompson JR, Sorenson H, Gavin H, et a 1. Application of the coupled MIKESHE/MIKE 11 modelling system to a lowland wet grassland in southeast England[J], Journal of hydrology,2004, 293:151-179.
    [172]Thorp J H, Thorns M C, Delong M D. The riverscape ecosystem synthesis:biocomplexity in river networks across space and time[J]. River research and applications,2006,22:123-147.
    [173]Tockner K, Malard F, Ward J V. An extension of the flood pulse concept[J]. Hydrological processes,2000,14(16-17):2861-2883.
    [174]Todd M J, Muneepeerakul R, Pumo D, et al. Hydrological drivers of wetland vegetation community distribution within Everglades National Park, Florida[J]. Advances in water resources, 2010,33:1279-1289.
    [175]Toner M, Keddy P. River hydrology and riparian wetlands:A predictive model for ecological assembly[J]. Ecological applications,1997,7:236-246.
    [176]Valett H M, Baker M A, Morrice J A, et al. Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain[J]. Ecology,2005,86(1):220-234.
    [177]Verburg P H. Simulating feedbacks in land use and land cover change models[J]. Landscape Ecology,2006,21:1171-1183.
    [1781 Voinov A, Constanza R, Wainger L, et al. Patuxent landscape model:integrated ecological economic modeling of a watershed[J]. Journal of environmental modelling and software,1999,14: 473-491.
    [179]Wang L Z, Seelbach Paul W. Introduction to landscape influences on stream habitats and biological assemblages[J]. American fisheries society symposium,2006,48:1-23.
    [180]Ward J V, Malard F, Tockner K. Landscape ecology:a framework for integrating pattern and process in river corridors[J]. Landscape ecology,2002a,17:35-45.
    [181]Ward J V, Tockner K, Arscott D B, et al. Riverine landscape diversity[J]. Freshwater biology, 2002b,47:517-539.
    [182]Wassen M J, Barendregt A, Palczynski A. The relationship between fen vegetation gradients, ground water flow and flooding in an undrained valley mire at Biebrza, Poland[J]. Journal of Ecology,1990,78:1106-1122.
    [183]Wassen M J, Diggelen R V, Wolejko L, et al. A comparison of fens in natural and artificial landscapes[J]. Vegetation,1996,126(1):5-26.
    [184]Wassen M J, Peeters W HM, Venterink H O. Patterns in vegetation, hydrology, and nutrient availability in an undisturbed river floodplain in Poland[J]. Plant Ecology,2002,165(1):27-43.
    [185]Wassen MJ, Barendregt A, Palezynski A, et al. Hydro-ecological analysis of the Biebrza mire(Poland) [J]. Wetlands Ecology and Management,1992,2(3):119-134.
    [186]Wheeler BD. Water and plants in freshwater wetlands//Baird A J, Wilby R L, eds. Eco-hydrology:Plants and water in terrestrial and aquatic environments[M]. London and New York: Routledge,1999:127-180.
    [187]Whited D C, Lorang M S, Harner M J, et al. Climate, hydrologic disturbance, and succession: drivers of floodplain pattern[J]. Ecology.2007,88(4):940-953.
    [188]Wiens J A. Riverine landscapes:taking landscape ecology into the water[J]. Freshwater biology, 2002,47:501-515.
    [189]Wilcox B P, Breshears D D, Allen C D. Ecohydrology of a resource conserving semiarid wood land:Effects of scale and disturbance[J]. Ecological Monographs,2003,73(2):223-239.
    [190]Wolski P, Murray-Hudson M. Alternative futures of the Okavango Delta simulated by a suite of global climate and hydro-ecological models[J]. Water SA,2008,34(5):605-610.
    [191]Wu J G, Jelinski D E, Luck M, et al. Multiscale analysis of landscape heterogeneity:scale variance and pattern metrics[J]. Geographic information sciences,2000,6(1):6-19.
    [192]Wu J G, Vankat J L, Barlas Y. Effects of patch connectivity and arrangement on animal metapopulation dynamics:a simulation study[J]. Ecological modelling,1993,65(3-4):221-254.
    [193]Wu J, Levin SA. A spatial patch dynamic modeling approach to pattern and process in an annual grassland[J]. Ecol. Monogr.1994,64,447-464.
    [194]Wu J, Loucks O L. From balance of nature to hierarchical patch dynamics:a paradigm shift in ecology[J]. The quarterly review of biology,1995,70:439-466.
    [195]Yang T, Zhang Q, Chen Y D, et al. A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower Yellow River, China[J]. Hydrological process.2008,22: 3829-3843.
    [196]Zalewski M. Eco-hydrology:The scientific background to use ecosystem properties as management tools toward sustainability of water resources[J]. Ecological engineering,2000,16:1-8.
    [197]Zhang L, Mitsch W J. Modelling hydrological processes in created freshwater w et lands:An integrated system approach[J]. Environmental modeling and software,2005,20(7):935-946.
    [198]Zheng L Y, Chen C S, Zhang F Y. Development of water quality model in the Satilla River Estuary, Georgia[J]. Ecological modeling,2004,178:457-482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700