用户名: 密码: 验证码:
云南电网物理脆弱性分析与地质灾害风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统大多直接暴露在自然条件下,受环境因素影响较大。我国地质灾害频发,各类地质灾害的发生直接影响着电力系统的安全运行,严重的会导致电网崩溃和大面积停电事故,更有甚者将威胁到人民的生命财产和社会的稳定。加强地质灾害的监测预警,减轻和防止其灾变影响,对电力系统的安全、稳定运行起着积极的作用,有利于降低地质灾害对国家、集体、个人造成的经济和物质损失。因此,对于地质灾害监测预警及其防控体系的研究,具有重要意义。
     地质灾害监测预警研究是当前国内外灾害研究领域的热点课题。在电力系统领域,地质灾害监测预警系统研究引起了广泛的重视,并已取得了较多成果。但由于自然灾害的发生及其对电网系统的致灾过程复杂,目前人们对于致灾过程机理、耦合灾变作用和灾变动力演化规律等,还需深入而系统地研究。
     云南是典型的山地环境,全省斜坡高陡、河谷深切、地形起伏、高差悬殊,特殊的地理环境使得滑坡、泥石流和地震灾害频发。相对于其他地域,研究云南电网的物理脆弱性、安全风险评估、预警应急管理控制体系能达到特殊性和一般性的统一。选取常见的滑坡、泥石流、地震等地质灾害为研究的环境,针对电网系统承灾体的承灾力、灾变耦合动力演化规律,区域内地质灾害的致灾特性、易灾性分布规律、风险评价模型及风险区划、预警模型等方面,建立完善的监测预警系统,提供风险管理控制措施,探讨电力系统应对地质灾害的安全科学原理与防灾减灾科学理论。主要做了如下4个方面的研究:
     (1)云南电网面临的主要地质灾害特点以及致灾机理。分析了云南电网系统面临的主要地质灾害种类,统计分析各类地质灾害的分布特点和造成电网损失的情况;结合致灾机理、灾变动力演化及统计资料,发现区域灾害发生及其程度的时间分布和空间分布规律,确定区域易灾性分布规律。
     (2)地质灾害致灾行为动态演化规律。基于灾害能量场作用下,探究灾害的动态演化规律、灾害与电网承灾体之间耦合连锁反应规律、多级效应的动态演化规律;研究灾变动力模型,建立滑坡、泥石流和地震等致灾行为的动态演化模型及仿真分析,从而提供预报预警依据;根据典型的电网承灾体破损规律,建立数学模型及仿真分析;划分电网承灾体承灾能力等级,构建承灾能力模型,评估区域不同尺度、不同承灾体对象的综合承灾能力,确定区域电力系统的承灾体易损性特征及耐地质灾害冲击特性。
     (3)云南电网地质灾害风险评估。根据地质灾害和电力系统特性,以及监测数据,结合区域的易灾性与区域承灾体易损性的关系而构成区域电力系统的灾变风险,研究易灾性与易损性耦合关系模型,构建灾变风险评估模型;讨论区域电网系统灾变风险分级标准,预测预报电网遭受自然灾害破坏的风险大小和电网系统中长尺度灾变风险分布,分析诱发因子引起的灾变风险量级分布变化规律;基于云南电网现有的监测预警系统,重点研究了云南电网地质灾害风险评估。本部分的创新点之一,提出了地质灾害计权点密度的概念,并建立了矩阵计算模型,结合云南各地市州的具体情况给出了计算实例。本部分的创新点之二,在单条输电线路灾害间接经济损失的计算中,提出考虑经济密度的比例系数和人口密度的比例系数,克服了惯用的根据间接损失与直接损失的比值来笼统定义灾害间接经济损失那种粗糙化与简单化的处理方案。
     (4)电网地质灾害监测预警系统和电网地质灾害灾变风险管理控制研究。建立灾变风险管理策略模型设计原则与方法、模型,根据监测及动态灾变风险评估结果,提供灾变风险应对辅助决策支持及相应的防范措施,构建了区域电网风险管理控制体系,建立超前预报预警和应急响应机制,形成反馈控制系统。本部分的创新点在于将RPD决策模型和信息熵评价决策模型引入到电网的应急指挥决策领域,并以此为依据形成电网系统应急决策体系。
Most of electric power system is seriously influenced by environmental factors for its directly exposure in natural conditions. There are lots of natural disasters in China. The incidence of various types of natural disasters is directly threatening the safe operation of grid system, which will cause serious destructions and many blackouts troubles, what's more, it even affects the normal production, life and social stability. And it has positive effects on safe and stable operation of grid system while enhancing the monitoring and warning system in order to reduce the influence of natural disasters. It is also conductive to reduce the economic and material losses both of collectives and individuals. Therefore, it has a very important theoretical significance to research on monitoring and warning of natural disasters, which can generate significant economic benefits.
     It is a hot topic to research on monitoring and warning of natural disasters in domestic and international disaster in current research field. In the field of grid system, it attracts more and more domestic scholars' attentions to research on monitoring and warning system of natural disasters, which has produced lots of achievements. However, for the occurrence of natural disasters and the hazard process of grid system are complicated, there are more researches on the mechanism of hazard process, cataclysm dynamic evolution and coupling catastrophic effect.
     In complex terrain of Yunnan province, there are a lot of geological disasters, such as freezing rain and snow, landslide, earthquake, wildfire. All of these disasters have prominent damage on grid system. Compared with other regions, it can achieve the unity of particularity and generality by researching on physical vulnerability, safety risk assessment, early warning and emergency management and control system in Yunnan Gird. The landslides, mudslides, earthquakes and other geological disasters have been selected as research environments. It was studied that includes the hazard characteristics of the geological disasters, distribution law of disaster vulnerability, disaster bearing force of grid system, cataclysm coupled dynamic evolution, risk assessment model and risk zoning and warning model and so on. The perfect monitoring and warning system has been established and the risk and control measure has been proposed to investigate scientific theory of grid system dealing with geological disasters. The following four aspects are mainly included in the paper:
     (1) Research on characteristics of geological disasters and disaster-causing mechanism of Yunnan Grid. It analyzes the main types of geological disasters, the distribution characteristics and the losses of various geological disasters in Yunnan Grid. It also finds the time and space distribution of the occurrences and the degree of regional disaster. Then, combined with the formation mechanism, catastrophic dynamical evolution and statistics, it determines the distribution law of disaster vulnerability in regions.
     (2) Research on dynamic evolution of hazard behavior in geological disasters. It is studied that includes the dynamic evolution, coupling knock-on effect law of disasters and grid hazard bearing body and dynamic evolution of the multi-level effects based on disaster energy field. According to catastrophic dynamic model, it establishes dynamic evolution model and simulation analysis technology of landslides, mudslides and earthquakes and other hazard behaviors. It considers the law of destruction or damage of the typical grid hazard bearing body. After establishing mathematical model and simulation analysis, it divides the disaster bearing capacity of grid hazard bearing body into many grades and establishes the disaster bearing capacity model to assess integrated disaster bearing capacity of different scales and different hazard bearing bodies. It also determines characteristics of vulnerability and resistance to impact of geological disasters of disaster bearing body of regional power grid.
     (3) Research on risk assessment of grid geological disasters. It establishes catastrophe risk of regional grid system and studies coupling relationship model of disaster vulnerability and hazard vulnerability and establishes the catastrophe risk assessment model according to characteristics of disasters and grid system, monitoring data and the relationship between disaster vulnerability and hazard vulnerability of disaster bearing body. It discusses catastrophe risk classification standard of regional grid system and forecasts risk and the long-scale catastrophe risk distribution in grid system attracted by natural disasters. It also analyzes the magnitude distribution change law of catastrophic risks resulted from precipitating factors. It mainly studies risk assessment of grid geological disasters according to the monitoring and warning system of Yunnan Grid. The first innovation of this part lies in that it puts forward the concept of weighted point density in geological disasters, establishes the matrix calculation model, and gives the calculation examples combined with the specific circumstances in Yunnan. The other innovation lies in that it considers the coefficient of proportionality and population density and economic density in the calculation of indirect economic loss of a single transmission line in a disaster, which overcomes the simplistic and rough solution to define indirect economic loss in a disaster according to the ratio of indirect loss and direct loss.
     (4) Research on monitoring and warning system and catastrophe risk management control of grid geological disasters. It establishes the rules, methods and models of catastrophic emergency decision-making analysis. And it proposes the auxiliary decision support of catastrophe risk according to the result of monitoring and dynamic catastrophe risk assessment to guide the appropriate precautions of staff timely. It also establishes risk management and control system of regional grid. Then it establishes advanced forecasting and warning and emergency response mechanism and forms feedback control system. The innovation of the this part lies in that Recognition-primed Decision Model (RPD) and the evaluation decision model of information entropy are introduced into the field of emergency command decision-making in power grid. And based on above, emergency decision-making system is formed for power system.
引文
[1]王昊昊,罗建裕,徐泰山.中国电网自然灾害防御技术现状调查与分析[J].电网系统自动化,2010,34(23):5-6.
    [2]陈竟成.输电网安全形势与对策[J].电力安全技术,2003,5(8):1-5.
    [3]马丽云.基于云理论的输电网安全风险评价研究[D].上海:上海电力学院,2012.
    [4]刘连光,刘春明,张冰,等.中国广东电网的几次强磁暴影响事件[J].地球物理学报,2008(7):1-8.
    [5]Yoshihiro Kakinami,Masashi Kamogawa,Jann-Yenq Liu,etc. Ionospheric disturbance associated with radiation accidents of Fukushima I nuclear power plant damaged by the M9.02011 Tohoku Earthquake[J].Advances in Space Research,2011,48(10):1613-1616.
    [6]Naoki Harada, Masanori Nonaka. Soil radiocesium distribution in rice fields disturbed by farming process after the Fukushima Dai-ichi Nuclear Power Plant accident[J]. Science of The Total Environment,2012,438(1):242-247.
    [7]Amano H, Akiyama M, Chunlei B, Kawamura T. Radiation measurements in the Chiba Metropolitan Area and radiological aspects of fallout from the Fukushima Dai-ichi Nuclear Power Plants accident [J].Journal of Environmental Radioactivity,2012,111(9):42-52.
    [8]国务院办公厅.国务院办公厅关于印发国家综合减灾“十一五”规划的通知[EB/OL].[2007-08-14]. http://www.gov.cn/zwgk/2007-08/14/content_716626.htm.
    [9]国务院办公厅.国务院批转发展改革委电监会关于加强电网系统抗灾能力建设若干意见的通知[EB/OL].[2007-07-01].http://www.gov.cn/zwgk/2008-07/01/content_1032277.htm.
    [10]中国新闻网.两部门要求电网企业制订和完善应急预[EB/OL].[2008-07-01].http://news.qq.com/a/20080701/002063.htm.
    [11]Henry A. Ruhl, Michel Andre, Laura Beranzoli,et al. Societal need for improved understanding of climate change, anthropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas[J]. Progress in Oceanography,2011, 91(1):1-33.
    [12]Olufemi A. Omitaomu, Brandon R. Blevins, Warren C. Adapting a GIS-based multicriteria decision analysis approach for evaluating new power generating sites[J]. Applied Energy, 2012,96(8):292-301.
    [13]L Ye, E Van Ranst. Production scenarios and the effect of soil degradation on long-term food security in China[J].Global Environmental Change,2009,19(4):464-481.
    [14]Johan Lilliestam, Jeffrey M. Bielicki, Anthony G. Patt. Comparing carbon capture and storage (CCS) with concentrating solar power (CSP):Potentials, costs, risks, and barriers [J]. Energy Policy,2012,47(8):447-455.
    [15]王兴发,曹怀予,肖军诗,张强,陆愈实.我国电网自然灾害预警系统研究[J].安全与环境工程,2012,19(6):39-44.
    [16]Fei Xiao, McCalley, J.D. Power system risk assessment and control in amultiobjective framework[J]. IEEE Transactions on Power Systems,2009,24(1):78-85.
    [17]M.A.Hapgood. Towards a scientific understanding of the risk from extreme space weather[JJ. Advances in Space Research,2011,47(8):2059-2072.
    [18]Yao-Min Fang, Bing-Jean Lee, Tien-Yin Chou, Yu-I Lin, Jung-Chi Lien. The implementation of SOA within grid structure for disaster monitoring Expert Systems with Applications[J].2009,36(3):5784-5792.
    [19]Xie Chuansheng, Dong Dapeng, Hua Shengping, Xu Xin, Chen Yingjie. Safety Evaluation of Smart Grid based on AHP-Entropy Method[J]. Systems Engineering Procedia, 2012(4):203-209.
    [20]王倩.我国自然灾害管理体制与灾害信息共享模型研究[D].北京:中国地质大学(北京),2010.
    [21]宋守信,陈明利.电力安全文化管理[M].北京:中国电力出版社,2009:59-65.
    [22]M.D. Cooper Ph.D.Towards a model of safety culture[J].Safety Science,2000,36(2): 111-136.
    [23]Dianne Parker, Matthew Lawrie, Patrick Hudson. A framework for understanding the development of organisational safety culture[J]. Safety Science,2006,44(6):551-562.
    [24]罗云,田水承.安全经济学[M].北京:中国劳动社会保障出版社,2007:99-103.
    [25]Wei Wang, Jizhen Liu, Deliang Zeng, Zhongwei Lin, Can Cui. Variable-speed technology used in power plants for better plant economics and grid stability[J].Energy,2012,45(1): 588-594.
    [26]陈宁,陆愈实.基于风险预控的矿山安全监控系统研究[J].中国矿业,2011,20(10):118-121.
    [27]Yonghui Zhang, Hongxu Li, Qian Sheng, Kai Wu, Guoliang Chen. Real time remote monitoring and pre-warning system for Highway landslide in mountain area[J] Journal of Environmental Sciences,2011,23(8):100-105.
    [28]Wei Lianjiang, Li Wendong, Wang Jianwei, Du Lingyun. Precursor of Thermal Power Disaster in High-Efficiency Intensifying Coal Mine and Its Early-Warning[J]. Procedia Engineering,2012,43(5):191-196.
    [29]Jan Pollmann, Detlev Helmig, Jacques Hueber, Christian Plass-Dulmer, Pieter Tans. Sampling, storage, and analysis of C2-C7 non-methane hydrocarbons from the US National Oceanic and Atmospheric Administration Cooperative Air Sampling Network glass flasks[J]. Journal of Chromatography A,2008,1188 (2):75-87.
    [30]Alan Ingram. Governmentality and security in the US President's Emergency Plan for AIDS Relief (PEPFAR)[J]. Geoforum,2010,41(4):607-616.
    [31]Ramon Z. Shaban, Kerri Holzhauser, Kerri Gillespie, Sue Huckson, Scott Bennetts, Characteristics of effective interventions supporting quality pain management in Australian emergency departments:An exploratory study[J]. Australasian Emergency Nursing Journal, 2012,15(1):23-30.
    [32]James B Jones. Assessment of pain management skills in emergency medicine residents:the role of a pain education program[J]. The Journal of Emergency Medicine,1999,17(2): 349-354.
    [33]Alexandros Paraskevas, Levent Altinay. Signal detection as the first line of defence in tourism crisis management[J]. Jourism Management,2013,34(2):158-171.
    [34]牛皓宁,丁立.国外应急管理培训经验分析及对我国的启示[J].中国劳动关系学院学报,2011,25(3):95-99.
    [35]Japanese Emergency Medicine Research Alliance. Emergency airway management in Japan: Interim analysis of a multi-center prospective observational study[J]. Resuscitation,2012, 83(4):428-433.
    [36]Tatsuya Kinugasa. Education and training for radiation emergency medical management in Japan[C]. International Congress Series,2007,1299(2):189-195.
    [37]Suh Son, Kyong Joo Oh, Tae Yoon Kim, Dong Ha Kim. An early warning system for global institutional investors at emerging stock markets based on machine learning forecasting[J]. Expert Systems with Applications,2009,36(3):4951-4957.
    [38]World Conference on Disaster Reduction.Hyogo Declaration.[EB/OL].[2005-01-22].http://www.unisdr.org/2005/wcdr/intergover/official-doc/ L-docs/Hyogo-declaration-english.pdf.
    [39]刘家国,刘娟.企业人力资源危机预警系统的理论模型的构建[J].商场现代化,2007,7(3):55-61.
    [40]杨晓强.我国政府的危机管理模式研究[D].大连:大连理工大学,2007.
    [41]熊有坚.电网企业危机管理4R模式[J].中国电力企业管理,2012,34(9):66-69.
    [42]杨晓丽.美国自然灾害应急管理中的信息传播研究[D].武汉:华中师范大学,2009.
    [43]Federal Emergency Management Agency.FEMA leadership organizational structure. [EB/OL].[2000-09-22].http://www.fema.gov/about/structure.shtm.
    [44]朱晓峰,潘郁,陆敬筠.危机决策中政务信息采集模型研究[J].情报理论与实践,2008(2):33-36.
    [45]周超.地市供电企业自然灾害应急管理机制研究[D].浙江:浙江大学,2009.
    [46]吴晓涛,吴丽萍.突发事件区域应急联动影响因素的实证研究[J].灾害学,2011,20(7):77-83.
    [47]滕五晓,王清,夏剑.危机应对的区域应急联动模式研究[J].社会科学,2010(07):63-68.
    [48]汪传雷.基于生命周期的企业危机信息管理研究[D].天津:天津大学,2006.
    [49]王凯全,邵辉等.事故理论与分析技术[M].北京:化学工业出版社,2004:105-113.
    [50]Philip P. Purpura. Resilience, Risk Management, Business Continuity, and Emergency Management[C]. Security and Loss Prevention,2013:321-362.
    [51]Nicholas Sutingco.The Incident Command System[C]. Disaster Medicine,2006:208-214.
    [52]Murray Turoff, Starr Roxanne Hiltz, Victor A. Banuls. Special Issue on "Planning and foresight methodologies in emergency preparedness and management"[J]. Technological Forecasting and Social Change,2012,79(1):2-9
    [53]Murray Turoff, Starr Roxanne Hiltz. Collaborative scenario modeling in emergency management through cross-impact[J]. Technological Forecasting and Social Change, 2012,89(2):133-139.
    [54]Rui Povoa, Joao Pimenta. Effects of 24-h Shift Work in the Emergency Room on Ambulatory Blood Pressure Monitoring Values of Medical Residents[J]. American Journal of Hypertension,2006,19(10):1005-1009.
    [55]Jin Ki Kim, Raj Sharman, H. Raghav Rao, Shambhu Upadhyaya Efficiency of critical incident management systems:Instrument development and validation[J]. Decision Support Systems,2007,44(1):235-250.
    [56]Yi Peng, Yong Zhang, Yu Tang, Shiming Li. An incident information management framework based on data integration, data mining, and multi-criteria decision making [J].Decision Support Systems,2011,51(2):316-327.
    [57]Bartel Van de Walle, Anne-Francoise Rutkowski. A fuzzy decision support system for IT Service Continuity threat assessmen[J]. Decision Support Systems,2007, 42(3):1931-1943.
    [58]Manoj K. Mittal. Etomidate as an Induction Agent for Endotracheal Intubation in Patients With Sepsis[J].Annals of Emergency Medicine,2009,53(3):405-409.
    [59]郭永基.加强电网系统可靠性的研究和应用——北美东部大停电的思考[J].电网系统自动化,2003(10):20-26。
    [60]D. Mendonca, R. Rush, W.A. Wallace. Timely knowledge elicitation from geographically separate, mobile experts during emergency response[J].Safety Science,2001,35(13): 193-208.
    [61]David Mendonca, Giampiero E.G. Beroggi, Daan van Gent, William A. Wallace. Designing gaming simulations for the assessment of group decision support systems in emergency response[J]. Safety Science,2006,44(6):523-535.
    [62]Asuncion Lubiano. Estimation of a simple linear regression model for fuzzy random variables[J]. Fuzzy Sets and Systems,2009,160(3):357-370.
    [63]H6ctor Bueno, Alfredo Bardaji, Antonio Fernandez-Ortiz. Manejo del sindrome coronario agudo sin elevacion del segmento ST en Espafla. Estudio DESCARTES (Descripcion del Estado de los Sindromes Coronarios Agudos en un Registro Temporal ESpanol)[J]. Revista Espanola de Cardiologia,2005,58(3):244-252.
    [64]Susanne Biundo, Pascal Bercher, Thomas Geier, Felix Muller, Bernd Schattenberg. Advanced user assistance based on AI planning[J]. Cognitive Systems Research,2011, 12(34):219-236.
    [65]Case study:Control of chronic self-injurious behavior by conditioning procedures[J]. Behavior Therapy,2007,3(1):72-83.
    [66]唐攀,王红卫,王哲.基于预案模板的HTN规划知识建模方法及其应用[J].计算机科学,2010,15(10):43-48.
    [67]黎文航.基于变精度粗糙集理论的焊接动态过程知识建模方法研究[[D].上海:上海交通大学,2007.
    [68]童星.熵:风险危机管理研究新视角[J].江苏社会科学,2008(6):81-85.
    [69]计雷.突发事件应急管理[M].北京:高等教育出版社,2007:113-120.
    [70]Chen Ning, Chen An, Zhou Longxiang, Liu Lu. A Fast Algorithm for Mining Sequential Patterns From Large Databases[J]. Journal of Computer Science and Technology,2001, 16(4):359-370.
    [71]宋英华.突发事件应急管理导论[M].中国经济出版社,2009:1-10.
    [72]王郡强,麻宝斌.突发公共事件的应急管理探讨[J].长白学刊,2004(2):45-49.
    [73]孙欣,吕跃春,高军,夏清.电网经济性与安全性的精益化协调方法[J].电网技术,2009(11):71-76.
    [74]唐钧.应急管理与危机公关——突发事件处置、媒体舆情应对和信任危机管理[M].北京:中国人民大学出版社,2012:161-166.
    [75]洪大用.转型时期中国社会救助[M].辽宁:辽宁教育出版社,2004:30-34.
    [76]李经中.政府危机管理[M].北京:中国城市出版社,2003:97-105.
    [77]侯慧.应对灾变的电力安全风险评估与应急处置体系[D].武汉:华中科技大学,2009.
    [78]董存祥,王文俊,杨鹏.应急预案体系本体模型(EPSOnto)及应用[J].计算机工程与应用,2010,46(10):235-238.
    [79]史波,梁静国.基于预案的企业应急决策方法研究[J].现代管理科学,2008(2):41-45.
    [80]郭瑞鹏.应急物资动员决策的方法与模型研究[D].北京:北京理工大学,2000.
    [81]袁宏永,苏国锋,李藐.应急文本预案、数字预案与智能方案[M].北京:国家行政学院出版社,2008:121-125.
    [82]张荣乾.供电企业执行峰谷分时电价的风险分析及实证研究[D].北京:华北电力大学,2006.
    [83]郎召伟.航行训练模拟器仿真系统的可信度研究[D].哈尔滨:哈尔滨工程大学,2008.
    [84]唐辉,孙红月,李纾.非常规突发事件应急决策的研究述评及新思路——发展指导性模型[J].人类工效学,2011(1):25-28.
    [85]郎淳刚,刘树林.国外自然决策理论研究述评[J].技术经济与管理研究,2009,8(2):23-28.
    [86]史越东.指挥决策学[M].北京:解放军出版社,2005:132-137.
    [87]刘慧,戴锋,吴松涛.军事决策方案首选机制的熵权决策分析法[J].情报方法,2003(5):62-63.
    [88]滕兆新,杨世兴,傅学庆.基于熵权的布雷作战方案优选[J].火力与指挥控制,2008,33(7):143-145.
    [89]赵玉普,冯书兴,王佳等.信息熵空间作战追回多属性决策研究[J].火力与指挥控制,2008,33(9):55-59.
    [90]洪航,商靠定,张学魁,等.基于信息熵评价决策模型的突发公共事件应急处置指挥方案优选[J].中国安全科学学报,2009,28(02):77-81.
    [91]林济铿,李童飞,赵子明等.基于熵权模糊综合评价模型的电网系统黑启动方案评估[J].电网技术,2012(2):89-93.
    [92]曾智洪.基于管理熵和管理耗散结构理论的企业危机管理思考[J].华东经济管理,2010,25(2):45-48.
    [93]张亮,张凤鸣,杜纯.复杂装备健康状态评估的粗糙核距离度量方法[J].计算机工程与设计,2009,28(09):35-39.
    [94]方玉群.基于可靠性的输电设备状态检修体系研究[D].浙江:浙江大学,2011.
    [95]梁建中.气象指数与健康[J].养生大世界,2004(5):67-71.
    [96]王斌.利用空气污染指数(API)分析我国空气污染的区域时空变化特征[D].青岛:中国海洋大学,2008.
    [97]张萍华.模拟酸雨对土壤的理化性质、微生物和生物活性及中药的影响[D].浙江:浙江大学,2004.
    [98]刘伟.ANSYS 12.0宝典[M].北京:电子工业出版社,2010:231-240.
    [99]钱进.云南省地震应急管理模式完善研究[D].昆明:云南大学,2011.
    [100]张少锋.基于BP神经网络的复合材料层合壳稳定性优化设计[D].哈尔滨:哈尔滨工业大学,2010.
    [101]朱碧蕾,胡文悌,李春祥.基于有限元分析高压输电塔结构的地震反应[J].地震工程与工程振动,2006,30(10):28-34.
    [102]肖奇志,蒋海云.刚性楼板假定的工作原理及其选用方法[J].中外建筑,2007(9):70-74.
    [103]张大长,赵文伯,刘明源.5·12汶川地震中电力设施震害情况及其成因分析[J].南京:南京工业大学学报(自然科学版),2009,15(1):52-55.
    [104]朱碧蕾,胡文悌,李春祥.基于有限元分析高压输电塔结构的地震反应[J].地震工程与工程振动,2006,30(10):28-34.
    [105]谢强,张勇,李杰.华东电网500kV任上5237线飑线风致倒塔事故调查分析[J].电网技术,2006,20(5):4245.
    [106]云南省人民政府办公厅.关于印发《云南省地质灾害防治规划》的通知[J].云南政报,2004(4):1-2.
    [107]水木.国土资源系统全力投入云南保山抢险救灾[J].中国国土资源报,2010(9):29-32.
    [108]范文,刘雪梅,高德彬等.主成分分析法在地质灾害危险性综合评价中的应用[J].西安工程学院学报,2001,15(12):4346.
    [109]赵虹.云南建设项目地质灾害危险性评估的理论与方法体系研究[D].昆明:昆明理工大学,2005.
    [110]陈宏伟,郭立群,李江,等.云南热区的森林地理分区及其评述[J].西北林学院学报,2007(2):87-90.
    [111]张健,张昊昱,李敬如,等.2008年电力线路工程造价变化情况分析[J].能源技术经济,2010(9):34-37.
    [112]韩彤,李正志,李梅玉,刘志刚,汪小志.云南电网防范自然灾害风险预警系统设计[J].工业安全与环保,2012(12):76-78.
    [113]王大志.佛山滑坡地质灾害及预测方法研究[D].广州:中山大学,2009.
    [114]张红兵.云南省地质灾害预报预警模型方法[J].中国地质灾害与防治学报,2006(01):76-79.
    [115]黄乐,舒双焰.南方电网2010年第一季度线路山火跳闸情况分析[J].广东电力,2011(3):47-50.
    [116]吴扬波,贾全,朱一凡.基于复合Agent的RPD决策模型[J].计算机工程,2010(11):60-62.
    [117]齐敏芳,付忠广,景源,基于信息熵与主成分分析的火电机组综合评价方法,中国电机工程学报2013(2):58-64.
    [118]国土资源部宣传教育中心.泥石流灾害防治.[EB/OL].[2004-04-14].http://www.mlrxj.net.cn/wenzhang.asp?id=1221.
    [119]唐正光.白龙运动场边坡稳定性及加固分析[D].昆明:昆明理工大学,2006.
    [120]邓钦.滑坡的防治理论与实践[J].灾害与防治工程,2006(6):37-41.
    [121]张立梅.不良山区地基处理技术研究[D].北京:北京林业大学,2006.
    [122]刘晓路;张平仓;师哲;胡波.滑坡、泥石流整体防御结构体系研究[J].长江科学院院报,2010(11):57-63.
    [123]张建华;尚敬福;赵炜炜;李胜.中国区域电网应急管理机制建设的建议[J].电力系统自动化,2009(2):33-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700