用户名: 密码: 验证码:
自由表面旋涡的识别方法及连铸下渣水模实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章:简述自由表面旋涡识别对于水利建筑安全、工业生产质效提高具有重要影响。针对目前旋涡识别技术在复杂性及应用性方面存在的问题,提出了一种自由表面旋涡的图像识别方法,对图像识别的旋涡的机理、关键技术及其在连铸下渣检测中的应用进行了深入研究。
     第二章:确定了自由表面旋涡识别方法的整体方案设计。搭建了自由表面旋涡识别实验平台,为旋涡形成的机理、流体动力学特性及旋涡的流体形态信息采集、结构识别等研究工作提供物质条件。
     第三章:基于伯格斯旋涡理论模型分析了自由表面旋涡的物理特性、运动规律、旋涡结构。流体空间特征信息在二维平面图像中的表征。提出了一种旋涡的定义及描述方式,为旋涡的图像识别提供依据。
     第四章:研究了分析自由表面旋涡的二维图像特征,实现旋涡图像的预处理、特征识别、特征分析及旋涡识别。通过实验结果,分析了该自由表面旋涡识别方法的稳定、有效及局限性。
     第五章:提出了一种将自由表面旋涡识别方法应用于钢水连铸过程中的下渣检测方案。将自由表面旋涡识别方法应用于钢水连铸过程中转炉及大包中液面旋涡的识别及其特征参量提取。设计了基于人工神经网络的下渣检测分类器,通过旋涡特征参量来分析判断下渣状态实现正确分类完成下渣检测。根据流体相似性原理搭建了大包出钢水模实验硬件平台,结合Visual C++的集成开发环境与基于COM的流媒体处理开发包完成了下渣检测应用软件平台。水模实验及现场结果均表明,自由表面旋涡识别方法及其在连铸下渣检测中的应用均具有可行性和有效性。
     第六章:总结了本文的研究工作创新点及成果,对尚未解决的技术问题进行阐述,并展望以后的研究工作内容。
Chapter one:Free-surface vortex recognition have important implications for water conservancy construction safety, industrial production quality and efficiency. Vortex iden-tification technique is hard to achieve and put into application because of complexity. So a free-surface vortex image recognition method was proposed, and the vortex recognition mechanism, key technology and its application in the continuous casting slag detection were in-depth investigated.
     Chapter two:The program of the free-surface vortex identification method and struc-tures of identification experiment platform, the mechanism of vortex formation was full-filled. It's provided us a good research conditions to collect vortex fluid information for identification.
     Chapter three:Using burgers vortex-based theoretical model to analyze free-surface vortex,we got the physical characteristics, the law of motion and the structure of vortex and find out mapping relationship between two-dimensional image information and fluid information in space. Also we proposed a definition of a vortex and how to describe it which provided the basis for image recognition of the vortex.
     Chapter four:Analysizing free-surface vortex features in two-dimensional image, we realized the vortex image preprocessing,, feature analysis and feature recognition of the vortex. The experimental results showed that the free surface vortex pattern recognition method was stable and effective.
     Chapter five:To present a free-surface vortex identification method which was applied to the solution of ladle slag detection. Slag detection system that based on the free-surface vortex identification was designed. Free-surface vortex identification method was applied to the vortex detection and its characteristic parameters extraction in continuous casting process.Design a vortex characteristics classifier based on the artificial neural network, which could correctly classify vortex state to fulfiil slag detection. According to the fluid similarity theory, we built a ladle taping model experiment platform, and achieved slag de-tection application software platform with Visual C++integrated development environment and COM-based streaming media processing package.The experimental results showed that the free surface vortex identification method and its application was feasible and effective.
     Chapter six:Summarizing innovations and achievements of research, we described unresolved technical problems and looked forward to future research.
引文
[1]PARKER S P. McGraw-Hill Dictionary of Scientific and Technical Terms[M].5th ed. NewYork, USA:McGraw-Hill Companies, Inc.,2003.
    [2]童秉纲,张炳暄,崔尔杰.非定常流与涡运动[M].北京:国防工业出版社,1993.
    [3]ODGAARD A J. Free-surface air core vortex[J]. Journal of Hydraulic Engineering, 1986,112(7):449-451.
    [4]JAIN S C. Free-surface swirling flows in vertical dropshaft[J]. Journal of Hy-draulic Engineering,1987,65(1):8-14.
    [5]BRIGHTON J A, HUGHES W T. Schaum's outline of theory and problems of fluid dynamics[M].3rd ed. NewYork, USA:McGraw-Hill Companies, Inc.,1999.
    [6]KNAUSS J. Swirl Flow Problems at Intakes[M]. Netherlands:A.A. Balkema,1987.
    [7]HECKER E G. Model-prototype comparision of free surface vortices[J]. Journal of the Hydraulics Division,1981,107(10):1243-1259.
    [8]YOKOYA S, JONSSON P G, SASAKI K, et al. The effect of swirl flow in an immersion nozzle on the heat and fluid flow in a billet continuous casting mold[J]. Scandinavian Journal of Metallurgy,2004,33(1):22-28.
    [9]LI P Y, LIU G, TAN D P, et al. The research of slag-detecting vibration method based on hmm in continuous casting[C]//Proceedings of ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. Long Beach, CA,:ASME,2005:229-234.
    [10]HASSALL G J, BAIN K G, YOUNG R W, et al. The effect of swirl flow in an immersion nozzle on the heat and fluid flow in a billet continuous casting mold[J]. Ironmaking & Steelmaking,1998,25(4):273-278.
    [11]BROOKS G. Ladle eye detection using multivariate image analysis[J]. Iron & Steelmaker,2003,30(10):17--21.
    [12]SOLORIO-DIAZ G, RAMOS-BANDERAS A, BARRETO J J, et al. Fluid dynamics of vortex formation in tundish operations:physical modeling[J]. Steel Research International,2007,78(3):248--253.
    [13]KORIA S C, KANTH U. Model studies of slag carry-over during drainage of met-allurgical vessels [J]. Steel Research,1994,113(10):1277-1290.
    [14]GHOSHS,MAJUMDARAPMM,S.,ET AL. Development and implementation of bof slag splashing at rourkela steel plant[C]//Steelmaking Conference Proceedings, vol 85. Nashville, USA:Iron and Steel Society,2002:603-608.
    [15]TOSSAVAINEN F Y Q, M.AND ENGSTROM, ET AL. Characteristics of steel slag under different cooling conditions[J]. Waste Management,2007,27(10):1335-1344.
    [16]POSEY C J, HSU H. How the vortex affects orifice discharge[J]. Engineering News Record,1950,114(9):30-32.
    [17]ACHESON D J. Elementary Fluid Dynamics[M]. Oxford, UK:Oxford University Press,1990.
    [18]GORSHKOV K A, OSTROVSKY L A, SOUSTOVA I A. Perturbation theory for rankine vortices[J]. Journal of Fluid Mechanics,2000,404(1):1-25.
    [19]SAFFMAN P G. Vortex Dynamics[M]. Cambridge, England:Cambridge University Press,1995.
    [20]DEVENPORT W, RIFE M, LIAPIS S, et al. The structure and development of a wing-tip vortex[J]. Journal of Fluid Mechanics,1996,312(1):67-106.
    [21]TAYLOR G. Stability of a viscous liquid contained between two rotating cylin-ders[J]. Phil. Trans. Royal Society,1923, A223:289-343.
    [22]WEISBERG A Y, KEVREKIDIS I G, SMITS A J. Delaying transition in taylor couette flow with axial motion of the inner cylinder[J]. Journal of Fluid Mechanics, 1997,348(1):141-151.
    [23]MARCU E, B.AND MEIBURG, NEWTON P K. Dynamics of heavy particles in a burgers vortex[J]. Phys. Fluids,1995,7(1):400-410.
    [24]BAJER K, K. M H. Theory of non-axisymmetric burgers vortex with arbitrary reynolds number[C]//IUTAM Symposium on Dynamics of Slender Vortice. Dor-drecht, Netherlands:Kluwer Acadamic,1997:193-202.
    [25]LESLIE F W, SNOW J T. Sullivan's two-celled vortex[J]. AIAA Journal,1980, 18(1):1272-1274.
    [26]PERRY A E, CHONG M S. Topology of flow patterns in vortex motions and turbu-lence[J]. Applied scientific reserch,1994,53(3-4):357-374.
    [27]岳湘安.液-固两相流基础[M].北京:石油工业出版社,1996.
    [28]倪晋仁,王光谦,张红武.固液两相流基本理论及其最新应用[M].北京:科学出版社,1991.
    [29]COLES D. The law of the wake in the turbulent boundary layer[J]. Journal of Fluid Mechanics,1956,1(1):191-226.
    [30]COLES D. Velocity profiles with suspended sediment[J]. Journal of Hydraulic Research,1981,19(3):211-229.
    [31]BOUSSINESQ J. Theorie de l'intumescence liquide, applelee onde solitaire ou de translation, se propageant dans un canal rectangulaire[J]. Comptes Rendus de l'Academie des Sciences,1871,72(1):755-759.
    [32]PRANDTL L. Essentials of Fluid Dynamics[M]. New York, USA:Hafner Publica-tions,1952.
    [33]VON KARMAN T. Mechanische Ahnlichkeit und turbulenz[J]. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen,1930,5(1):58-76.
    [34]Y. N, M. T. An improved k-s model for boundary layer flows[J]. Journal of fluids engineering,1990,112(1):33-39.
    [35]OGAWA S, UMEMURA A, OSHIMA N. On the equations of fully fluidized gran-ular materials[J]. Zeitschrift fur Angewandte Mathematik und Physik,1980,31(4): 483-493.
    [36]SHEN H. Constitutive relationships for fluid-solid mixtures[J]. Journal of the Engi-neering Mechanics Division,1982,108(5):748-763.
    [37]JENKINS J T, SAVAGE S B. Theory for the rapid flow of identical,smooth,nearly elastic,spherical particles[J]. Journal of Fluid Mechanics,1983,130(1):187-202.
    [38]LUN C K K, SAVAGE S B, JEFFREY D J, et al. Kinetic theories for granular flow:inelastic particles in couette flow and slightly inelastic particles in a general flowfield[J]. Journal of Fluid Mechanics,1984,140(1):223-256.
    [39]JOHNSON P C, JACKSON R. Frictional-collisional constitutive relations for gran-ular materials, with application to plane shearing[J]. Journal of Fluid Mechanics, 1987,176(1):67-93.
    [40]FARRELL M, LUN S B, C. K. K.AND SAVAGE. A simple kinetic theory for granular flow of binary mixtures of smooth, inelastic, spherical particles[J]. Acta Mechanica,1987,63(1-4):45-60.
    [41]JENKINS J T, MANCINI F. Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic, circular disks[J]. Journal of Applied Mechanics,1987,54(1):27-35.
    [42]LEWELLEN W S. A solution for three-dimensional vortex flows with strong circu-lation[J]. Journal of Fluid Mechanics,1962,14(1):420-432.
    [43]杨文熊.汇流旋涡发生的基本理论[J].上海交通大学学报,1979,13(1):40--52.
    [44]杨文熊.发生汇流旋涡的实验研究[J].力学与实践,1979,13(1):50--51.
    [45]ANWAR H O. Flow in a free vortex[J]. Water Power,1965,4(1):153-161.
    [46]ANWAR H O, WELLER J A. Amphlett mb. similarity of free-vortex at horizontal intakes[J]. Journal of Hydraulic Research,1978,16(2):95-105.
    [47]ODGAARD A. Free-surface air core vortex[J]. Journal of hydraulic Engineering, 1986,112(7):610-620.
    [48]ODGAARD A. Discussion of " free-surface air core vortex " [J]. Journal of hydraulic Engineering,1988,114(4):449-452.
    [49]LUNDGREN T S. The vortical flow above the drain-hole in a rotating vessel[J]. Journal of Fluid Mechanics,1985,155(1):381-412.
    [50]MORY M, YURCHENKO N. Vortex generation by suction in a rotating tank[J]. European Journal of Mechanics B-Fluids,1993,12(6):729-747.
    [51]ANDERSEN A, BOHR T, STENUM B, et al. Anatomy of a bathtub vortex[J]. Physical Review Letters,2003,91(10):104502-1-104502-4.
    [52]GRANGER R. Steady three-dimensional vortex flow[J]. Journal of Fluid Mechan-ics,1966,25(1):557-576.
    [53]ROSENHEAD, L. The spread of vorticity in the wake behind a cylinder[C]//Pro-ceeding of the royal society A. Mathematical Physical & Engineering Sciences 1930: 590--612.
    [54]MIH W. Discussion of "analysis of fine particle concentrations in a combined vor-tex"[J]. Journal of the Hydraulics Division,1990,28(3):392-395.
    [55]HITE JR J E, MIH W. Velocity of air-core vortices at hydraulic intakes[J]. Journal of Hydraulic Engineering,1994,120(3):284-297.
    [56]JAIN A K, RANGA RAJU K G, GARDE R J. Air entrainment in radial flow towards intakes[J]. Journal of the Hydraulics Division,1978,104(9):1323-1329.
    [57]JAIN A K, RANGA RAJU K G, GARDE R J. Vortex formation at vertical pipe intakes[J]. Journal of the Hydraulics Division,1978,104(10):1429--1445.
    [58]GORDON J. Vortices at vertical intakes [J]. Water Power,1970,4(1):137--138.
    [59]REDDY Y, PICKFORD J. Vortices at intakes in conventional sumps[J]. Water Power,1972,3(1):108--109.
    [60]HECKER G E. Model-prototype comparison of free surface vertices [J]. Journal of the Hydraulics Division,1981,107(10):1243--1259.
    [61]NEVZAT Y, FIKRET K. Critical submergence for intakes in open channel flow[J]. Journal of Hydraulic Engineering,1995,121(12):900-905.
    [62]VANONI V A. Measurements of critical shear stress for entraining fine sediments in a boundary layer[D]. PhD thesis. California, USA:California Institute of Tech-nology,1961.
    [63]VANONI V A. Factors determining bed forms of alluvial streams[J]. Journal of the Hydraulics Division,1974,100(3):363-377.
    [64]EINSTEIN H A, CHIEN N. Effects of heavy sediment concentration near the bed on the velocity and sediment distribution[J]. University of California, Institute of Engineering Research,1955,33(2):1--78.
    [65]ELATA C. The Dynamics of Open Channel Flow with Suspensions of Neutrally Buoyant Particles[D]. PhD thesis. Boston, USA:Massachusetts Institute of Tech-nology,1961.
    [66]MUNSON B R, YOUNG D F, OKIISHI T H, et al. Fundamentals of Fluid Mechan-ics[M]. New Jersey, USA:John Wiley & Sons,2001.
    [67]LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289.
    [68]WILCOX D C. Turbulence Modeling for CFD[M].3rd ed. Philadelphia, USA: DCW Industries, Inc.,2006.
    [69]HARLOW F H, WELCH J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface[J]. Physics of Fluids,1974,8(1): 2182-2189.
    [70]VAN DER GIESSEN E, AREF H. Advances in Applied Mechanics[M]. Waltham, Massachusetts, USA:Academic Press,2003.
    [71]HIRT C W, NICHOLS B D. Volume of fluid (vof) method for the dynamics of free boundaries[J]. Journal of Computational Physics,1981,39(1):201--225.
    [72]NOH W F, WOODWARD P. Slic (simple line interface calculation). in proceedings of 5th international conference of fluid dynamics[J]. Lecture Notes in Physics,1976, 59(1):330-340.
    [73]GUEYFFIER D, LI J, NADIM A, et al. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows[J]. Journal of Compu-tational Physics,1999,152(2):423-456.
    [74]SETHIAN J A. Level Set Methods and Fast Marching Methods:Evolving Inter-faces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science[M]. Cambridge, England:Cambridge University Press,1999.
    [75]OSHER S J, FEDKIW R P. Level Set Methods and Dynamic Implicit Surfaces[M]. New York, USA:Springer-Verlag,2002.
    [76]ENRIGHT D, FEDKIW R P. A hybrid particle level set method for improved inter-face capturing[J]. Journal of Computational Physics,2002,183(1):83--116.
    [77]赵永志,顾兆林,郁永章,等.盆池涡涡动过程数值研究[J].水利学报,2002,12(1):1--6.
    [78]赵永志,顾兆林,郁永章,等.自由水涡结构及运动特征的数值研究[J].西安交通大学学报,2003,37(1):85--88.
    [79]SPALDING D B. Numerical computation of multi-phase fluid flow and heat trans-fer[J]. Recent advances in numerical methods in fluids,1980,1(1):139--167.
    [80]王长安.密相液固两相三维湍流流动的研究及其在泵叶轮内流场计算与分析中的应用[D].博士学位论文.西安:西安交通大学能源与动力工程学院,1996.
    [81]魏进家,姜培正,胡春波,等.密相液固两相湍流流动研究[J].应用力学学报,1997,4(1).
    [82]魏进家.密相液固两相湍流KET模型和数值计算及离心泵叶轮内两相流场实验研究[D].博士学位论文.西安:西安交通大学能源与动力工程学院,1998.
    [83]COAKLEY T J, CHAMPNEY J M. Numerical simulation of compressible, turbu-lent, two-phase flow[C]//AIAA, Fluid Dynamics and Plasmadynamics and Lasers Conference. New York, USA:American Institute of Aeronautics and Astronautics, 1985:16-18.
    [84]HWANG C J, CHANG G C. Numerical study of gas-particle flow in a solid rocket nozzle[C]//AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference. American Institute of Aeronautics and Astronautics 1987:16-18.
    [85]傅德薰,马延文,李新亮.可压缩湍流直接数值模拟[M].北京:科学出版社,2010.
    [86]吴文权.旋涡的场特征与物质性—离散涡方法基础[J].工程热物理学报,1996,3(1):335--340.
    [87]吴文权,黄远东.液固两相流中流体旋涡对固体粒子运动影响的数值研究[J].工程热物理学报,1999,3(1):365--369.
    [88]黄社华,李炜,程良骏.旋涡二次流中稀疏颗粒的运动特性研究[J].动力工程,1999,19(2):65--82.
    [89]CAMPBELL C S, BRENNEN C E. Computer simulation of chute flows of granular materials[C]//Deformation and Failure of Granular Materials. Lisse, Netherlands: A.A.Balkema Publishers,1982:515-521.
    [90]CAMPBELL C S, BRENNEN C E. Computer simulation of shear flows of granular material[C]//JENKINS J T, SATAKE M. Mechanics of granular materials:new models and constitutive relations. Amsterdam, Netherlands:Elsevier,1983:313-326.
    [91]CAMPBELL C S, GONG A. Effects of heavy sediment concentration near the bed on the velocity and sediment distribution[J]. Journal of Fluid Mechanics,1986,164(1): 107-125.
    [92]CAMPBELL C S, BRENNEN C E. Particle-dynamics calculations of shear flow[C]//JENKINS J T, SATAKE M. Mechanics of granular materials:new models and constitutive relations. Amsterdam, Netherlands:Elsevier,1983:327-338.
    [93]CAMPBELL C S. Discrete particle computer methods for modeling granular flow[C]//Advancements in aerodynamics, fluid mechanics and hydraulics. USA: ASCE,1986:265-273.
    [94]CAMPBELL C S,BRAUNRL. Viscosity, granular-temperature, and stress calcu-lations for shearing assemblies of inelastic, frictional disks [J]. Journal of Rheology, 1986,30(1):949-980.
    [95]CAMPBELL C S, BRAUN R L. Stress calculations for assemblies of inelastic speres in uniform shear[J]. Acta Mechanica,1986,63(1-4):73-86.
    [96]LUGT H J. Vortex Flow in Nature and Technology[M]. New Jersey, USA:John Wiley & Sons,1972.
    [97]SAFFMAN P G. Vortex Dynamics,Cambridge Monograph on Mechanics and Ap-plied Mathematics[M]. Cambridge, England:Cambridge University,1992.
    [98]ROBINSON S K. Automatic extraction of vortex core lines and other line-type features for scientific visualization[J]. Annual Review of Fluid Mechanics,1991, 23(1):601-639.
    [99]ROTH M. An exact criterion for the stirring properties of nearly two-dimensional turbulence[D]. PhD thesis. Switzerland:Swiss Federal Institute of Technology Zurich,2000.
    [100]HUNT J C R. Vorticity and vortex dynamics in complex turbulent flows[J]. Canadian Society for Mechanical Engineering,1987, 11(1):21-35.
    [101]HUA B K P. An exact criterion for the stirring properties of nearly two-dimensional turbulence[J]. Physica D,1998,113(1):98--110.
    [102]JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Me-chanics,1995,285(1):69-94.
    [103]CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow field[J]. Physics of Fluids A,1990,2(1):765-777.
    [104]PORTELA L. On the Identification and Classification of Vortices[D]. PhD thesis. Stanford, USA:School of Mechanical Engineering, Stanford University,1997.
    [105]LEVY Y, DEGANI D, SEGINER A. Graphical visualization of vortical flows by means of helicity[J]. AIAA Journal,1990,28(8):1347-1352.
    [106]BERDAHL C H, THOMPSON D S. Eduction of swirling structure using the velocity gradient tensor[J]. AIAA Journal,1993,31(1):97--103.
    [107]SADARJOENI A, POST F H. Geometric methods for vortex extraction[C]//IEEE TVCG Symposium on Visualization. Amsterdam, Netherlands:Springer-Verlag, 1999:59--62.
    [108]SADARJOEN I A, POST F H. Detection, quantification, and tracking of vortices using streamline geometry[J]. Compters & Graphics,2000,24(3):333-341.
    [109]SADARJOEN I A. Extraction and Visualization of Geometries from Fluid Flow Fields[D]. PhD thesis. Netherlands:Delft University of Technology,1999.
    [110]NOVIKOV A E. Vortex-sink dynamics[J]. Physical Review E,1996,54(4):3681.
    [111]KWON Y J, ZHANG J, LEE H G. Water model and cfd studies of bubble dispersion and inclusions removal in continuous casting mold of steel[J]. ISIJ International, 2006,46(2):257-266.
    [112]SHAPIRO A H. Bath-tub vortex[J]. Nature,1962,196(1):1080--1081.
    [113]TREFETHEN L M, BILGER R W, FINK P T. The bath-tub vortex in the southern hemisphere[J]. Nature,1965,207(1):1084-1085.
    [114]TYVAND P A, HAUGENA K B. An impulsive bathtub vortex[J]. Physics of Fluids, 2005,17(6):062105.0-062105.8.
    [115]ANDERSEN A, BOHR T, STENUM B, et al. The bathtub vortex in a rotating con-tainer[J]. Journal of Fluid Mechanics,2006,556(1):121--146.
    [116]RUDINGER G. Fundamentals of gas-particle flow[M]. Amsterdam, Netherlands: Elsevier Scientific,1980.
    [117]刘大有.两相流体动力学[M].北京:高等教育出版,1993.
    [118]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版,1983.
    [119]黄远东,吴文权.非定常不稳定液固两相液动中旋涡对颗粒运动影响的数值研究[J].水科学进展,2002,1(1):1--8.
    [120]LEV A, ZUCKER S W, ROSENFELD A. Iterative enhancement of noisy images[J]. IEEE Transactions on Systems, Man, and Cybernetics,1977,7(6):435-442.
    [121]高木干雄,下田阳久.图像处理技术手册[M].北京:科学出版社,2007.
    [122]GONZALEZ R C, WOODS R W. Digital Image Processing[M]. Beijing:Publishing House of Electronics Industry,2002.
    [123]KICHENASSAMY S, KUMAR A, OLVER P, et al. Gradient flows and geomet-ric active contour models [C]//Fifth International Conference on Computer Vision. Cambridge:Massachusetts Institute of Technology,1995:810-815.
    [124]CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours[J]. International Journal of Computer Vision,1997,22(1):61-79.
    [125]CHAN T F, VESE L A. Active contours without edges[J].IEEE Transactions on Image Process,2001,10(2):266-277.
    [126]OSHER S J, SETHIAN J A. Fronts propagation with curvature dependent speed: Algorithms based on hamilton-jacobi formulations [J]. Journal of Computational Physics,1988,79(1):12-49.
    [127]赵春江,施文康,邓勇.新的梯度边缘检测方法[J].光电工程,2005,32(4):86--88.
    [128]高阳,张科,李言俊.低信噪比红外图像的快速统计法边缘提取[J].红外与激光工程,2005,34(4):459--463.
    [129]KIMMEL R, BRUCKSTEIN A M. On regularized laplacian zero crossings and other optimal edge integrators [J]. International Journal of Computer Vision,2003,53(3): 225-243.
    [130]LINDEBERG T. Edge detection and ridge detection with automatic scale selec-tion[J]. International Journal of Computer Vision,1998,30(2):117-154.
    [131]CANNY J. A computational approach to edge detection[J]. Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
    [132]DERI CHE R. Using canny's criteria to derive a recursively implemented optimal edge detector[J]. International Journal on Computer Vision,1987,1(1):167--187.
    [133]YUHP, LIU Y X, LIU Z B. Auto detection of wood texture orientation by radon transform[J]. Journal of Forestry Research,2005,16(1):1--4.
    [134]CHOUDHARY S K,潘秀兰.印度塔塔钢铁公司板坯连铸机水口堵塞的成因及预防措施[J].鞍钢技术,2002,6(1):55--59.
    [135]LYONS R A新的钢包下渣检测系统[J].钢铁,2004,39(增刊):603-604.
    [136]王惠波,李小华,谢元旦.出钢口下渣检测系统[J].鞍山钢铁学院学报,1996,19(4):23-26.
    [137]S. P, A. A, U. G, et al. Einsatz eines neuen systems zur schlacken-fruherkennung an stahlgiesspfannen[J]. Stahl und Eisen,2003,123(12):103-109.
    [138]NOVAK R C, HILL D G, HOFFMAN J P. Slag detection during bof tapping[J]. Iron & Steelmaker,1985,12(8):28--31.
    [139]UET INTERNATIONAL INC新型的大包下渣检测系统[C]//板坯连铸技术研讨会论文汇编.北京:中国金属学会,2003:47--53.
    [140]DAUBY P H, HAVEL D F, MEDVE P A, et al. Steel quality leapfrog-detection and elimination of ladle-to-tundish slag carry-over[J]. Iron & Steelmaker,1990,17(7): 27-30.
    [141]李培玉,赵明祥.连铸钢包下渣检测方法的研究现状与进展[J].炼钢,2003,19(3):51--55.
    [143]李涛,李培玉,孙顺义.振动钢包下渣检测技术[J].首钢科技,2005,6(1):25--28.
    [144]李培玉,谭大鹏,邹福星,等.矢量量化在钢水连铸下渣检测方面的应用研究[J].浙江大学学报,2007,41(4):556--559.
    [145]LI P Y, TAN D P, PAN X H, et al. Steel water continuous casting slag detection system based on wavelet[J]. Key Engineering Materials,2007,353-358:3067-3071.
    [146]赵丽,王友钊.钢铁连铸过程中的振动式高灵敏度大包下渣检测系统的研究及开发[J].电子器件,2005,28(4):823--833.
    [147]钟诚,王友钊,沈春和.基于神经网络的炼钢过程高灵敏大包下渣检测研究[J].冶金自动化,2005,增刊:94--96.
    [148]WALKER D I, DAWSON S, MOUNTFORD N D G, et al. Development of ultra-sonic sensors for the early detection of slag carry over [J]. Transactions of the Iron & Steel Society of AIME,1991,12(1):223--230.
    [149]BOLGER D, GUTHRIE RIL, KINGS D H M, et al. Ladle shroud slag detector[C]// Steelmaking Conference Proceedings. Pittsburgh, USA:Iron & Steel Society of AIME,1996:481-484.
    [150]DEWINTER G. Automatic slag detection with stopper [J]. Iron and Steel Engineer, 1996,3(1-4):149-164.
    [151]段云祥.吹氩过程中钢液流动的数学物理模拟[D].博士学位论文.河北:河北理工学院,2003.
    [152]胡皓,赵和明,张炯明,等.结晶器液面波动的水模型研究[J].钢铁钒钛,2005,26(1):10-13.
    [153]SINHA S K, GODIWALLA K M, SHAW D K, et al. Fluid flow behaviour in a water model tundish under open, submerged and modified inlet conditions[J]. Scandina-vian Journal of Metallurgy,2001,30(2):103--107.
    [154]ZHANG X G, ZHANG W X, Z. J J, et al. Flow of steel in mold region during continuous casting[J]. Journal of Iron and Steel Research, International,2007,14(2): 30-35.
    [155]ANDRZEJEWSKI P, MUELLER K, TACKE K H. Inclusions in continuously cast steel slabs-numerical model and validation[J]. Steel Research,1999,70(10):420--429.
    [156]李丽颖,赵雷,姜振生.优化连铸中间包控流装置的水模实验[J].鞍钢技术,2005,2(1):20--23.
    [157]李培玉,谭大鹏,陈文政.振动式钢包下渣检测系统的设计与实现[J].连铸,2008,2(1):5--7.
    [158]黄卫星,陈文梅.工程流体力学[M].北京:化学工业出版社,2006.
    [159]董曾南AND章梓雄.非粘性流体力学[M].北京:清华大学出版社,2003.
    [160]PADMANABHAN M, HECKER G E. Scale effects in pump sump models[J]. Jour-nal of Hydraulic Engeering, ASCE,1984,110(11):1540=1556.
    [161]L.L D. Similitude in free surface vortex formation[J]. Journal of Hydraulic Engeer-ing, ASCE,1974,11(1):1565--1581.
    [162]张立,黄耀文,杨时标,等.连铸中间包湍流控制器水模实验研究[J].钢铁,2002,37(12):17-19.
    [163]杨文远,丁永良,王明林,等.大型转炉多孔喷头射流与熔池作用的水模研究[J].钢铁,2004,39(3):16-19.
    [164]杨小容,陈崇峰,倪红卫,等.板坯连铸中间包下渣量及影响因素水模型研究[J].武汉科技大学学报(自然科学版),2004,27(1):4--7.
    [165]陆其明DirectShow开发指南[M].北京:清华大学出版社,2003.
    [166]陆其明.DirectShow实务精选[M].北京:清华大学出版社,2003.
    [167]赵群,保铮.径向基函数神经网络的分类机理[J].通信学报,1996,17(2):86--93.
    [168]FUKUNAGA K, HAYES R R. Effects of sample size in classifier design[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(8):873--885.
    [169]边肇祺,张学工.模式识别[M].北京:清华大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700