用户名: 密码: 验证码:
镁合金自孕育凝固过程及其半固态流变成形的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对节能减排及对产品性能要求日益提高,镁合金在以轻量化为发展方向的交通、电子等领域具有广阔应用前景。传统铸造得到的镁合金产品晶粒及析出相粗大且分布不均衡,使其力学性能和耐腐蚀性能不够理想,难以满足高性能结构件需求;压铸是镁合金零件主要成形工艺,但也存在气孔缺陷严重、难以热处理强化等问题。金属半固态成形技术采用了含有细小、球状初生固相的固液混合浆料,能有效改善产品微观组织并减少铸造缺陷,有望进一步解决限制镁合金应用的瓶颈问题。本文以镁合金凝固组织控制技术为基础,以实现半固态流变加工为主要目的,选择目前广泛使用的Mg-Al系合金为研究对象,开展了镁合金铸态组织细化、非枝晶固液混合浆料快速制备、流变压铸成形及后续热处理强化方面较系统的实验室基础研究,研究结果对进一步完善和创新镁合金细晶坯料制备技术、推动镁合金半固态流变成形进一步应用具有一定指导意义。主要研究内容和获得的成果如下:
     从金属凝固组织控制理论基本原理出发,结合现有金属晶粒细化技术的特点,发展了一种新型的凝固组织控制技术—自孕育铸造(Self-inoculation method, SIM),设计制造了SIM相关设备并进行了一系列熔铸实验。结果表明:相比常规凝固,SIM对AM60和AZ31合金晶粒大小及二次相形貌均有较好细化效果,铸件组织及成分均匀性得到改善;揭示了工艺参数对SIM铸造过程的影响规律和本质:熔体处理温度、孕育剂加入量和导流器倾斜角度共同影响合金熔体的激冷强度和导流器出口处的温度,只要上述参数匹配使熔体出口温度处于液相线附近,便可以极大促进晶粒增殖,获得较好晶粒细化效果。在此基础上提出了描述孕育剂熔化状态的数学模型,建立了SIM工艺参数和熔体出口温度之间的数学关系,为优化不同合金SIM工艺参数提供了基础;
     对SIM条件下镁合金半固态组织形成及演变过程研究认为,SIM促进了合金凝固初期的晶粒增殖,缓慢冷却时合金温度场较为均匀,所得半固态组织细小、圆整,因此高晶粒密度和均匀温度场是从液相中直接获得球晶组织的两个条件;研究了SIM参数对半固态组织中初生α-Mg形貌影响规律,发现三个主要参数影响规律基本一致,在保证浆料质量的前提下,都具有较宽的可操作范围,一定程度上提高了制浆的灵活性和可操作性;对非枝晶初生相形核和生长特点分析认为,孕育剂创造了熔体非均质形核所需的热力学和动力学条件,导流器使熔体整体过冷并产生激冷晶游离,两者结合促进了熔体“晶粒倍增”,晶粒生长时由于液体强迫对流使合金温度场均匀,减小了生长前沿实际过冷,避免了择优生长;浆料冷却和保温时初生相在界面曲率和表面张力作用分离并逐渐球化,高晶粒密度下晶粒浓度场叠加减小了成分过冷度,使固相在很大程度上保持稳定生长而不失稳,延长保温时间初生相在合并长大和Ostwald熟化机制下粗化长大。
     不同成形参数的流变压铸成形结果表明:半固态浆料液相的凝固行为可以分为二次α-Mg依附长大、独立形核长大及共晶反应三个阶段;增大压射速度使产品内α-Mg尺寸、形状系数下降,均匀性提高,降低浆料固相率或增大压射速度有利于减轻铸件表层液相偏析;浆料保存时间越长,产品固相率和初生相尺寸越大,同时圆整度提高,浆料保存温度越高,产品液相率越高,初生相颗粒尺寸和圆整度下降;气孔是流变压铸AM60产品的主要缺陷,降低压射速度和提高固相率有利于减少气孔缺陷,提高产品致密度;产品缺陷较少时,AM60合金断裂方式主要为沿二次凝固区β相的断裂分离,AZ31合金断裂分离既发生在初生相表面,也发生在初生相内部;缺陷较多时,两种合金裂纹均首先在气孔、缩松处产生,之后沿依附生长的二次α-Mg扩展。
     热处理结果表明,固溶处理时流变压铸AM60组织演变可分为两个阶段:β-Mg17A112相快速溶解及颗粒快速粗化阶段和颗粒正常长大阶段。第一阶段β相溶解使二次颗粒迅速长大,同时初生颗粒合并二次颗粒快速长大;第二阶颗粒以合并机制缓慢长大;过饱和AM60时效时以不连续析出胞形式析出β相,时效温度升高,相同时间内不连续析出胞数量增多,且在晶界处聚集粗化;AM60抗拉强度和延伸率随固溶时间延长先增大,后减小,400℃固溶16h时达到最大值237MPa和13.9%,但时效强化效果不明显;流变压铸AZ31具备一定可固溶强化性,固溶时力学性能峰值较AM60提前,400℃固溶1h时抗拉强度和延伸率达到最大值220MPa,14.7%。
Magnesium alloys present a great potential in automobile and electronic industries with the human's increasingly strict demand on energy conservation and emission reduction and the product quality. The grain in microstructure of Mg alloys under conventional solidification is coarse and the precipitated phase is nonuniform, thus the mechanical properties and corrosion resistance of Mg alloy cannot meet the requirement of structural components; die-casting is the main shaping technology for Mg products, but the castings always involve in voids and cannot be strengthened by heat treatment. Semisolid forming uses semisolid slurry contains fine and spherical solid grains, thus the bottleneck of widely application of Mg alloy is able to solve with the development of SSF. This research focuses on the microstructure control of Mg alloy and with the objective of realizing SSF of Mg alloy. The research content contains solidification microstructure refining, non-dendritic slurry preparation, rheo-diecasting and the heat treatment of semisolid die-castings. The results of this research have guiding significance on further improvement and innovation of Mg alloy refining technology, and promoting the further application of SSF in Mg production. The main results are as follows:
     A novel solidification controlling method called as self-inoculation method (SIM) is developed on the basis of microstructure control theory and the features of current refining technologies, the equipment of SIM was manufactured and a series of cast experiments were carried out. Results indicate that compared to conventional solidification, SIM has favorable refining effect on grain size and the morphology of secondary phase of both AM60and AZ31alloy, thus the microstructure and composition uniformity of alloy were enhanced. The essential effect of SIM parameters on solidification process was verified:the melt treatment temperature, addition amount of self-inoculants and slope angle of fluid director collectively effect on the melt temperature at the exit of fluid director, the fine refining effect can be achieved due to the grain breeding if the above parameters were better matched. The model which describes the melting conditions of self-inoculants and the mathematic relation between different parameters of SIM were developed, which proposes a rule for the further optimizing of SIM parameters for other alloys.
     The research on formation mechanism and evolution process of semisolid microstructure under SIM indicate that:SIM promotes the grain multiplication in initial solidification of alloy melt, the temperature guidance was uniform in the continuous cooling stage, and the resulted microstructure is fine and spherical, thus the high grain density and uniform temperature field are the basic conditions for directly formation of spherical microstructure from alloy melt; the result from slurry preparation experiments indicate that the main parameters of SIM have similar effect on morphology of primary a-Mg, there is a wide operable parameter range of SIM thus the flexibility and operability of slurry preparation were enhanced; the analysis of nucleation and growth feature of a-Mg considered that self-inoculants create the appropriate thermodynamics dynamics conditions for heterogeneous nucleation, and the fluid director promote undercooling of bulk melt and created the free crystals; the grain grow in a uniform temperature field due to the liquid convection, the actual undercooling in front of interface was weakened thus the preferred growth was suppressed. In continuous cooling and isothermal holding of slurry, the particle separation occurred under the function of interface curvature and surface tension, the undercooling was decreased because of concentration field overlying, mergence and Ostwald ripening is the main coarsening mechanism of primary during prolonged isothermal holding.
     Results of rheo-diecasting experiments indicate that:the solidification behavior of semisolid slurry can be divided into three stages:dependent growth of secondary a-Mg, independent nucleation of secondary a-Mg and the final eutectic reaction. The size and shape factor of a-Mg decreases with the increase of injection speed, and the liquid segregation at the edge of castings decreases with the reducing of slurry solid fraction and the increase of injection speed. The solid fraction and particle size increases with the prolonging holding time, and the particle size and roundness reduces with the increase of holding temperature. Voids is the main defect of AM60alloy produced by RDC, reducing injection speed and increasing solid fraction are helpful for improving the density of castings; the fracture occurred along the β phase in the secondary solidification area when the defects is less, and in this condition the fracture of AZ31occurred both in and on the surface of primary phase. When the defects are frequent, the crack generated in voids and then extended along the secondary a-Mg.
     Results of heat treatment indicate that, the microstructure evolution of AM60during solid solution can be divided into three stages:rapidly dissolution of β phase combined with rapidly a-Mg coarsening and the normal coarsening of a-Mg particles. In the first stage, the β phase dissolve in a-Mg rapidly results in a rapid coarsening of secondary a-Mg, and at the same time the primary a-Mg grow rapidly by combining secondary particles. In the secondary stage the a-Mg particles grow with a low rate under the combination mechanism. In ageing process, the β phase precipitates from a-Mg in the form of discontinuous precipitation cell, the amount of β phase increases with the increase of ageing temperature and the morphology presents a coarsening tendency. The tensile strength and elongation increase with the prolonging of solid solution and then decreased at the excessive treatment time, the peak value of237MPa and13.9%was achieved when solid solution treated operated at430℃with16hours. The ageing strength effect of AM60was not obvious. The rheo-diecasted AZ31alloy has certain solid solution strength ability, and the peak value of mechanical properties was obtained during a shorter solid solution time compared to AM60alloy, the peak value of220MPa and14.7%was obtained when the solid solution operated at400℃withlh.
引文
[1]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [2]吉泽升,李德锋,孙荣滨.镁合金压铸技术的发展现状[J].轻合金加工技术,2001,29(12):1-4.
    [3]汪之清.国外镁合金压铸技术的发展[J].铸造,1997,48-51.
    [4]张文毓.镁合金及其加工技术研究进展[J].稀有金属快报,2007,26-8.
    [5]于彦东,蒋海燕,曾小勤,等.AZ91D镁合金壳形件真空压铸充型和凝固过程的数模拟[J].铸造,2005,54(10):984-988.
    [6]孟若愚,张代东,原洪加,镁合金成型技术研究进展[J].热加工工艺,2008,37(7):89-92.
    [7]余琨,黎文献,王日初,马正青,变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277-288.
    [8]陈维平,詹美燕,陈宛德,张大童,李元元.变形镁合金的塑性加工技术研究及展望[J].特种铸造及有色合金,2007,27(1):40-43.
    [9]罗蓬,夏巨谌,胡侨丹,等.基于等径角挤压(ECAP)的超细晶铸造镁合金制备研究[J].稀有金属材料与工程,2005,34(9):1493-1496.
    [10]张士宏,王忠堂,等.镁合金的塑性加工技术[J].金属成形工艺,2002,(5):1-4.
    [11]陈振华,夏伟军,严红革,等.镁合金材料的塑性变形理论及其技术[J].化工进展,2004,23(2):1272135
    [12]Asta M, Beckermann C, Karma A, Kurz W. Solidification microstructures and solid-state parallels:Recent developments, future directions [J]. Acta Materialia,2009, 57:941-971
    [13]Flemings M C. Behavior of Metal Alloys in the Semi-solid State [J]. Metallurgical Transaction A.1991,22A (5):957-981.
    [14]罗守靖,田文彤,谢水生,毛卫民.半固态加工技术及应用[J].中国有色金属学报,2000,10(6):765-773.
    [15]胡红军,杨明波,彭东,王春欢.镁合金触变注射成形技术综述[J].铸造,2006,55(8):763-766.
    [16]Fan Z. Semisolid metal Processing [J]. Int Mater Reviews.2002,47(2):49-85.
    [17]Nussbaum A I. Semi-solid forming of aluminum and magnesium [J]. Light Metal Age. 1996,54(5-6):6.
    [18]张新,张奎,李兴刚,等.AZ91D镁合金半固态成形技术研究进展[J].铸造,2010,59(8):790-795.
    [19]郭洪民.半固态铝合金流变成形工艺与理论研究[博士论文][D].南昌,南昌大学,2007.
    [20]冯鹏发,唐靖林,李双寿,曾大本.熔体处理和双向电磁搅拌复合快速制浆技术[J].中国有色金属学报,2007,17(2):239-247.
    [21]Zhang L, Wu G H, Wang S H, Ding W J. Effect of cooling condition on microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process [J]. Trans. Nonferrous Met. Soc. China,2012,22(10):2357-2363.
    [22]毛卫民甄子胜陈洪涛.电磁搅拌对半固态AZ91D镁合金组织的影响[J].材料研究学报,2005,19(3):303-309.
    [23]郭洪民,杨湘杰.过冷熔体中球晶组织的形成规律[J].中国有色金属学报,2008,18(4):651-659.
    [24]赵占勇,管仁国,曹富荣等.工艺条件对Mg-3Sn-Mn合金连续流变成形组织的影响[J].材料研究学报,2010,24(5):513-519.
    [25]赵君文,吴树森,毛有武,安萍.超声振动对过共晶Al-Si合金半固态浆料凝固组织的影响[J].中国有色金属学报,2008,18(9):1628-1633.
    [26]朱光磊.AZ91D镁合金高剪切流变成形理论与工艺研究[博士论文][D].北京,北京有色金属研究总院,2010.
    [27]Flemings M C, R A Martinez. Principles of microstructure formation in semi-solid metal processing[J]. Solid state phenomena,2006,116-117:1-8.
    [28]Kirkwood. Semisolid metal processing[J]. Int. Mater. Rev,1994,39(5):173-189.
    [29]Vogel A, Cantor B. Stability of a spherical particle growing from a stirred melt [J]. Journal of Crystal Growth,1977,37(3):309-316.
    [30]Pilling J. Hellawell A. Mechanical deformation of dendrites by fluid flow. Metall.Mater. Trans.1996,27(A):229-232.
    [31]毛卫民.半固态金属成形技术[M].北京:机械工业出版社,2004.
    [32]管仁国,马伟民.金属半固态成形理论及技术[M].北京:冶金工业出版社2004.
    [33]Doherty R D, Lee H I, Feest E A. Microstructure of stir cast metals[J]. Materials Science and Engineer,1984,65:181-189.
    [34]DAS A, JI S, FAN Z. Morphological development of solidification structures under forced fluid flow:a monte -carlo simulation[J], Acta Materialia,2002,50:4571-4585.
    [35]Wu S S, Wu X P, Xiao Z H. A model of growth morphology for semisolid metals [J]. Acta Materialia,2004,52:3519-3524.
    [36]Li T, Lin X, Huang W D. Morphological evolution during solidification under stirring [J]. Acta Materialia,2006,54:4815-4824.
    [37]路贵民董杰崔建忠常宁威,7075A1合金液相线半连续铸造组织及形成机理[J].金属学报,2001,37(10):1045-1048.
    [38]Kaufinann H, Uggowitzer P J. Fundamentals of the new rheocasting process for magnesium alloys[J]. Advanced Engineering Materials,2001,3(12):963-967.
    [39]Kaufinann H, Uggowitzer P J. Evolution of globular microstructure in new rheocasting and super rheocasting semi-solid slurries[J]. Steel Research International,2004, 75(8/9):525-530
    [40]Martinez R A, Flemings M C. Evolution of Particle Morphology in Semisolid Processing [J]. Metallurgical and Materials Transactions A,2005,36A:2205-2210.
    [41]Wang W, Peng H, Wang K K. Assessment of porosity level in rheomoldcd parts. In;Kirkwood D H, Kapranos P. Proceedings of the 4th International Conference onSemi-Solid Processing of Alloys and Composites. England:University of Sheffield,1996.342-346.
    [42]Ji S, Fan Z, Bevis M. Semisolid Processing of engineering alloys by a twin-screw rheomoulding Proeess[J]. Materials Scienee and Engineering A,2001,299(1-2):210-217.
    [43]Wu S, Luo J, Mao Y, et al. Microstructure and property of AZ91D alloy produced by semi-solid rheo-diecasting. In:Tsutsui Y, Kiuchi M, Ichikawa. Proceedings of the 7th International Conference on Semi-Solid Processing of Alloys andComposites. Tsukuba: National Institute of Advanced Industrial Science andTechnology, Japan Society for Technolgy of Plasticity,2002.843-848.
    [44]康永林,毛卫民,胡壮麒.金属材科半周态加工理论与技术[M].北京:科学出版杜,2004.
    [45]管仁国.SCR技术制备A2017半固态合金及其成形的模拟与实验研究[博士论文][D].沈阳,东北大学,2003.
    [46]张颂阳.半固态镁合金铸轧成形技术[M].北京:冶金工业出版社,2008.
    [47]乐启炽,欧鹏,吴跃东等.AZ91D镁合金近液相线铸造研究[J].金属学报,2002,38(2):219-224.
    [48]MAO W M, CUI C L, ZHAO A M, YANG J L, ZHOGN X Y. Effect of pouring process on the microstructure of semi-solid AlSi7Mg alloy [J]. Journal of Materials Sciences and Technology,2001,17(6):615-619.
    [49]UBE Industries Ltd. Method and apparatus for shaping semisolid metals. Japan: European Patent, EPO745694A1.1996.
    [50]管仁国,李建平,陈礼清,王超.波浪形倾斜版振动过程中合金组织的形成机理[J].材料研究学报,2008,22(4):363-368.
    [51]郭洪民,杨湘杰,胡斌.转动输送管制浆工艺参数对A356合金半固态组织的影响[J].中国有色金属学报,2004,14(12):2049-2054.
    [52]陈正周,毛卫民,吴宗闯.多弯道蛇形管浇注法制备半固态A356铝合金浆料[J].中国有色金属学报,2011,21(1):95-101.
    [53]张小立,谢水生,李廷举,杨浩强,金俊泽.阻尼冷却管法制备A356铝合金半固态浆料的研究[J].稀有金属材料与工程,2007,36(5):915-919.
    [54]Shusen Wu, Lizhi Xie, Junwen Zhao, Nakae H. Formation of non-dendritic microstructure of semi-solid aluminum alloy under vibration[J]. Scripta Materialia, 2008,58:556-559.
    [55]Shulin Lv, Shusen Wu, Chong Lin, et al. Preparation and rheocasting of semisolid slurry of 5083 Al alloy with indirect ultrasonic vibration process [J]. Materials Science and Engineering A,2011; 528:8635-8640.
    [56]MARTINEZ R A. Formation and processing of rheocast microstructure [D]. Boston:Massachusetts Institute of Technology,2004:26-52.
    [57]Yucel B. Evolution of globular microstructures during processing of aluminium slurries[J]. Trans. Nonferrous Met. Soc. China,2013,23(1):1-6.
    [58]Wannasin J, Canyook R, Burapa R, Sikong L, Flemings M C. Evaluation of solid fraction in a rheocast aluminum die casting alloy by a rapid quenching method[J]. Scripta Materialia,2008,59:1091-1094.
    [59]彭建,余欢,王中国,潘复生.熔体过热处理对AZ31镁合金凝固组织的影响[J].中国有色金属学报,2011,21(7):1497-1503.
    [60]柳延辉,刘相法,李延斌等.Al-Ti-C中间合金对Mg-Al合金的晶粒细化作用[J].中国有色金属学报,2003,13(3):622-625.
    [61]LI Mingjun, TAMURA T, MIWA K. Controlling microstructures of AZ31 magnesium alloys by an electromagnetic vibration technique during solidification:From experimental obsvervation to theoretical understanding[J], Acta Materialia,2007, 55:4635-4643.
    [62]马玉涛,张兴国,郝海,王云波,金俊泽.CaC 2对电磁-悬浮铸造AZ61合金组织和力学性能的影响[J].中国有色金属学报,2009,19(3):445-451.
    [63]刘政,毛卫民,赵振铎.用新工艺制备半固态铝合金浆料[J].材料研究学报,2006,20(2):125-130.
    [64]Decker R C. Magnesium composites molded without melting[J]. Modern Metals,1990, 8:10-22.
    [65]Czerwinski F, Zielinska A, Pinet P J, et al. Correlating the microstructure and tensile properties of a thixomolded AZ91D Magnesium alloy[J]. Acta Mater,2001, 49:1225-1235.
    [66]崔晓鹏.AZ91D镁合金半固态触变注射组织与工艺研究[博士论文][D].长春,吉林大学,2006.
    [67]张友法.触变注射成形镁合金组织和性能研究及成形模拟[博士论文][D].长春,吉林大学,2008.
    [68]管仁国,邢振环,石路,王超等.波浪型倾斜板技术AlSi6Mg2合金触变成形[J].2007年中国压铸、挤压铸造、半固态加工学术年会专刊,346-348.
    [69]李元东.AZ91 D镁合金的触变成形工艺与热处理研究[博士论文][D].兰州,兰州理工大学,2005.
    [70]陈强AZ91D-Y半固态坯不同制备方法及对触变模锻影响研究[博士论文][D].哈尔滨,哈尔滨工业大学,2005.
    [71]Fan Z, Liu G. Solidification behaviour of AZ91D alloy under intensive forced convection in the RDC process[J]. Acta Materialia,2005,53:4345-4357.
    [72]Zhen Z, Qian Ma, Ji S, Fan Z. The effects of rheo-diecasting on the integrity and mechanical properties of Mg-6Al-1Zn[J]. Scripta Materialia,2006,54:207-211.
    [73]李东南,半固态镁合金材料及其制备技术的研究[博士论文][D].武汉,华中科技大学,2004.
    [74]张莹.半固态AZ91D镁合金流变铸轧成形技术研究[博士论文][D].南昌,南昌大学,2007.
    [75]JI S, QIAN MA, FAN Z. Semisolid Processing Characteristics of AM Series Mg Alloys by Rheo-Diecasting[J]. Metallurgical and Materials Transactions A,2006, 37A:779-787.
    [76]Pitsaris C, Abbott T, Davies C H. Savage J G Magnesium. In:K.U. Kainer (Ed.), Proceedings of the 6th International Conference on Magnesium Alloys and Their Applications, Wiley-VCH, Weinheim,2003,694.
    [77]Czerwinski F. Near-liquidus molding of Mg-Al and Mg-Al-Zn alloys[J]. Acta Mater. 2005,53 (7):1973-1984
    [78]Jiang J, Luo S. Research on thixoforging magnesium plate of AZ91D magnesium alloy in semi-solid state. Solid State Phenomena[J].2006,116-117:132-135.
    [79]Kleiner S, Beffort O, Wahlen A, Uggowitzer P J. Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg-Al alloys[J]. J. Light Metals.2000,2: 277-280.
    [80]Ji S, Fan Z, Liu G, Fang X, et al. Twin-screw rheomolding of AZ91D Mg-alloy. In:Y. Tsutsui, M. Kiuchi, K. Ichikawa. Proc.of the 7th Int. Conf. on Semi-Solid Processing of Alloys and Composites, Tsukuba, Japan, Sept 25th-27th,2002, National Institute of Advanced Industrial Science and Technology, Japan Society for Technology of Plasticity:683-688.
    [81]Fan Z. Development of the rheo-diecasting process for magnesium alloys[J]. Mater. Sci. Eng. A.2005,413-414:72-78.
    [82]Du X, Zhang E. Microstructure and mechanical behaviour of semi-solid die-casting AZ91D magnesium alloy[J]. Mater. Lett.2007,61(11-12):2333-2337.
    [83]有色合金及其热处理编写组.有色合金及其热处理[M].北京:国防工业出版社,1981.
    [84]唐钟雪.触变成形AZ91D镁合金的热处理研究[硕士论文][D].兰州,兰州理工大学,2005.
    [85]Liu Z, Wang Z, Wang Y, et al. Cyclic deformation behavior and fatigue crack propagation in AZ91HP and AM50HP[J]. Materials science and technology,2001, 17(3):264-268.
    [86]Duly D, Simon J P, Brechet Y. On the competion between continuous and discontinuous precipitation in binary Mg-Al alloys[J]. Acta Metallurgica et Materialia, 1995,43(1):101-106.
    [87]Wang Y, Liu G, Fan Z. Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment[J]. Acta Materialia,2006,54:689-69.
    [88]王业双,张咏波,王渠东,等Mg29Al合金铸造凝固模型[J].金属学报,2002,38(5):539-543.
    [89]Fan Z, Liu G, Hitchcock M. Solidification behaviour under intensive forced convection[J]. Mater. Sci. Eng. A.2005,413-414:229-235.
    [90]任政,张兴国,房灿峰,郝海.电磁-悬浮铸造对变形镁合金晶粒细化的影响[J].材料研究学报,2007,21(5):491-495.
    [91]ATSUMI O. Solidification:The separation theory and its practical applications[M]. Berlin:Springer-Verlag,1987.
    [92]Legoretta e C, Atkinson H V, Jones H. Cooling slope casting to obtain thixotropic feedstock:I observations with a transparent analogue [J]. Journal of Material Science,2008,43:5448-5455.
    [93]管仁国,康立文,杜海军,温景林,崔建忠.倾斜式冷却剪切技术制备Al-3%Mg半固态合金坯料[J].中国有色金属学报,2006,20(2):811-816.
    [94]Chen T.J, Jiang X.D., Ma Y, Li Y.D., Hao Y. Grain refinement of AZ91D magnesium alloy by SiC[J]. Journal of Alloys and Compounds,2010,496:218-225.
    [95]张俊善.材料强度学[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [96]王晓颖,介万奇,李言祥Al-5.8%Cu合金半固态浆料的控制熔化制备法[J].中国有色金属学报,2005,15(1):66-71.
    [97]LEE J I, LEE H I, KIM M I. Formation of spherical primary silicon crystals during semisolid processing of hypereutectic Al-15.5%Si alloy[J]. Script Metall,1995, 32(12):1945-1949.
    [98]PAN Q Y, FINDON M, APELIAN D. The continuous rheoconversion process (CRP): a Novel SSM approach[C]//The 8th International S2P Conference. Limassol, Cyprus: North American Die Casting Association,2004.
    [99]张小立,李廷举,谢水生,王同敏,曹志强,金俊泽.半固态加工制浆技术的研究进展[J].稀有金属材料与工程,2009,38(8):1495-1500.
    [100]Liu Y Q., Fan Z., Patel J. Thermodynamic approach to aluminium alloy design for semisolid metal processing[C]. Proceedings of the 7th S2P Advanced Semi-Solid Processing of Alloys and Composities. Tsukuba, Japan:National Institute of Advanced Industrial Science and Technology,2002:599-604.
    [101]Liu D., Atkinson H. V., Jones H. Thermodynamic prediction of thixoformability in alloys based on the Al-Si-Cu and Al-Si-Cu-Mg systems[J]. Acta Materialia.2005, 53(14):3807-3819.
    [102]LI Yuan-dong, D. APELIAN, XING Bo, MA Ying, HAO Yuan, Commercial AM60 alloy for semisolid processing:Alloy optimization and thermodynamic analysis[J]. TransNonferrous Met. Soc. China,2010,20(9):1572-1578.
    [103]陈平昌,朱六妹,李赞.材料成形原理[M].北京:机械工业出版杜,2006.
    [104]樊刚.低过热度浇注弱电磁搅拌制备半固态Al-30Si浆料的工艺与理论研究[D].昆明,昆明理工大学,2007.
    [105]Shahrooz N, Ghomashchi R. Grain refining of conventional and semi-solid A356 Al-Si alloy[J]. Journal of Materials Processing Technology 2006,174:371-383.
    [106]Ji S, Roberts K, Fan Z. Isothermal coarsening of fine and spherical particles in semisolid slurry of Mg-9Al-1Zn alloy under low shear[J]. Scripta materialia,2006, 55:971-974.
    [107]李涛.半固态显微组织形成演化与流变性的实时观察研究[博士论文][D].西安,西北工业大学,2003.
    [108]Mohanty P S, Gruzleski J E. Grain refinement mechanisms of hypoeutectic al-si alloys [J]. Acta Mater.1996,44(9):3749-3760.
    [109]Soon K, Seon J K. Simple preparation of AZ91 magnesium alloy slurries for rheoforming[J]. Journal of materials science letters,2003,22:199-200.
    [110]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000.
    [111]Turbul D. Formation of crystal nuclei in liquid metals[J]. Journal of Applied Physics, 1950,21(10):1022-1028.
    [112]王金华.悬浮铸造[M].北京:国防工业出版社,1982.
    [113]边秀房,邹新国,刘广荣,刘相法,马家骥.金属晶粒自身细化[J].金属学报,1997,33(6):602-608.
    [114]张军,何良菊,李培杰,Kandalova E G.炉料微观组织对AZ91 D镁合金重熔行为的影响[J].中国有色金属学报,2006,16(3):428-435.
    [115]赵宇,周宏,陈莉.添加回炉料后AZ91 D镁合金遗传性研究[J].2007,56(3):297-302.
    [116]徐达鸣,李庆春,陈洪升,利用重熔控制技术细化铸件晶粒组织,铸造,1996,45(2):27-31.
    [117]Lee S Y, Lee S M, Hong C P. Numerical modeling of deflected columnar dendritic grains solidified in a flowing melt and its experimental verification [J]. ISIJ International,2000,40(1):48-57.
    [118]Pilling J, Helawel A. Mechanical deformation of dendrites by fluid flow. Metal. Mater.Trans[J].1996,27A(1):229-232.
    [119]邢书明,陈维视,马静等.搅拌条件下晶体游离模型探讨[J].河北科技大学学报,1999,50(3):41-05.
    [120]Qian M. Creation of semisolid slurries containing fine and spherical particles by grain refinement based on the Mullins-Sekerka stability criterion [J]. Acta Materialia,2006, 54:2241-225.
    [121]王补宣.工程传热传质学(上册)[M].北京:科学出版社,1982.
    [122]谢丰广.半固态合金的VWSP制备方法及其触变成形[博士论文][D].沈阳,东北大学,2009.
    [123]CANTOR B, VOGEL A. Dendritic solidification and fluid flow[J], Journal of Crystal Growth,1977,41(1):109-123.
    [124]乐启炽,张新建,崔建忠,路贵民,欧鹏.镁合金近液相线铸造半固态坯料的部分重熔[J].金属学报,2002,38(12):1266-1272.
    [125]Mulins W W, Sekerka R F. Morphological Stability of a Particle Growing by diffusion or heat flow[J]. J. Appl. Phys,1963,34(2):323-329.
    [126]程丽任.铸造态、挤压态、半固态Mg-Li-Al系合金组织和力学性能研究[D].长春,吉林大学,2011.
    [127]VOORHEES P W, HARDY S C. Ostwald ripening in a system with a high volume fraction of coarsening phase [J]. Metallurgical Transactions A,1988,19(11): 2713-2721.
    [128]ATKINSON H V, LIU D. Microstructural coarsening of semi-solid aluminium alloys [J]. Materials Science and Engineering A,2008,496(1/2):439-446.
    [129]传海军,黄晓锋,毛祖莉.压铸技术在镁合金中的应用和发展[J].铸造技术,2007,28(8):1067-1070.
    [130]Zhen Z, Qian M, Ji S, Fan Z. The effects of rheo-diecasting on the integrity and mechanical properties of Mg-6Al-1Zn[J]. Scripta Materialia,2006,54:207-211.
    [131]Li D N, Luo J R, Wu S S, et al. Study on semi-solid rheocasting forming for magnesium alloy by mechanical stirring [J]. Journal of Materials Processing Technology,2002,129:431-434.
    [132]吴树森,李东南,毛有武等.半固态流变压铸AZ91D镁合金的组织与性能[J].铸造,2002,51(10):583-587.
    [133]Govender G, Moller H. Evaluation of surface chemical segregation of semi-solid metal cast aluminium alloy A356[J]. Solid State Phenomena,2008,141-143:433-438.
    [134]Moller H, Curie U A, Masuku E P. Characterization of surface liquid segregation inSSM-HPDC aluminium alloys 7075,2024,6082 and A201. Proceedings of the 11th International Conference on Semi-solid Processing of Alloys and Composites, China, 2010.
    [135]Kang C G and Lee S M. The effect of forging pressure on liquid segregation during direct rheoforging process of wrought aluminium alloys fabricated by electromagnetic stirring. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2008,222(12):1673-1684.
    [136]肖泽辉.镁合金半固态流变压铸成形技术的研究[博士论文][D].武汉,华中科技大学,2005.
    [137]李元东,陈体军,马颖,阎峰云,郝远.成形参数对AZ91D镁合金触变成形性与缺陷形成的影响[J].热加工工艺,2006,35(17):1-4.
    [138]Moradi M, Ahmadabadi N, Heidarian B. et al. Defect control and mechanical properties of thixoformed Al-Si alloy [J]. Journal of alloys and compounds,2009, 487:768-775.
    [139]Chen T J, Hao Y, Sun J, Li Y D. Effects of processing parameters on tensile properties and hardness of thixoformed ZA27 alloy [J]. Materials Science and Engineering A, 2004,382:90-103.
    [140]Cao H, Wessen M, Granath O. Effect of injection velocity on porosity formation in rheocast Al component using rheometal process[J]. International journal of cast metal research,2010,23(3):158-163.
    [141]Ghosh D, Kang K, Bach C,et al. Development of ductile thixomolded magnesium alloys, Proe.34th Ann. Cong of Metallurgists"Recent metallurgieal advances in light metals industries", Canada,1995,473-479.
    [142]Zhang Y F, Liu Y B, Cao Z Y, et al. Mechanical Properties of thixomolded AZ91D magnesium alloy[J]. Journal of materials processing technology,2009, 209:1375-1384.
    [143]Zhang S M, Fan Z, Zhen Z. Direct chill rheocasting (DCRC) of AZ31 Mg alloy[J]. Materials science and technology,2006,22(12):1489-1497.
    [144]Guan R G, Chen L Q, Cao F R, et al. Semisolid die forging process, microstructures and properties of AZ21 magnesium alloy mobile telephone shells[J]. International journal of minerals, metallurgy and materials,2011,18(6):665-670.
    [145]有色合金及其热处理编写组.有色合金及其热处理[M].北京:国防工业出版社,1981.
    [146]彭立明,曾小勤,朱燕萍,等.固溶处理对AM60+XRE及AZ91D+XRE镁合金性能的影响[J].材料研究学报,2003,17(1):97-106.
    [147]于海朋,王锋,于宝义,等.工艺参数和热处理对压铸AZ91D力学性能的影响[J].特种铸造及有色合金,2002,(2):27-28.
    [148]陈振华.镁合金[M].北京:化学工业出版社,2004.
    [149]曹幸,彭立明,曾小勤,朱燕萍,丁文江.稀土及固溶处理对AM60B合金组织和力学性能的影响[J].机械工程材料,2003,27(2):21-24.
    [150]中国机械工程学会铸造专业学会编,铸造手册(铸造非铁合金)[M].北京:机械工业出版社,1999.
    [151]李元东,唐钟雪,郝远,等.触变成形AZ91D镁合金的固溶和时效热处理研究[J].兰州理工大学学报,2005,31(005):15-18.
    [152]张友法,刘勇兵,曹占义,等.触变注射成形AZ91D的固溶和时效热处理[J].特种铸造及有色合金,2009,(007):601-604.
    [153]韩秋华.AZ91D热处理中β相的析出特征对合金组织及力学性能的影响[硕士论文][D].兰州,兰州理工大学,2005.
    [154]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005.
    [155]Duly D, Brechet Y. Nucleation mechanism of discontinuous precipitation in Mg-Al alloys and relation with the morphology[J]. Acta Metallurgica Et Materialia,1994, 42(9):3035-3043.
    [156]Duly D, Simon J, Brechet Y. On the competition between continuous and discontinuous precipitations in binary Mg-Al alloys [J]. Acta metallurgica et materialia,1995,43(1):101-106.
    [157]袁广银,孙扬善,曾小勤,等.Bi对AZ91镁合金时效析出动力学过程的影响[J].上海交通大学学报,2001,35(3):4512456.
    [158]张津,章宗和.镁合金及其应用[M].北京:化学工业出版社,2004.
    [159]陈振华,严红革,陈吉华,等.镁合金[M].北京:化学工业出版社,2004.
    [160]彭立明,曾小勤,朱燕萍,丁文江.固溶处理对AM60B+xRE及AZ91 D +xRE镁合金性能的影响[J].材料研究学报,2003,17(1):97-106.
    [161]张金玲,王国军,刘璐,王社斌,许并社.T4与T6热处理对AM60-0.3Nd镁合金组织和力学性能的影响[J].材料研究学报,2011,32(5):117-120.
    [162]任政.变形镁合金强韧化与电磁—悬浮连铸技术的研究[博士论文][D].大连,大连理工大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700