用户名: 密码: 验证码:
结构自诊断沥青路面材料特性及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青混凝:土已被广泛应用于道路和桥梁的表而铺装。截止2012年底,我国高速公路总里程已经突破9万公里,位居世界第二位。随着我国公路事业发展日趋成熟,其工作重心已从单纯的建设逐步向建、管、养并举的发展模式转型,公路的预养护与养护工作已开始引起广泛的关注。结构自诊断沥青路面可以在路面结构出现早期病害时,通过电阻数据的采集与分析,科学的指导沥青路面的预养护与养护,使沥青路面在永久破坏之前采取相应的措施,恢复其正常服役的路用性能,从而延长服役寿命,减少养护成本,避免废旧沥青混凝土造成的生态环境影响,具有十分重要的经济效益和社会效益。
     1.本文在结构自诊断沥青混凝上路面级配设计过程中,借鉴Superpave体积指标设计方法与贝雷参数法,并用马歇尔设计方法进行设计和验证,制备出了结构自诊断沥青混凝土。研究发现,结合试验中结构自诊断沥青混凝土的电阻值,AC-20结构自诊断沥青混凝土的贝雷参数范围CA值为0.5-0.65;FAc为0.35~0.45;FAf为0.35~0.4;确定了石墨掺量为3%,最佳沥青用量为4.8%。结构自诊断沥青混凝上的导电现象存在渗流现象,其导电相材料石墨掺量存在渗流阈值;其导电机理是导电颗粒内部接触效应和渗流效应的共同作用
     2.本文以唐山曹妃甸工业区建设为契机铺筑了结构自诊断沥青路面试验段,借助施工单位设备,对结构自诊断沥青混合料的拌和、摊铺、电极植入、碾压进行了研究。研究表明,导电材料石墨的投放是从废粉二级回收装置中抽入到废粉仓内,再加入到拌和锅中。最佳拌合工艺为热骨料先干拌5秒,然后同时加入石墨和沥青,再拌和35秒。摊铺速度宜控制为1~3m/min,采用非接触式平衡梁控制摊铺厚度,摊铺松铺系数确定为1.2。电极植入采用下层电极预先固定,上层电极施工时埋设方式进行。碾压时,宜采用轮胎压路机初压,然后钢轮压路机与轮胎压路机交替复压,且宜在15min中内完成碾压。
     3.本文在结构自诊断沥青路面试验段铺筑后,分别于建设初期、夏热期、冬冷期、春融期进行了为期一年的服役行为研究。从体积性能、高温稳定性、水稳定性、抗低温开裂性,抗疲劳性能的试验出发评价了其路用性能:综合曹妃甸地区气温、地质条件分析了多因素作用下其电学性能的变化。研究表明,建设初期,在合理有序的施工条件下,结构自诊断沥青路面具有良好的路用性能;经过夏热期、冬冷期、春融期一年的服役,其路用性能出现不同程度的下降。在多因素条件作用下,其电阻值有一定的增加,内部结构可能出现微裂纹,此外金属电极也遭受了不同程度的腐蚀。
     4.本文在结构自诊断沥青路面试验段的基础上,对路面破损数据指标DR,路面结构承载力指标SSI,路面车辙深度指标RD,以及关键的路面电阻指标RI进行了数据采集和处理,建立了养护决策模型。研究表明,通过试验段数据的采集与分析,养护决策模型可以及时有效的对沥青路面进行综合评价。
The asphalt concrete has been widely applied in the road and bridge pavement By the end of2012, the highway mileage has reached90000kilometers in china which ranked the second in the world. With the development China's highway industry, the focus of work has been gradually turned a sample construction into a development pattern which includes build, manage and maintenance. And the pre-maintenance and maintenance has been aroused widely concern. Through the collecting and analyzing the resistance data, the self-monitoring asphalt concrete can be scientific guidance the pre-maintenance and maintenance of asphalt pavement in the early damage which occurred in the pavement structure. In order to avoid the permanent destroys, it's necessary to take corresponding measure to recover its normal pavement performance. It is of great importance to economic and social benefits that extend service life, reduce maintenance cost, and terrible environment which caused by waste asphalt concrete.
     l.In this paper, during the design process of self-monitoring asphalt concrete grading, take examples by Superpave volume indicator design method and Bailey parametric method, then designing and proving with the use of Marshall design approach, and preparation the self-monitoring asphalt concrete. The research found that refer to the resistivity of self-monitoring asphalt concrete in the test, the bailey parametric of the AC-20self-monitoring asphalt CA is0.5~0.65, FAc is0.35~0.45, FAf is0.35~0.4; and it also determined the graphite content is3%and the best asphalt dosage is4.8%.There is transfusion phenomenon which exists in the electric conduction phenomenon of self-monitoring asphalt concrete, percolation threshold existence in graphite content, and its conductive mechanism is as a result of conductive particles inside contact effect and transfusion effect combined action
     2. This paper based on the industrial construction of Caofeidian, Tangshan, paved a self-monitoring asphalt concrete test section, with the help of construction organization equipment, studied the mixing, paving, electrode embedding and compacting of self-monitoring asphalt mixture. The study showed that the addition of graphite is extract from second powder recycle device, and add to the mixing pot. The optimum batch process is hot aggregate dry mixing5seconds, and adds graphite and asphalt at the same time, then mixing35seconds. Paving speed should be controlled in1~3m/min, using non-contact balance beam control paving thickness, identify the paving thickness coefficient is1.2. Electrode embedded needs two steps as follows: lower electrode fixed first, then embedded upper electrode in construction. During compacting, should be used tyre roller pressure first, and then used steel roller and tyre roller alternate pressure within15minutes.
     3. In this paper, after the self-monitoring asphalt pavement test section construction, chosen four periods which are the early construction stage, summer period, winter period and the spring melt period as study object for one year service. Evaluate its pavement performance through several tests such as volume performance, high temperature stability, water stability, low temperature cracking resistance and fatigue resistance performance. And analyzed the variation of electrical performance under multiple factors and taken the temperature of Caofeidan and geological conditions into consideration. The research found that at the beginning of the construction, with the orderly execution conditions, the self-monitoring asphalt pavement has a good performance. After one year service of summer period, winter period and spring melt period, the pavement performance has been different degree decline. Under multi-factor conditions, its resistance value increased, micro cracks may occur in the internal structure, and in addition, metal electrodes also suffered inordinately corrosion.
     4. In this paper, on the basis of the self-monitoring asphalt pavement test section, established a maintenance-decision model after data acquisition and processing which include the pavement damage date index DR, the pavement structure capacity index SSI, the pavement track depth index RD and the key pavement resistivity index RI. The study showed the through the test section data collection and analysis, the maintenance-decision model can be timely and effectively make a comprehensive assessment to the asphalt pavement.
引文
[1]中国公路运输业发展研究报告(2005/2006)[M].北京:人民交通出版社,2006,3
    [2]国家高速公路网规划(2010)M].北京:人民交通出版社,2010,2
    [3]王乐.国外沥青路面车辙的控制[J].交通标准化,2006,(08),17-19.
    [4]黄瑞豹,林洲.沥青路面早期损坏的分析与防治[J].交通标准化,2006,(11),147-150.
    [5]崔颖超,孙民刚,潘国强.公路改建中沥青混凝土路面病害检测与评价[J].地下空间,2005,(S1),1163-1167.
    [6]施树明,初秀民,王荣本.沥青路面破损图像测量方法研究田.公路交通科技,
    2004,(07),12-16.[7]孙成仁,何桂平.路面破损状况自动检测系统[J].公路,2002,(07),19-22.
    [8]蒋彬,刘淑荣.基于图象识别的公路路面破损自动检测研究进展[J].东北公路,2002,(03),19-21.
    [9]何桂平,曹翠星,孙成仁.路面破损自动评价技术的现状和发展[J].中外公路,2002,(03),11-13.
    [10]Tarek A. Monem, Amr A. Oloufa, and Hesham Mahgoub. Asphalt Crack Detection Using Thermograph[C]y. InfraMation 2005 Proceeding,1-12.
    [11]王钧,刘东,张联盟.碳纤维增强聚合物基复合材料自诊断性能研究[J].武汉理工大学学报,2002,24(4)36-40.
    [12]陈兵,吴科如,等.损伤自诊断机敏混凝土材料研究[J].混凝土2002;8:3-8.
    [13]郑立霞.机敏混凝土及其结构的压敏性研究[D].武汉,武汉理工大学硕士学位论文,2003.5
    [14]郑立霞,宋显辉,等.机敏混凝土结构变形的自诊断[J].华中科技大学学报2004;430-35.
    [15]Xuli Fu and D.D.L. Chung,Effect of Curing Age on The Self-monitoring Behavior of Carbon Fiber Reinforced Mortar[J], Cement and Concrete Research, 1997,27 (9):1313-1318.
    [16]D.D.L. Chung. Self-monitoring structural materials[J]. Materials Science and Engineering, R22 (1998) 57-78.
    [17]Xuli Fu, D.D.L. Chung. Self-monitoring in carbon fiber reinforced mortar by reactance measurement[J].Cement and Concrete Research,27(1997) 845-852.
    [18]Wu Yao, Bing Chen and Keru Wu.Smart behavior of carbon fiber reinforced cement-based composite[J]. Journal of Materials Science & Technology,19(2003) 239-245.
    [19]Shui Zhonghe, Li Jizhong, Huang Fengping. Study on the electrical properties of carbon fiber-cement composite[J]. Journal of Wuhan University of Technology, 10(1995)37-41.
    [20]F J Carrion, J FDoyle and A Lozano. Structural health monitoring and damage detection using a sub-domain inverse method[J], Smart Mater. Struct.12 (2003) 776-784.
    [21]Ken P Chong, Nicholas J Carino and GlennWasher. Health monitoring of civil infrastructures[J]. Smart Mater Struct.12 (2003) 483-493.
    [22]Gerhard Mook, Juergen Pohl and Fritz Michel. Non-destructive characterization of smart CFRP structures[J], Smart Mater, Struct. 12 (2003) 997-1004.
    [23]ShoukaiWang, Daniel P Kowalik and D.D.L Chung. Self-sensing attained in carbon-fiber polymer-matrix structural composites by using the interlaminar interface as a sensor[J], Smart Mater. Struct 13 (2004) 570-592.
    [24]S F Masri, L-H Sheng, J P Caffrey, R L Nigbor, MWahbeh and A M Abdel-Ghaffar. Application of a Web-enabled real-time structural health monitoring system for civil infrastructure systems[J]. Smart Mater. Struct.13 (2004) 1269-1283.
    [25]Yung Bin Lin, KuoChun Chang, Jenn Chuan Chern and Lon AWang. The health monitoring of a prestressed concrete beam by using fiber Bragg grating sensors [J], Smart Mater. Struct 13 (2004) 712-718.
    [26]Hiroshi Tsuda, Nobuyuki Toyama, KeiUrabe and JunjiTakatsubo. Impact damage detection in CFRP using fiber Bragg gratings[J]. Smart Mater. Struct. 13 (2004) 719-724.
    [27]Kevin K Tsengl and Liangsheng Wang. Smart piezoelectric transducers for in situ health monitoring of concrete[J], Smart Mater. Struct. 13 (2004) 1017-1024.
    [28]Jeong-Beom Ihn and Fu-Kuo Chang Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network [J], Smart Mater. Struct 13 (2004) 609-620.
    [29]Sun Mingqing, Li Zhuoqiu, Mao Qizhao. A study on thermal self-monitoring of carbon fiber reinforced concrete[J]. Cemnt and Concrete Research 29(1999) 169-771.
    [30]Shui zhonghe, Stioeven piet. Electrical conductive behavior of cementitious composites with low content of hybrid steel-carbon fiber systems[J]. Journal of Wuhan University of Technology,13(1998) 18-24
    [31]Pu-Woei Chen, D.D.L. Chung. Concrete as a new strain/stress sensor [J]. Composites:Part B 27B (1996) 11-23.
    [32]Xuli Fu, D.D.L. Chung. Contact electrical resistivity between cement and carbon fiber:its decrease with increasing bond strength and its increase during fiber pull-out[J]. Cement and Concrete Research,25(1995) 1391-1396.
    [33]Xuli Fu, D.D.L. Chung. Self-monitoring of fatigue damage in carbon fiber reinforced cement[J]. Cement and Concrete Research,26(1996) 15-20
    [34]S. Wang D.D.L. Chung. Self-monitoring of strain and damage by a carbon-carbon composite[J]. Carbon,35(1997) 621-630.
    [35]Sihai Wen, D.D.L. Chung. Effects of carbon black on the thermal, mechanical and electrical properties of pitch-matrix composites [J]. Carbon 42(2004)2393-2397.
    [36]张登良.沥青与沥青混合料[M].北京:人民交通出版社,1993.
    [37]吴少鹏,磨炼同,林振华.石油沥青及传导性能的研究[J].国外建材科技,2001,22(Sup.):14-16
    [38]吴少鹏,磨炼同,水中和.石墨改性沥青混凝土的导电机制[J].自然科学进展,2005(15)4:446-451.
    [39]Shaopeng Wu, Liantong Mo, Zhonghe Shui, Zheng Chen. Investigation of the conductivity of asphalt concrete containing conductive fillers[J],Carbon,2005(43):1358-1363.
    [40]Shaopeng Wu, Liantong Mo, Zhonghe Shui. Percolation model of graphite-modified asphalt concrete[J], J. Wuhan Univ. Tech. (Mater. Sci. Ed.),2005 (20)1:111-113
    [41]Wu shaopeng, Mo Liantong, Shui Zhonghe. Piezoresistivity of Graphite Modified Asphalt-based Composites[J], Key Engineering Materials, 2003(249)391-396.
    [42]Shaopeng Wu, Xiaoming Liu. Research of self-monitoring mechanism of electrically conductive asphalt-based composite [J]. Key Engineering Materials, Vols. 326-328 (2006) pp.1499-1502.
    [43]S. Wen and D. D. L. Chung. Pitch-matrix composites for electrical, electro magnetic and strain-sensing applications [J], Journal of Materials Science, 2005(40),153897-3903.
    [44]Shaopeng Wu, Xiaoming Liu. Fatigue Failure Self-monitoring of Graphite Modified Bituminous Composites[C], Proceedings of the 2nd International Conference on Structural Health Monitoring of Intelligent Infrastructure 16-18 November 2005, Shenzhen, China,1494-1498.
    [45]Shaopeng Wu, Xiaoming Liu Deformation self-monitoring of bituminous composites containing conductive fillers[C]. Proceedings of the 2nd International Conference on Structural Health Monitoring of Intelligent Infrastructure 16-18 November 2005, Shenzhen, China,1499-1503.
    [46]Whiteoak D.壳牌沥青手册[M].北京:英国壳牌石油公司沥青部,1995.
    [47]JTG F40-2004,公路沥青路面施工技术规范[S].北京:人民交通出版社,2005.
    [48]NCHRP Report 539:Aggregate Properties and the Performance of Superpave-Designed Hot Mix Asphalt.
    [49]JTG E42-2005,公路工程集料试验规程[S].北京:人民交通出版社,2006,1
    [50]陆长征.碳黑填充导电塑料的研究[J].塑料,2000,29(1):32-34.
    [51]景志坤.碳黑在塑料(橡胶)中/石墨导电复合材料的制备与表征[J].中
    [52]Dana Pantea, Hans Darmstadt, Serge Kaliaguine. Electrical Conductivity of Thermal Carbon Fibers [J]. Carbon,2002,40(13):2461-2468.
    国塑料,2001,15(9):40-43.[55]许立宁,邓海金,等.原位聚合法制备PMMA/石墨纳米导电复合材料[J].塑
    [54]Hand GP. Graphite [J]. Mining Engineering.1997,49(2):34-38.
    料工业,2001,29(6):17-19.[56]周强,徐瑞清.石墨材料的润滑性能及其开发应用[J].新型碳材料,
    1997,12(3):11-17.[57]彭波,靳明,袁万杰.纤维增强沥青混合料性能的研究[J].重庆交通学院学
    报,2002,21(4)27-29.[59]唐祖全.导电混凝土路面材料的性能分析及导电组份选择[J].混凝土,2002,
    [58]Lee Young-Seak, Lee Byoung-Ky. Surface Properties of Oxyfluorinated PAN-based CarbonFibers [J]. Carbon,2002,40(13):2461-2468.
    150(4):28-32.[60]钱庆纬,张经双.纤维混凝土特性研究及应用前景[J].西部探矿工程,
    2005,114(10):165-167.[61]王建军,宋显辉.碳纤维水泥涂层的温敏性研究[J].武汉理工大学学
    报,2005,12(1):15-21.[62]许美萱,刘文广,姚康德.纤维增强复合材料无损检测的新趋势——自诊断
    智能材料的构思[J],材料导报,1995,2:8-11.[63]陈兵,吴科如,姚武.碳纤维水泥基复合材料导电性能研究[J].混凝土与水
    泥制品,2002(12),6:36-39.[64]王建军,宋显辉,李卓球.碳纤维水泥基复合材料压敏性应用研究[J].华中 科技大学学报(自然科学版),2007,35(03):100-103.
    [65]韩宝国,关新春,欧进萍.碳纤维水泥石测试方法研究[J].玻璃钢/复合材料,2003,24(6):6-9.
    [66]简华丽,谢慧才,刘金伟.碳纤维混凝土中纤维含量对其力学、压敏性能的影响明.混凝土,2003,170(12)21-23.
    [67]Wu shaopeng, Mo Liantong, Shui Zhonghe. An Improvement in Electrical Properties of Asphalt Concrete [J], Journal of Wuhan Univesity of Technology (Mater.Sci.Ed),2002(17),4:63-65.
    [68]周晓青,李宇峙,应荣华.沥青混合料拉伸疲劳试验下疲劳损伤特性研究[J].重庆建筑大学学报,2005,27(5)47-52.
    [69]许志鸿,李淑明,高英.沥青混合料疲劳性能研究[J].交通运输工程学报,2001,1(1)20-24.
    [70]黄爱明,刘铁山.沥青混合料疲劳性能的能耗分析方法研究[J].山西建筑,2005,31(23):148-149.
    [71]王绍怀,张肖宁.沥青混合料疲劳破坏预测方法的研究[J].哈尔滨建筑大学学报,1995,28(2)37-44.
    [72]周淑珍,汤铁铭.基于耗散能理论的沥青混合料疲劳性能研究[J].公路交通科技,2005,31(23):85-86.
    [73]周志刚.交通荷载下沥青类路面疲劳损伤开裂研究[D].中南大学博士学位论文,2003.5
    [74]郑健龙,.Burgers粘弹性模型在沥青混合料疲劳特性分析中的应用[J].长沙交通学院学报,1995,11(3):32-43.
    [75]郑健龙,吕松涛,田小革.沥青混合料粘弹性参数及其应用[J].郑州大学学报,2004,25(4):8-12.
    [76]NCHRP Report 325:Significant findings from full-scale accelerated pavement testing
    [77]David Harold Timm. A phenomenological model to predict thermal crack spacing of asphalt pavement. A thesis submitted to the Faculty of the Graduate School of the University of Minnesota in partial fulfillment of the requirements for the Degree of Doctor of Philosophy [D]
    [78]吴少鹏,磨炼同,水中和.导电沥青混凝土的制备研究[J],武汉理工大学学报(交通科学与工程版),2002(26)5:566-569.
    [79]彭波,刘红瑛.SAC及superpave沥青混合料路用性能[J].长安大学学报(自然科学版),2002,22(6)23-29沈金安.
    [80]吴少鹏,刘小明,等.自诊断沥青混凝土及其应用前景[J].华中科技大学学 报,vol.22No.3,2005,9:1-4.
    [81]吕伟民.沥青混合料设计原理与方法[M].上海:同济大学出版社,2000.40-80.
    [82]改性沥青与SMA路面[M].北京:人民交通出版社,1999.60-79.
    [83]中华人民共和国交通行业标准.公路工程沥青及沥青混合料试验规程(JTJ052-200) [S],北京:人民交通出版社,2000.
    [84]磨炼同.导电沥青混凝土的制备与研究[D].武汉:武汉理工大学硕士学位论文,2004.6.
    [85]杨大川译.金属填充聚合物—性能与应用[J].北京:中国石化出版社,1992.104-106.
    [86]汤浩,陈欣方,罗云霞.复合型导电高分子材料导电机理研究及电阻率计算[J].高分子材料科学与工程,1996,12(3):1-7
    [87]R.Q. Li, D.Y. Dou. Complicated resistivity-temperature behavior in polymer composites[J]. Journal of Applied Polymer Science,2002,86:2217-2221.
    [88]席保锋,刘辅宜,徐传骧.聚合物/炭黑复合材料PTC特性的理论研究进展[J].高分子材料科学与工程.1999,15(6)25-29.
    [89]GH. Chen, W. G Weng. Nonlinear conduction in nylon-6/Foliated graphite nanocomposites above the percolation threshold[J]. Journal of Polymer Science:Part B:Polymer Physics,2004,42:155-167.
    [90]X.W. Zhang, Y. Pan. Piezoresistance of conductor filled insulator Composites. Polymer International[J],2001,50229-236.
    [91]J.F. Zou, Z. Z. Yu, Y.X. Pan. Conductive Mechanism of Polymer Graphite Conducting Composites with Low Percolation Threshold[J]. Journal of Polymer Science:Part B:Polymer Physics,2002,40,954-963.
    [92]南策文,陈政新.Ti-A12O3金属陶瓷的渗流模型[J].物理学报,1987,36:511-513.
    [93]Y. H. Hou, M. Q. Zhang. Improvement of Conductive Network Quality in Carbon Black-Filled Polymer Blends[J]. Journal of Applied Polymer Science,2002, 84,2768-2775
    [94]K. P. Sau, D. K hastgir, T. K. Chaki. Electrical conductivity of carbon black and carbon fibre filled silicone rubber composites[J]. Die Angewandte Makromolekulare Chemie 1998 (258):11-17
    [95]T.A. Ezquerra, N.T. Connor. Alternating-current properties of graphite, carbon-black and carbon-fiber polymeric composites[J]. Composites Science and technology,2001,61:903-909
    [96]曾竟成.复合材料理化性能[M].长沙:国防科技大学出版社,1998.84-98.
    [97]G Yu, M. Q. Zhang, Effect of Filler Treatment on Temperature Dependence of Resistivity of Carbon-Black-Filled Polymer Blends[J], Journal of Applied Polymer Science,1999,73:489-494
    [98]Weihua Di, Guo Zhang Resistivity-Temperature Behavior of Carbon Fiber Filled Semicrystalline Composites [J]. Journal of Applied Polymer Science,2004, 91:1222-1228
    [99]Jie Zhang Shengyu Feng. Temperature Effects of Electrical Resistivity of Conductive Silicone Rubber Filled with Carbon Blacks [J]. Journal of Applied Polymer Science,2003,90:3889-3895.
    [100]宣兆龙.炭黑/高聚物导电复合材料PTC效应的研究[J].塑料.1999,19(10):25-30.
    [101]杨建高,刘成岑,施凯.渗流理论在复合型导电高分子材料研究中的应用[J].化工中间体,2006,22(2):12-16.
    [102]AASHTO Designation:T 321-03. Standard method of test for Determining the fetigue life of compacted hot-mix asphalt (HMA) subjected to repeated flexural bending[S].
    [103]AASHTO Designation:TP31-96. Standard method of test for Determining the resilient modulus of bituminous mixtures by indirect tension[S].
    [104]Zhonghe Shui. The Electrical Properties of Carbon fiber-Cement Composite (CFCC) [J]. Journal of Wuhan University of Technology (Mater. Sci. Ed.),1995, 10(04)38-42.
    [105]M. Taya, W.J. Kim, K. Ono. Piezoresistivity of a short fiberrelastomer matrix composite[J]. Mechanics of Materials,1998,28:53-59.
    [106]Sihai Wen, D. D.L. Chung, Piezoresistivity in Continuous Carbom Fiber Cement-matrix Composite [J], Cement and Concrete Research,1999,29:445-449.
    [107]喻翔.高速公路路面养护管理系统决策优化的研究[D].西南交通大学,2005.5
    [108]马士宾.以可靠性为中心的沥青路面维修关键技术研究[D].长安大学,2008.5
    [109]赵仲华.高速公路建设和养护一体化管理信息系统研究[D].天津大学,2006.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700