融合菌株F14的构建及其降解多环芳烃的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(PAHs)是一类广泛存在环境中的典型持久性有机有毒污染物。大多数的多环芳烃具有“三致”作用,通过食物链的传递会对生态环境和人体健康造成极大危害,因而这类化合物引起了人们的关注。生物修复特别是利用微生物降解被认为是去除环境中PAHs的主要途径,具有处理形式多样、成本低、对环境影响小等优点。尽管目前已发现环境中存在许多可降解PAHs的微生物,但也存在一些问题:一些以某种PAHs为唯一碳源筛选出来的单一优势菌种往往只能降解特定类型污染物且微生物活性受各种环境因素(如温度、酸度、盐度和湿度)的影响较大;或者将几种优势菌简单的混合构建高效菌群,多种菌的优化组合是一个很复杂的课题,这样的菌群有时因为种间的抑制作用很难实现作用最大化,有些菌株代谢PAHs的途径中产生了比母本毒性更高的中间产物。因此,如何获得高效降解PAHs的、作用底物范围广、环境适应性更强、具有积累少甚至不积累有毒中间代谢产物降解途径的菌株是值得研究的课题,将有助于提供PAHs污染环境的生物修复
     为此,本论文的主要目的是期望获得环境适应能力强,能高效降解PAHs,并且具有积累有毒中间代谢产物较少的降解途径的一个新菌种。具体研究内容包括:以原生质体融合技术为基础,通过使用环境中重要的污染物降解者——假单胞菌(Pseudomonas sp)和鞘氨醇单胞菌(Sphingomonas sp)(二者皆为革兰氏阴性菌)作为亲本进行融合,研究了原生质体形成和再生的最佳条件、融合的方法和筛选鉴定融合子的方法;通过和不同菌种包括亲本对比降解PAHs的效果研究,分析了融合菌株的高效降解性能和环境的广泛适应性;通过研究融合菌株降解不同底物及多种PAHs的性能、代谢途径及代谢产物的产生和积累的影响,探讨了其降解PAHs的机理。主要研究结果如下:
     (1)确定了亲本GP3A (Pseudomonas sp)和GY2B (Sphingomonas sp)原生质体最适形成和再生条件。选择对数生长期的菌体,经过青霉素G钠和EDTA的预处理,可以更容易地得到原生质体。当酶解温度为37℃,酶解浓度为5mg/L, GP3A的酶解时间为100min, GY2B的酶解时间为80min时,GP3A和GY2B的原生质体形成率最高。采用轻微摇动的酶解方式时菌株的原生质体形成率和再生率明显比水浴静置的方式时菌株的原生质体形成率和再生率高。添加一定浓度的Mg2+, Ca2+和L-丝氨酸有助于原生质体的再生。采用夹层培养方式的再生率明显高于单层培养和混合培养方式的再生率。
     (2)结合抗药性实验和菲、芘的初步降解实验筛选了融合子并进行了形态学和分子生物学鉴定。通过对GP3A和GY2B进行抗药性研究,发现利用80μg/ml哌拉西林+80μg/ml头孢他啶或80μg/ml哌拉西林+(100~150μg/ml)红霉素的再生培养基可以筛选出融合子;进一步利用含有菲或芘的平板筛选出对菲和芘都有降解效果的融合子,再对这些融合子进行初步生物降解摇瓶实验,最后筛选出一株对菲和芘降解效果较高的融合子,并将其命名为F14。通过平板菌落形态、电子显微镜与扫描电子显微镜(SEM)观察和分子生物学技术PCR-RFLP分析鉴定出融合菌株F14与亲本菌株GP3A和GY2B为不同的菌种,是二者的融合子。
     (3)F14降解菲、芘及混合PAHs的研究。F14可以将初始浓度为100mg/L的菲在24h降解99%以上,通过对比其它菌包括亲本GY2B,发现F14具有较高的降解菲的能力。F14在温度为20-40℃和pH为6.5-9的范围内对菲都有很好的降解效果。通过非竞争性抑制动力学方程对各初始浓度S0及对应比降解速率Rxo进行非线性拟合,得到的动力学参数降解动力学常数k=134.77mg菲g X-1h-1,饱和系数Ks=77.50mg/L,抑制系数KsI=742mg/L。较大的k和KSI值表明融合菌株F14对菲具有快速降解以及能耐受高浓度菲的抑制作用的能力。F14对初始浓度为15,50和100mg/L的芘在第10d的降解率分别为46%,37.1%和18%。芘的降解速率常数(k1)随着浓度的增加下降,芘降解速率常数和初始浓度有很好的线性关系。当菲和芘一起存在时,和单独降解菲和芘比较发现菲的存在对芘的降解有促进作用而芘的存在对菲有抑制的作用。
     F14具有和亲本GY2B不同的菲降解途径。F14降解菲的代谢途径有两条:在双加氧酶的作用下,菲开环生成cis-3,4-phenanthrenedihydrodiol和cis-1,2-phenanthrenedihydrodiol然后分别转化为phenanthrene-3,4-diol和phenanthrene-1,2-diol。Phenanthrene-3,4-diol开环生成1-羟基-2-萘酸,再脱羧形成1-萘酚,开环后生成乙酰水杨酸。Phenanthrene-1,2-diol开环生成2-羟基-1-萘酸甲酯,再转化为乙酰水杨酸。乙酰水杨酸再生成水杨酸,然后通过邻苯二酚最后进入三羧酸循环(TCA)彻底降解为CO2和H2O。经过2-羟基-1-萘酸甲酯代谢是主要的代谢途径,2-羟基-1-萘酸的毒性比1-羟基-2-萘酸小,F14在降解菲的过程中积累的有毒的中间代谢产物少。F14降解混合的菲和芘,检测到了一种芘中间代谢产物4,5-二氢芘。
     F14能够利用一定浓度的萘,水杨酸,2-羟基-1-萘酸和邻苯二酚为唯一碳源和能源进行生长和繁殖。芘的存在和芴、蒽、菲的存在对苊的降解有促进作用。其它三种三环芳烃的存在能分别促进蒽和芴的降解,芘的存在和其它六种PAHs的同时存在则分别对蒽和芴的降解有抑制作用。其它低环的多环芳烃的存在能够促进对芘的降解。F14对萘,菲和芘的混合,苊,蒽,菲和芴的混合,萘、苊、蒽、菲、芴、荧蒽和芘的混合都有一定的降解效果。
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic pollutants which attractincreasing attention in recent years for their widespread occurrence in the environment. PAHsare of great environmental and human health concerns since many PAHs have been shown tobe toxic, mutagenic and carcinogenic, and can be accumulated and transferred throughout thefood chain. Bioremediation is considered as a cost-effective and environment-friendly processfor removing PAHs and is a major way in the environment. Though a large number ofbacteria capable of biodegrading PAHs have been isolated from the natural environment,there are still some problems. The bacteria utilizing one kind of PAHs as the sole carbonsource isolated from environment usually have high selectivity for compounds of PAHs andare not very flexible to the changes of their environmental variables. In addition, thehigh-efficiency bacteria can be constructed by mixing the dominant bacteria simply. However,the optimum combination of a variety of bacteria is a very complex and difficult subject. Forexample, it is difficult to achieve the maximum efficiency because of the interspecificinhibition, and some metabolites produced during the degradation process are more toxic thanPAHs themselves. Therefore, it is urgent to obtain a high-efficiency PAHs-degradingbacterium with high environmental adaptability and by which less or even non toxicmetabolites are produced during the degradation process.
     The purpose of this study was to construct a high-efficiency PAHs-degrading bacteriumby protoplast fusion between Sphingomonas sp. GY2B and Pseudomonas sp. GP3A, which isflexible to the changes of their environmental variables, and capable of degrading multiplePAHs simultaneously. To improve the formation and regeneration frequency of protoplasts forGramnegative bacteria, the effects of some factors on protoplast isolation and regenerationwere investigated in present study. The degradation capability and environmental adaptabilityof the fusant strain were also tested by comparing with its parents and other strains. Finally,the PAHs degradation mechanism by the fusant strain was analyzed and discussed. The mainresearch results are as the followings:
     (1) Pretreatment with penicillin G sodium salt and EDTA enhanced the protoplastformation of Bacterial strains of GY2B and GP3A. The optimal condition for GY2B andGP3A protoplast formation were in5mg/ml lysozyme at37°C for80min and100min in ashaking culture, respectively. The protoplast formation frequency was95.2%and99.6%forGP3A and GY2B in shaking cultures, while only28.1%and34.2%in the static culture. Areasonable concentration of calcium ions, magnesium ions and L-serine increased the regeneration frequency of protoplasts. Double layers culture (soft-agar overlayers) methodcould also significantly increase the regeneration frequency as compared with single or mixedculture method.
     (2) The study on antibiotic resistance showed that fusants of GP3A and GY2B could bescreened using regeneration culture containing80g/ml piperacillin and80g/ml ceftazidine,or80g/ml piperacillin and erythrocin (100~150g/ml). Fusants were screened successfullythrough this method. Then the selected strains were inoculated in solid mineral mediumconsisting of single phenanthrene and pyrene. Subsequently, the strains with obvious clearzone were inoculated in liquid mineral medium containing phenanthrene and pyrene forscreening. A fusant strain with the highest degradation ability of phenanthrene and pyrene wasselected and named F14. The results of colony morphology, electron microscope, scanningelectron microscope (SEM) and molecular technology (PCR-RFLP) indicated that fusantstrain F14was different from its parents and was the fusant strain of GP3A and GY2B.
     (3) Phenanthrene (100mg/L) could be almost completely degraded within24hours by thefusant strain F14, which was much quicker than GY2B and other strains. The fusant strainF14had a wider range of temperature (25-40°C) and pH value (6.5-9.0). Non-competitivesubstrate inhibition kinetics was found to be fit for phenanthrene biodegradation and thebiodegradation rate constant k was134.77mg phenanthrene g/X/h the saturation constant KSwas77.50mg/L and inhibition constant KSIwas742mg/L. A larger k and KSIvalue indicatesthat the culture could endure high concentration of phenanthrene. F14could degrade about46%,37.1%and18%pyrene after10d inoculation at the initial concentration of15,50and100mg/L, respectively. The degradation of phenanthrene and pyrene in mixture compoundsystems showed that phenanthrene degradation was clearly delayed in the presence of pyreneand pyrene degradation was appears enhanced in the presence of phenanthrene.
     F14has different degradation pathway with GY2B. There are two pathway of degradingphenanthrene by F14: under the effect of dioxygenase, phenanthrene was cleaved andsubsequently metabolized to cis-3,4-phenanthrenedihydrodiol andcis-1,2-phenanthrenedihydrodiol, then transformed to phenanthrene-3,4-diol andphenanthrene-1,2-diol. Phenanthrene-3,4-diol was then cleaved to1-hydroxy-2-naphthoicacid, which was further decarboxylated to1-naphthol.1-Naphthol was cleaved toacetylsalicylic acid. Phenanthrene-1,2-diol was cleaved to methyl2-hydroxy-1-naphthoic acid,which was transformed to acetylsalicylic acid. Acetylsalicylic acid was transformed tosalicylic acid, which was further transformed to catechol and then accessed TCA-cycle andfinally exhaustive degraded to CO2and H2O. The toxicity of2-hydroxy-1-naphthoic acid was less than1-hydroxy-2-naphthoic acid indicating that phenanthrene was metabolized through apathway having less accumulation of potentially toxic metabolites by F14. An intermediateproduct4,5-dihydropyrene was detected during the degradation of mixture of phenanthreneand pyrene by F14.
     The degradation tests of substrates diversity were evidenced that strain F14could usenaphthalene, salicylic acid,2-hydroxy-1-naphthoic acid and catechol as the sole carbon sourceexcept o-phthalate and quinol. The experiment of degrading mixed PAHs showed that thepresence of pyrene or mixture of fluorene, anthracene, and phenanthrene could enhance thedegradation of acenaphthene. The presence of other three PAHs could promote thedegradation of anthracene and fluorene, respectively. However, the presence of pyrene andother six PAHs could inhibit the degradation of anthracene and fluorene, respectively. Pyrenedegradation was enhanced in the presence of low-ring PAHs. F14could degrade the mixtureof naphthalene, phenanthrene and pyrene, the mixture of acenaphthene, anthracene,phenanthrene and fluorene, the mixture of naphthalene, acenaphthene, anthracene, fluorene,phenanthrene, fluoranthene and pyrene.
引文
[1]Nisbet I.C.T., LaGoy P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs)[J]. Regulatory toxicology and pharmacology,1992,16(3):290-300
    [2]Ramesh A., Walker S.A., Hood D.B., et al. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons[J]. International journal of toxicology,2004,23(5):301-333
    [3]王连生.环境化学,致癌有机物[M].1993:中国环境科学出版社
    [4]Meharg A., Wright J., Dyke H., et al. Polycyclic aromatic hydrocarbon (PAH) dispersion and deposition to vegetation and soil following a large scale chemical fire[J]. Environmental Pollution,1998,99(1):29-36
    [5]Moret S., Purcaro G., Conte L.S. Polycyclic aromatic hydrocarbon (PAH) content of soil and olives collected in areas contaminated with creosote released from old railway ties[J]. Science of the Total Environment,2007,386(1-3):1-8
    [6]Vergnoux A., Malleret L., Asia L., et al. Impact of forest fires on PAH level and distribution in soils[J]. Environmental Research,2011,111(2):193-198
    [7]Freeman D.J. Cattell F.C.R. Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons [J]. Environmental Science&Technology,1990,24(10):1581-1585
    [8]Wild S.R. Jones K.C. Polynuclear aromatic hydrocarbons in the United Kingdom environment:a preliminary source inventory and budget[J]. Environmental Pollution,1995,88(1):91-108
    [9]Westerholm R.N., Alsberg T.E., Frommelin A.B., et al. Effect of fuel polycyclic aromatic hydrocarbon content on the emissions of polycyclic aromatic hydrocarbons and other mutagenic substances from a gasoline-fueled automobile[J]. Environmental Science&Technology,1988,22(8):925-930
    [10]王桂山,仲兆庆.PAH(多环芳烃)的危害及产生的途径[J].山东环境,2001(2):41-41
    [11]Fouchecourt M., Arnold M., Berny P., et al. Assessment of the bioavailability of PAHs in rats exposed to a polluted soil by natural routes:Induction of EROD activity and DNA adducts and PAH burden in both liver and lung[J]. Environmental Research,1999,80(4):330-339
    [12]Eom I., Rast C., Veber A., et al. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil[J]. Ecotoxicology and environmental safety,2007,67(2):190-205
    [13]Baussant T., Sanni S., Skadsheim A., et al. Bioaccumulation of polycyclic aromatic compounds:2. Modeling bioaccumulation in marine organisms chronically exposed to dispersed oil[J]. Environmental Toxicology and Chemistry,2001,20(6):1185-1195
    [14]Mastral A.M. Callen M.S. A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation[J]. Environmental Science&Technology,2000,34(15):3051-3057
    [15]Wang D., Xu X., Zheng M., et al. Effect of copper chloride on the emissions of PCDD/Fs and PAHs from PVC combustion[J]. Chemosphere,2002,48(8):857-863
    [16]周宏仓,张翠翠,蔡华侠,等.空调滤网灰尘中多环芳烃分布特征及来源研究[J].中国环境科学,2010(010):1303-1308
    [17]岳敏,谷学新,邹洪,等.多环芳烃的危害与防治[J].首都师范大学学报:自然科学版,2003,24(003):40-44
    [18]Haritash A. Kaushik C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs):a review[J]. Journal of hazardous materials,2009,169(1-3):1-15
    [19]Xue W. Warshawsky D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage:a review[J]. Toxicology and applied pharmacology,2005,206(1):73-93
    [20]Goldman R., Enewold L., Pellizzari E., et al. Smoking increases carcinogenic polycyclic aromatic hydrocarbons in human lung tissue[J]. Cancer research,2001,61(17):6367
    [21]Mastrangelo G., Fadda E., Marzia V. Polycyclic aromatic hydrocarbons and cancer in man[J]. Environmental health perspectives,1996,104(11):1166
    [22]Falahatpisheh M., Donnelly K., Ramos K. Antagonistic interactions among nephrotoxic polycyclic aromatic hydrocarbons[J]. Journal of Toxicology and Environmental Health Part A,2001,62(7):543-560
    [23]Weis L.M., Rummel A.M., Masten S.J., et al. Bay or baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of Gap junctional intercellular communication[J]. Environmental health perspectives,1998,106(1):17
    [24]Bticker M., Glatt H., Platt K., et al. Mutagenicity of phenanthrene and phenanthrene K-region derivatives[J]. Mutation Research/Genetic Toxicology,1979,66(4):337-348
    [25]Sram R.J., Binkova B., Rossner P., et al. Adverse reproductive outcomes from exposure to environmental mutagens[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1999,428(1-2):203-215
    [26]Liu K., Han W., Pan W.P., et al. Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system[J]. Journal of hazardous materials,2001,84(2):175-188
    [27]Sepic E., Bricelj M., Leskovsek H. Toxicity of fluoranthene and its biodegradation metabolites to aquatic organisms[J]. Chemosphere,2003,52(7):1125-1133
    [28]Mallakin A., McConkey B.J., Miao G., et al. Impacts of structural photomodification on the toxicity of environmental contaminants:anthracene photooxidation products[J]. Ecotoxicology and environmental safety,1999,43(2):204-212
    [29]McConkey B.J., Duxbury C.L., Dixon D.G., et al. Toxicity of a PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: Effects of phenanthrene and its primary photoproduct, phenanthrenequinone[J]. Environmental Toxicology and Chemistry,1997,16(5):892-899
    [30]Moller M., Hagen I., Ramdahl T. Mutagenicity of polycyclic aromatic compounds (PAC) identified in source emissions and ambient air[J]. Mutation Research/Genetic Toxicology,1985,157(2):149-156
    [31]Pitts Jr J.N., Lokensgard D.M., Harger W., et al. Mutagens in diesel exhaust particulate. Identification and direct activities of6-nitrobenzo [a] pyrene,9-nitroanthracene,1-nitropyrene and5h-phenanthro [4,5-bcd] pyran-5-one[J]. Mutation research,1982,103(3-6):241-249
    [32]Chesis P.L., Levin D.E., Smith M.T., et al. Mutagenicity of quinones:pathways of metabolic activation and detoxification[J]. Proceedings of the National Academy of Sciences,1984,81(6):1696
    [33]刘玲,王黎华.人肺组织中多环芳烃的代谢与肺癌相关性的研究[J].北京大学学报(医学版),1987,4
    [34]Atkinson R. Arey J. Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons:formation of atmospheric mutagens[J]. Environmental health perspectives,1994,102(Supp14):117
    [35]傅娟龄,周宗灿.多环芳烃氯衍生物对鼠伤寒沙门氏菌的直接致突变性[J].环境与健康杂志,1989,6(004):11-12
    [36]Salamone M., Heddle J.A., Katz M. The mutagenic activity of thirty polycyclic aromatic hydrocarbons (PAH) and oxides in urban airborne particulates[J]. Environment International,1979,2(1):37-43
    [37]胡望钧.常见有毒化学品环境事故应急处置技术与监测方法,1993,北京:中国环境科学出版社
    [38]Dipple A., Khan Q., Page J., et al. DNA reactions, mutagenic action and stealth properties of polycyclic aromatic hydrocarbon carcinogens (review)[J]. International journal of oncology,1999,14(1):103
    [39]Whiteley A.S. Bailey M.J. Bacterial community structure and physiological state within an industrial phenol bioremediation system[J]. Applied and environmental microbiology,2000,66(6):2400-2407
    [40]Kim Y.H., Freeman J.P., Moody J.D., et al. Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1[J]. Applied microbiology and biotechnology,2005,67(2):275-285
    [41]Ye D., Siddiqi M.A., Maccubbin A.E., et al. Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis[J]. Environmental Science&Technology,1995,30(1):136-142
    [42]Aitken M.D., Stringfellow W.T., Nagel R.D., et al. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons[J]. Canadian journal of microbiology,1998,44(8):743-752
    [43]Walter U., Beyer M., Klein J., et al. Degradation of pyrene by Rhodococcus sp. UW1[J]. Applied microbiology and biotechnology,1991,34(5):671-676
    [44]Schneider J., Grosser R., Jayasimhulu K., et al. Degradation of pyrene, benz [a] anthracene, and benzo [a] pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site[J]. Applied and environmental microbiology,1996,62(1):13-19
    [45]Trzesicka-Mlynarz D. Ward O. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil[J]. Canadian journal of microbiology,1995,41(6):470-476
    [46]Ling J., Zhang G., Sun H., et al. Isolation and characterization of a novel pyrene-degrading Bacillus vallismortis strain JY3A[J]. Science of the Total Environment,2011
    [47]Klankeo P., Nopcharoenkul W., Pinyakong O. Two novel pyrene-degrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil[J]. Journal of bioscience and bioengineering,2009,108(6):488-495
    [48]陈晓鹏,易筱筠,陶雪琴,等.石油污染土壤中芘高效降解菌群的筛选及降解特性研究[J].环境工程学报,2008,2(3):413-417
    [49]Janbandhu A. Fulekar M. Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment[J]. Journal of hazardous materials,2011
    [50] Tao X.Q., Lu G.N., Dang Z., et al. A phenanthrene-degrading strain Sphingomonas sp.GY2B isolated from contaminated soils[J]. Process Biochemistry,2007,42(3):401-408
    [51] Menn F., Applegate B., Sayler G. NAH plasmid-mediated catabolism of anthracene andphenanthrene to naphthoic acids[J]. Applied and Environmental Microbiology,1993,59(6):1938
    [52] Pinyakong O., Habe H., Supaka N., et al. Identification of novel metabolites in thedegradation of phenanthrene by Sphingomonas sp. strain P2[J]. FEMS microbiologyletters,2000,191(1):115-121
    [53] Habe H. Omori T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverseaerobic bacteria[J]. Bioscience, biotechnology, and biochemistry,2003,67(2):225-243
    [54] Seo J.S., Keum Y.S., Hu Y., et al. Degradation of phenanthrene by Burkholderia sp. C3:initial1,2-and3,4-dioxygenation and meta-and ortho-cleavage of naphthalene-1,2-diol[J]. Biodegradation,2007,18(1):123-131
    [55] Seo J.S., Keum Y.S., Hu Y., et al. Phenanthrene degradation in Arthrobacter sp. P1-1:Initial1,2-,3,4-and9,10-dioxygenation, and meta-and ortho-cleavages ofnaphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid andhydroxyl naphthoic acids[J]. Chemosphere,2006,65(11):2388-2394
    [56] Moody J., Freeman J., Doerge D., et al. Degradation of phenanthrene and anthracene bycell suspensions of Mycobacterium sp. strain PYR-1[J]. Applied and EnvironmentalMicrobiology,2001,67(4):1476
    [57] Heitkamp M., Freeman J., Miller D., et al. Pyrene degradation by a Mycobacterium sp.:identification of ring oxidation and ring fission products[J]. Applied and EnvironmentalMicrobiology,1988,54(10):2556
    [58] Dean-Ross D. Cerniglia C. Degradation of pyrene by Mycobacterium flavescens[J].Applied microbiology and biotechnology,1996,46(3):307-312
    [59] Vila J., Lopez Z., Sabate J., et al. Identification of a novel metabolite in the degradationof pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two-and three-ringpolycyclic aromatic hydrocarbons[J]. Applied and Environmental Microbiology,2001,67(12):5497
    [60] Mueller J., Chapman P., Pritchard P. Action of a fluoranthene-utilizing bacterialcommunity on polycyclic aromatic hydrocarbon components of creosote[J]. Applied andenvironmental microbiology,1989,55(12):3085-3090
    [61] Gibson D., Mahadevan V., Jerina D., et al. Oxidation of the carcinogens benzo [a] pyreneand benzo [a] anthracene to dihydrodiols by a bacterium[J]. Science,1975, 189(4199):295
    [62]Schneider J.,Grosser R.,Jayasimhulu K.,et al.Degradation of pyrene,benz[a] anthracene,and benzo[a]pyrene by Mycobacterium sp.strain RJGII-135,isolated from a former coal gasification site[J].Applied and Environmental Microbiology,1996,62(1):13
    [63]Juhasz A.L.Naidu R.Bioremediation of high molecular weight polycyclic aromatic hydrocarbons:a review of the microbial degradation of benzo[a]pyrene[J].International Biodeterioration&Biodegradation,2000,45(1):57-88
    [64]Cerniglia C.Gibson D.T.Oxidation of benzo[a]pyrene by the filamentous fungus Cunninghamella elegans[J]. Journal of Biological Chemistry,1979,254(23):12174—12180
    [65]Datta D.Samanta T.B.Effect of inducers on metabolism of benzo(a)pyrene in vivo and in vitro:analysis by high pressure liquid chromatography[J]. Biochemical and biophysical research communications,1988,155(1):493-502
    [66]谭周进,杨海君,林曙,等.利用原生质体融合技术选育微生物菌种[J].核农学报,2005,19(001):75-79
    [67]周东坡,平文祥.微生物原生质体融合[J].1990,黑龙江省科学技术出版社
    [68]彭志英赵谋明,食品生物技术[M].1999:中国轻工业出版社.
    [69]Kao K.Michayluk M.A method for high-frequency intergeneric fusion of plant protoplasts[J].Planta,1974,115(4):355-367
    [70]Fodor K.,Hadlaczky G.,Alf ldi L.Reversion of Bacillus megaterium protoplasts to the bacillary form[J].Journal of bacteriology,1975,121(1):390
    [71]Schaeffer P.,Cami B.,Hotchkiss R.Fusion of bacterial protoplasts[J].Proceedings of the National Academy of Sciences,1976,73(6):2151
    [72]薛青,盛祖嘉,沈仁权.枯草杆菌和大肠杆菌间通过原生质体融合的质粒pHV33的转移[J].遗传学报,1983,10(2):91-95
    [73]林炜铁,酵母细胞原生质体拆合技术的研究,1991,华南理工大学.
    [74]赵丽丽,陈宁.原生质体诱变选育L—缬氨酸生产菌的研究[J].食品与发酵工业,2002,28(010):22-30
    [75]周东坡,刘桂清.原生质体副合选育赖氨酸高产菌种的研究[J].微生物学报,1991,31(004):287-292
    [76]张修军,周启.利用同源菌株融合改良农抗5102产生菌[J].华中农业大学学报,1997,16(001):1-5
    [77]方霭祺,李绍兰.耐热酵母与酿酒酵母原生质体融合的研究[J].生物工程学报,1990,6(003):224-229
    [78]曾云中.耐高温酿酒酵母的选育Ⅱ菌株的选育及产酒发酵特性初探[J].浙江大学学报(理学版),1992
    [79]王金盛,宫明.利用电场诱导原生质体融合技术选育高产耐高温酵母融合株[J].中国调味品,1998(009):11-13
    [80]Millam S., Payne L., Mackay G. The integration of protoplast fusion-derived material into a potato breeding programme-a review of progress and problems[J]. Euphytica,1995,85(1):451-455
    [81]Lima N., Moreira C., Teixeira J., et al. Introduction of flocculation into industrial yeast, Saccharomyces cerevisiae sake, by protoplast fusion[J]. Microbios,1995,81(328):187
    [82]Chang S., Li C., Hiang S., et al. Intraspecific protoplast fusion of Candida tropicalis for enhancing phenol degradation[J]. Applied microbiology and biotechnology,1995,43(3):534-538
    [83]Sivan A., Thomas J., Dubacq J., et al. Protoplast fusion and genetic complementation of pigment mutations in the red microalga Porphyridium sp.[J]. Journal of Phycology,1995,31(1):167-172
    [84]Hocart M., Lucas J., Peberdy J. Parasexual recombination between W and R pathotypes of Pseudocercosporella herpotrichoides through protoplast fusion[J]. Mycological research(Print),1993,97:977-983
    [85]Akagi H., Taguchi T., Fujimura T. Stable inheritance and expression of the CMS traits introduced by asymmetric protoplast fusion[J]. TAG Theoretical and Applied Genetics,1995,91(4):563-567
    [86]Walters T. Earle E. Organellar segregation, rearrangement and recombination in protoplast fusion-derived Brassica oleracea calli[J]. TAG Theoretical and Applied Genetics,1993,85(6):761-769
    [87]Kell A. Glaser R. On the mechanical and dynamic properties of plant cell membranes: their role in growth, direct gene transfer and protoplast fusion[J]. Journal of theoretical biology,1993,160(1):41-62
    [88]葛岚,程树培.跨界原生质体融合产物细胞遗传物质整合过程中DNA含量变化[J].南京大学学报:自然科学版,1997,33(003):381-385
    [89]Sladek T. Maniloff J. Polyethylene glycol-dependent transfection of Acholeplasma laidlawii with mycoplasma virus L2DNA[J]. Journal of bacteriology,1983,155(2):734
    [90]Suarez J. Chater K. Polyethylene glycol-assisted transfection of Streptomyces protoplasts [J]. Journal of bacteriology,1980,142(1):8
    [91]Svoboda A. Piedra D. Reversion of yeast protoplasts in media containing polyethylene glycol[J]. Microbiology,1983,129(11):3371
    [92]Zimmermann U. Scheurich P. High frequency fusion of plant protoplasts by electric fields[J]. Planta,1981,151(1):26-32
    [93]Halfmann H., R cken W., Emeis C., et al. Transfer of mitochondrial function into a cytoplasmic respiratory-deficient mutant of Saccharomyces yeast by electro-fusion[J]. Current genetics,1982,6(1):25-28
    [94]Weber H., F rster W., Jacob H., et al. Enhancement of yeast protoplast fusion by electric field effects.1980.
    [95]Weber H. Berg H. Electrofusion of Yeast Protoplasts [J]. Electroporation protocols for microorganisms,1995:93
    [96]Zimmermann U. Vienken J. Electric field-induced cell-to-cell fusion[J]. Journal of Membrane Biology,1982,67(1):165-182
    [97]陈都珍,成恒嵩,宓晓黎.凤尾菇酯酶同工酶及其氨基酸含量的变化[J].真菌学报,1987,6(1):34-41
    [98]潘迎捷,汪昭月,王曰英.香菇菌株同工酶的研究[J].食用菌,1988,6:13-14
    [99]朱继红,陈颖,卢铁栋.榆耳同工酶的测定[J].1990,2:6-7
    [100]Zhang X., Jia H., Wu B., et al. Genetic analysis of protoplast fusant Xhhh constructed for pharmaceutical wastewater treatment[J]. Bioresource Technology,2009,100(6):1910-1914
    [101]王芬,由媛,全丽,等.双亲灭活的原生质体融合株啤酒酵母DR9-2的构建及其特性的研究[J].酿酒,2007,34(005):72-75
    [102]Nonklang S., Ano A., ABDEL-BANAT B., et al. Construction of Flocculent Kluyveromyces marxianus Strains Suitable for High-Temperature Ethanol Fermentation[J]. Bioscience, Biotechnology, and Biochemistry,2009,73(5):1090-1095
    [103]左志晗,张阳,王艳萍.原生质体融合法提高棒状链霉菌的克拉维酸产量[J].食品与发酵工业,2009(002):53-56
    [104]谢希贤,杜军,刘淑云,等.L-亮氨酸高产菌TGL8207的定向选育及其发酵过程研究[J].中国食品学报,2009,9(002):29-33
    [105]管玉霞,蓝基贤,严广兴,等.庆大霉素产生菌原生质体融合高产株与发酵罐试产 的研究[J].中国生物工程杂志,2009,29(008):62-67
    [106]Chen X., Wei P., Fan L., et al. Generation of high-yield rapamycin-producing strains through protoplasts-related techniques[J]. Applied Microbiology and Biotechnology,2009,83(3):507-512
    [107]Prabavathy V., Mathivanan N., Sagadevan E., et al. Intra-strain protoplast fusion enhances carboxymethyl cellulase activity in Trichoderma reesei[J].Enzyme and Microbial Technology,2006,38(5):719-723
    [108]马放,常玉广,远立江,等.高效絮凝菌的细胞融合及产絮特性研究[J].环境科学学报,2006,26(012):1994-1999
    [109]廖劲松,庄桂.原生质体融合选育高效菌株净化PVA工业废水的研究[J].郑州工程学院学报,2001,22(002):84-90
    [110]Chen W., Ohmiya K., Shimizu S. Intergeneric protoplast fusion between Fusobacterium varium and Enterococcus faecium for enhancing dehydrodivanillin degradation[J]. Applied and environmental microbiology,1987,53(3):542-548
    [111]Krockel L. Focht D. Construction of chlorobenzene-utilizing recombinants by progenitive manifestation of a rare event[J]. Applied and environmental microbiology,1987,53(10):2470-2475
    [112]金志刚,张彤,朱怀兰.污染物生物降解[M].1997:华东理工大学出版社.
    [113]刘录,沈秋英,孔继兰.跨界融合子处理含酚废水的实验研究[J].环境保护科学,2003,29(004):17-19
    [114]许燕滨江霞.高效含氯有机化合物降解工程菌的构建研究[J].重庆环境科学,2001,23(002):46-48
    [115]程树培,邓良伟.光合细菌与酵母原生质体融合子连续发酵豆制品废水研究[J].环境科学学报,1997,17(003):372-377
    [116]程树培,张徐祥,石磊,等.Fhhh工程菌株降解PTA废水动力学研究[J].环境科学,2003,24(006):116-120
    [117]Weiss R.L. Protoplast formation in Escherichia coli[J]. Journal of bacteriology,1976,128(2):668
    [118]Hopwood D. Genetic studies with bacterial protoplasts[J]. Annual Reviews in Microbiology,1981,35(1):237-272
    [119]Dai M.H., Ziesman S., Ratcliffe T., et al. Visualization of protoplast fusion and quantitation of recombination in fused protoplasts of auxotrophic strains of Escherichia coli[J]. Metabolic engineering,2005,7(1):45-52
    [120]Tsenin A., Karimov G., Rybchin V. Recombination during fusion of Escherichia coli K12protoplasts][J]. Doklady Akademii nauk SSSR,1978,243(4):1066
    [121]陈代杰,朱宝泉.工业微生物学,工业微生物菌种选育与发酵控制技术[M].1995:上海科学技术文献出版社.
    [122]Stal M. Blaschek H. Protoplast formation and cell wall regeneration in Clostridium perfringens[J]. Applied and environmental microbiology,1985,50(4):1097
    [123]Reaveley D. Rogers H. Some enzymic activities and chemical properties of the mesosomes and cytoplasmic membranes of Bacillus licheniformis6346[J]. Biochemical Journal,1969,113(1):67
    [124]Pigac J., Hranueli D., Smokvina T., et al. Optimal cultural and physiological conditions for handling Streptomyces rimosus protoplasts[J]. Applied and environmental microbiology,1982,44(5):1178-1186
    [125]辛明秀,马玉娥.微生物的原生质体融合及应用[J].微生物学通报,1995,22(6):365-370
    [126]孙剑秋,周东坡.微生物原生质体技术[J].生物学通报,2002,37(007):9-11
    [127]陈光荣,肖克宇,翁波,等.细胞融合技术及其在生物医药中的应用[J].动物医学进展,2004,25(1):19-21
    [128]钟蕾,肖克宇.肠型点状产气单胸菌和鱼害粘球菌原生质体融合的耐药性遗传标记的选择[J].湖南农业大学学报:自然科学版,2002,28(2):150-152
    [129]谭悠久,谭红,周金燕,等.以抗生素抗性为选择标记的毛壳菌种间原生质体融合[J].华东理工大学学报:自然科学版,2010(001):36-41
    [130]常玉广,马放,夏四清,等.絮凝菌的细胞融合研究[J].环境工程学报,2008,2(8):1138-1142
    [131]周德平,夏颖,韩如旸,等.三株菲降解细菌的分离,鉴定及降解特性的研究[J].环境科学学报,2003,23(1):124-128
    [132]夏颖.多环芳烃菲对微生物生态毒理研究,菲降解菌的分离鉴定及降解基因克隆与表达[D],2004,杭州:浙江大学.
    [133]Peng R.H., Xiong A.S., Xue Y., et al. Microbial biodegradation of polyaromatic hydrocarbons[J]. FEMS microbiology reviews,2008,32(6):927-955
    [134]Reddy M.S., Naresh B., Leela T., et al. Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp[J]. Bioresource technology, 2010,101(20):7980-7983
    [135]Ting W., Yuan S., Wu S., et al. Biodegradation of phenanthrene and pyrene by Ganoderma lucidum [J]. International Biodeterioration&Biodegradation,2011,65(1):238-242
    [136]Zhao H.P., Wu Q.S., Wang L., et al. Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China[J]. Journal of hazardous materials,2009,164(2-3):863-869
    [137]Ravelet C, Krivobok S., Sage L., et al. Biodegradation of pyrene by sediment fungi[J]. Chemosphere,2000,40(5):557-563
    [138]许姗姗,刘文新,陶澍.全国多环芳烃年排放量估算[J].农业环境科学学报,2005,24(3):476-479
    [139]段永红,陶澍,王学军,等.天津表土中多环芳烃含量的空间分布特征与来源[J].土壤学报,2006,42(6):942-947
    [140]Heitkamp M.A., Freeman J.P., Miller D.W, et al. Pyrene degradation by a Mycobacterium sp.:identification of ring oxidation and ring fission products[J]. Applied and environmental microbiology,1988,54(10):2556-2565
    [141]Vila J., Lopez Z., Sabate J., et al. Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1:actions of the isolate on two-and three-ring polycyclic aromatic hydrocarbons[J]. Applied and environmental microbiology,2001,67(12):5497-5505
    [142]扈玉婷,任凤华,周培瑾,等.一株分离自新疆天池寡营养环境的糖丝菌(Saccharothrix sp PYX-6)降争芘的特性[J].科学通报,2003,48(16):1796-1800
    [143]Tao X., Lu G., Yi X., et al. Isolation of Phenanthrene-degrading Microorganisms and Analysis of Metabolites of Phenanthrene [J]. Journal of Agro-Environment Science,2006,25(1):190-195
    [144]Frysinger G.S., Gaines R.B., Xu L., et al. Resolving the unresolved complex mixture in petroleum-contaminated sediments[J]. Environmental science&technology,2003,37(8):1653-1662
    [145]Johnsen A.R., Wick L.Y, Harms H. Principles of microbial PAH-degradation in soil[J]. Environmental Pollution,2005,133(1):71-84
    [146]高廷耀,顾国维,周琪.水污染控制工程[M].1989,高等教育出版社
    [147]Kargi F. Eker S. Toxicity and batch biodegradation kinetics of2,4dichlorophenol by pure Pseudomonas putida culture[J]. Enzyme and microbial Technology,2004, 35(5):424-428
    [148]Pamukoglu M.Y. Kargi F. Biodegradation kinetics of2,4,6-trichlorophenol by Rhodococcus rhodochrou in batch culture[J]. Enzyme and microbial Technology,2008,43(1):43-47
    [149]Babaee R., Bonakdarpour B., Nasernejad B., et al. Kinetics of styrene biodegradation in synthetic wastewaters using an industrial activated sludge[J]. Journal of hazardous materials,2010,184(1-3):111-117
    [150]Lin C., Gan L., Chen Z.L. Biodegradation of naphthalene by strain Bacillus fusiformis (BFN)[J]. Journal of hazardous materials,2010,182(1-3):771-777
    [151]Hongsawat P. Vangnai A.S. Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2[J]. Journal of hazardous materials,2011,186(2):1300-1307
    [152]Tian L., Ma P., Zhong J.J. Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina [J]. Process Biochemistry,2002,37(12):1431-1437
    [153]Romero M., Cazau M., Giorgieri S., et al. Phenanthrene degradation by microorganisms isolated from a contaminated stream[J]. Environmental Pollution,1998,101(3):355-359
    [154]Tam N., Guo C., Yau W., et al. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong[J]. Marine pollution bulletin,2002,45(1-12):316-324
    [155]Onysko K.A., Budman H.M., Robinson C.W. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5[J]. Biotechnology and bioengineering,2000,70(3):291-299
    [156]Tomei M.C., Annesini M.C., Bussoletti S.4-nitrophenol biodegradation in a sequencing batch reactor:kinetic study and effect of filling time[J]. Water research,2004,38(2):375-384
    [157]苏丹,李培军,王鑫,等.3株细菌对土壤中芘和苯并芘的降解及其动力学[J].环境科学,2007,28(004):913-917
    [158]刘艳锋,周作明,李小林,等.芘降解菌的分离纯化及其降解性能测定[J].华侨大学学报:自然科学版,2008,29(002):267-269
    [159]王元芬,张颖,任瑞霞,等.芘高效降解菌的分离鉴定及其降解特性的研究[J].生物技术,2009,19(001):58-61
    [160]Heitkamp M.A. Cerniglia C.E. Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field[J]. Applied and environmental microbiology,1988,54(6):1612-1614
    [161]Zhong Y., Zou S., Lin L., et al. Effects of pyrene and fluoranthene on the degradation characteristics of phenanthrene in the cometabolism process by Sphingomonas sp. strain PheB4isolated from mangrove sediments[J]. Marine pollution bulletin,2010,60(11):2043-2049
    [162]Zhong Y., Luan T., Wang X., et al. Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4[J]. Applied microbiology and biotechnology,2007,75(1):175-186
    [163]Heitkamp M.A. Cerniglia C.E. Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem[J]. Applied and environmental microbiology,1989,55(8):1968-1973
    [164]Bossert I.D. Bartha R. Structure-biodegradability relationships of polycyclic aromatic hydrocarbons in soil[J]. Bulletin of environmental contamination and toxicology,1986,37(1):490-495
    [165]Perry J.J. Microbial cooxidations involving hydrocarbons[J]. Microbiological Reviews,1979,43(1):59
    [166]Yuan S., Wei S., Chang B. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture[J]. Chemosphere,2000,41(9):1463-1468
    [167]巩宗强,李培军,王新,等.芘在土壤中的共代谢降解研究[J].应用生态学报,2001,12(3):447-450
    [168]马沛,钟建江.微生物降解多环芳烃(PAHs)的研究进展[J].生物加工过程,2003,1(001):42-46
    [169]Bouchez M., Blanchet D., Vandecasteele J. Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations:inhibition phenomena and cometabolism[J]. Applied microbiology and biotechnology,1995,43(1):156-164
    [170]Stringfellow W.T. Aitken M.D. Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads[J]. Applied and environmental microbiology,1995,61(1):357-362
    [171]Hughes J., Beckles D., Chandra S., et al. Utilization of bioremediation processes for the treatment of PAH-contaminated sediments[J]. Journal of industrial microbiology&biotechnology,1997,18(2):152-160
    [172]陶雪琴,卢桂宁,党志,等.鞘氨醇单胞菌GY2B降解菲的特性及其对多种芳香 有机物的代谢研究[J].农业环境科学学报,2007,26(2):548-553
    [173]任华峰,李淑芹,刘双江,等.一株对氯苯胺降解菌的分离鉴定及其降解特性[J].环境科学,2005,26(1):154-158
    [174]Fujii T., Takeo M., Maeda Y. Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA[J]. Microbiology,1997,143(1):93-99
    [175]Sala-trepat J.M. Evans W.C. The meta cleavage of catechol by Azotobacter species[J]. European Journal of Biochemistry,1971,20(3):400-413
    [176]李伟,徐桂清.5-氨基水杨酸中对苯二酚和对苯醌的反相高效液相色谱法的分离和限度检查[J].河南师范大学学报:自然科学版,2002,30(001):55-59
    [177]杨秀虹,李适宇,李岚,等.广州市工业,交通区表层土壤中多环芳烃分布特征初探[J].中山大学学报:自然科学版,2008,47(001):93-97
    [178]马骁轩,冉勇,邢宝山,等.珠江三角洲一些菜地土壤中多环芳烃的含量及来源[J].环境科学学报,2007,27(10):1727-1733
    [179]聂利红,刘宪斌,降升平,等.天津高沙岭潮间带表层沉积物中多环芳烃的分布及风险评价[J].矿物岩石,2008(2):113-117
    [180]Verrhiest G., Clement B., Volat B., et al. Interactions between a polycyclic aromatic hydrocarbon mixture and the microbial communities in a natural freshwater sediment[J]. Chemosphere,2002,46(2):187-196
    [181]Somtrakoon K., Suanjit S., Pokethitiyook P., et al. Phenanthrene stimulates the degradation of pyrene and fluoranthene by Burkholderia sp. VUN10013[J]. World Journal of Microbiology and Biotechnology,2008,24(4):523-531
    [182]Eriksson M., Dalhammar G., Borg-Karlson A.K. Biological degradation of selected hydrocarbons in an old PAH/creosote contaminated soil from a gas work site[J]. Applied microbiology and biotechnology,2000,53(5):619-626
    [183]Wischmann H. Steinhart H. The formation of PAH oxidation products in soils and soil/compost mixtures[J]. Chemosphere,1997,35(8):1681-1698
    [184]Mallick S., Chatterjee S., Dutta T.K. A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of2-hydroxy-l-naphthoic acid:formation of trans-2,3-dioxo-5-(2'-hydroxyphenyl)-pent-4-enoic acid[J]. Microbiology,2007,153(7):2104-2115
    [185]Moody J.D., Freeman J.P., Doerge D.R., et al. Degradation of phenanthrene andanthracene by cell suspensions of Mycobacterium sp. strain PYR-1[J]. Applied andenvironmental microbiology,2001,67(4):1476-1483
    [186] Balashova N.V., Kosheleva I.A., Golovchenko N.P., et al. Phenanthrene metabolism byPseudomonas and Burkholderia strains[J]. Process Biochemistry,1999,35(3):291-296
    [187] Carney M.W., Erwin K., Hardman R., et al. Differential developmental toxicity ofnaphthoic acid isomers in medaka (Oryzias latipes) embryos[J]. Marine pollutionbulletin,2008,57(6):255-266
    [188] Parikh S.J., Chorover J., Burgos W.D. Interaction of phenanthrene and its primarymetabolite (1-hydroxy-2-naphthoic acid) with estuarine sediments and humic fractions[J].Journal of contaminant hydrology,2004,72(1):1-22
    [189] MacGillivray A. Shiaris M.P. Biotransformation of polycyclic aromatic hydrocarbonsby yeasts isolated from coastal sediments[J]. Applied and environmental microbiology,1993,59(5):1613-1618
    [190] Resnick S.M. Gibson D.T. Regio-and stereospecific oxidation of fluorene, dibenzofuran,and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB9816-4[J]. Applied and environmental microbiology,1996,62(11):4073-4080