用户名: 密码: 验证码:
药材川贝母的品质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川贝母来源于百合科Liliaceae贝母属Fritillaria6种植物的干燥鳞茎,收载于2010版《中国药典》,具有清热润肺、化痰止咳、散结消痈之功效。川贝母是贝母类药材中药用价值最高的一个复合群。随着市场需求的快速增长以及过度采挖造成的生境破坏导致川贝母资源日益短缺,在地方省市出现了以次充好、以假乱真的现象,严重影响了川贝母成药产品的质量。本论文从川贝母产地适宜性分析、化学成分定量、真菌毒素检测、有效成分生物合成途径解析等方面对川贝母类群进行了系统地研究,为严格控制川贝母质量稳定,保证临床疗效和用药安全,推进川贝母资源开发奠定了理论基础。
     市场上贝母类药材种类繁多,外观形态相似,鉴别难度较大。由于川贝具有很高的开发价值,价格较高,市场上经常出现贝母混售或以其他伪品充当川贝母出售的现象,致使川贝母的质量控制难度加大。为有效监管川贝母质量,保证临床疗效,本文分别对几种川贝母药材的脂溶性成分(主要是生物碱类)和水溶性成分(主要是核苷类成分)进行了检测和分析。采用HPLC-ELSD建立了可同时检测川贝母药材中4种生物碱(贝母辛、西贝素、贝母素甲和贝母素乙)含量的方法,并利用该方法对99批川贝母药材进行了含量测定。分别建立了5种川贝母药材的HPLC-ELSD指纹图谱,对共有峰进行了标定,并通过相似度对药材品质进行了评价。建立了HPLC-DAD方法同时检测川贝母药材10个核苷类成分含量的方法。99批川贝母样品含量测定结果表明尿嘧啶、胞苷、尿苷、次黄嘌呤、肌苷、鸟苷、胸苷、腺苷、腺嘌吟、2-脱氧腺苷10种核苷是川贝母药材共有成分,这对更好地评价川贝母品质具有重要的参考价值。同时以暗紫贝母为例建立了UPLC快速测定川贝母药材中10种核苷成分含量的技术体系,代替了传统的液相法进行核苷测定。川贝母中脂溶性和水溶性成分含量测定方法的建立,对有效区分贝母种类,科学评价川贝母品质,保证临床疗效具有重要的现实意义。
     川贝母药材在生长、储存、运输过程中都有可能受到霉菌感染,受到真菌毒素的污染,对临床用药安全造成严重的威胁。本文采用HPLC-MS对黄曲霉毒素(aflatoxins, AF)、赭曲霉毒素A (Ochratoxin A, OTA)、雪腐镰刀菌烯醇(nivalenol, NIV)、脱氧雪腐镰刀菌烯醇(deoxynivalenol, DON)、玉米赤霉烯酮(zearalenone, ZEN)、T-2毒素(T-2toxin)等毒素进行检测。分别建立了利用HPLC-MS/MS同时定性定量测定AFB1和OTA含量和采用HPLC-MS同时检测DON、NIV、ZEN及T-2毒素的方法,严格控制川贝母药材质量,为临床用药安全提供保障。
     市场需求的快速增长使川贝母野生资源处于濒危境地,寻找川贝母潜在的生态适宜区进行野生抚育和人工种植是缓解资源紧张行之有效的方法。本文采用《中药材产地适宜性分析地理信息系统》(TCMGIS)对川贝母类群的生态适宜区进行研究,计算出与川贝母生态相似度为95%~100%和90%-95%的区域,科学、准确地分析出川贝母类群潜在的生产适宜区,为川贝母的引种栽培和生产布局合理化进行指导。
     川贝母作为传统的化痰止咳药,甾体生物碱是其主要活性成分。但川贝母中生物碱的含量很低,提取分离对自然资源消耗很大,这在一定程度上限制了川贝母进一步的研究与开发。为解决这一难题,很多化学家已经将目光转向天然产物的遗传分析,通过构建cDNA文库来获悉编码生物合成关键酶的编码基因,从而解析生物合成的机制,进而达到通过合成生物学的手段来获得特定单一产物的目的。本文利用高通量测序技术对中药川贝母的基原植物之一——川贝母(ritillaria cirrhosa D.Don)转录组进行研究,获得了45,073条单一序列。发现了许多编码川贝母生物碱生物合成途径关键酶的相关基因,包括编码参与甲羟戊酸(MVA)途径所有酶和可能对下游反应进行修饰的酶的相关基因。为生物碱生物合成途径的研究提供了丰富的基因资源,进而为应用生物技术方法提高川贝母生物碱的含量,或寻找合适的中间体进行有机或生物合成及利用生物合成的方法直接进行生产奠定了基础。
The underground bulbs of six genus Fritillaria in Lilium. listed as "Chuan-beimu" in the2010edition of the Chinese Pharmacopoeia, have been widely used for thousands of years in traditional Chinese medicine as antitussive, anti-asthmatic and expectorant agents. Fritillariae cirrhosae bulbus is considerated as the highest value in genus Fritillaria. Currently, the sharp increased market demand pushed wild plants to the brink of extinction and break the equilibrium in the market. In order to control quality of Fritillariae cirrhosae bulbus, several gene Fritillaria species were analyzed in some aspect, including quantification of fat-soluble and water-soluble components, determination of mycotoxins, analysis on adaptive cultivated area and biosynthesis of isosteroidal alkaloids.
     Fritillariae bulbus, Beimu in Chinese, derived from the bulbs of many Fritillaria species has been used as an antitussive and expectorant herb. Besides, the bulbs of more than30other species were utilized locally as substitutes for Fritillariae bulbus in the markert. Therefore, it is necessary to develop some methods to identify different Fritillaria species and their substitutes confused Fritillariae cirrhosae bulbus in market for the clinical safety of drugs. In this study,99patches Fritillariae cirrhosae bulbus from five Fritillaria species were analyzed by high-performance liquid chromatography with evaporative light scattering detector (HPLC-ELSD) and high-performance liquid chromatography coupled with a photodiode array detector (HPLC-DAD), respectively. Fingerprint analysis based on HPLC-ELSD was established. The result indicated that peimisine is a common constituent in all Fritillaria species investigated.10active nucleosides and nucleobases were detected in all samples, which could be useful for quality evaluation and control of all Fritillaria species in the future. In addition, take F. unibracteata for example. A simple and reliable method of ultra-performance liquid chromatography coupled with a photodiode array detector (UPLC-PAD) was developed for the quantitative analysis of10active nucleosides and nucleobases, including cytidine. uridine, guanosine, inosine. thymidine. cordycepin. adenosine. uracil, hypoxanthine and adenine, for quality control of F. unibracteata. The developed HPLC-ELSD for isosteroidal alkaloids and HPLC-DAD for nucleosides and nucleobases could be useful to control quality of Fritillariae cirrhosae bulbus.
     Mycotoxins are widely distributed toxic secondary metabolites produced by several molds. The growth of molds under diverse environmental conditions could contaminate Fritillariae cirrhosae bulbus. Several studies have provided strong evidence that some mycotoxins have carcinogenic, teratogenic and neurotoxic effects. In the work, an effective method was established for simultaneous determination of aflatoxin B1and ochratoxin A in Fritillariae cirrhosae bulbus by solid-phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). And a rapid method was developed for simultaneously screening Fritillariae cirrhosae bulbus contaminated by DON, NIV, ZEN and T-2using LC-MS. These approaches could be implemented for the routine analysis to investigate the contamination of Fritillariae cirrhosae bulbus.
     Owing to the increased demand for Fritillariae cirrhosae bulbus, wild Fritillaria species are threatened by overexploitation, habitat destruction and lack of proper cultivation practices. Thus, Ex-situ cultivation becomes an immediate action to sustain medicinal plant resources. The traditional Chinese medicine geographic information system (TCMGIS) was applied to predict the large-scale distribution of Fritillaria species. Adaptability analysis of producing area (with similarity rate>90%) was outputted, which gives insights into the discovery of potential habitats for Fritillaria species cultivation.
     F. cirrhosa D. Don is the primary source of Fritillariae cirrhosae bulbus, which has been used as a traditional Chinese medicine for thousands of years as an antitussive apophlegmatic and expectorant. Previous pharmacological investigations indicated that isosteroidal alkaloids were responsible for the therapeutic effects. However, few studies have investigated how isosteroidal alkaloids are synthesized in the plant. To investigate the biosynthetic pathway of the isosteroidal alkaloids in F. cirrhosa, transcriptomic analysis was developed in the present work. A total of1,205,646high-quality sequence reads were generated from the cDNA library of F. cirrhosa bulbs and assembled into45,073unigenes. Many genes involved in the biosynthesis of isosteroidal alkaloids were discovered, including all the genes encoding enzymes catalyzing multiple reactions from acetyl-CoA to the first cyclic backbone, cycloartenol, in this pathway. Some candidate genes encode tailoring enzymes responsible for the modification of cycloartenol into various isosteroidal alkaloids. This study will lay the foundation for the elucidation of the mechanism underlying the biosynthesis of the isosteroidal alkaloids in F. cirrhosa and will also provide an important opportunity to further identify the uncharacterized compounds in the pathway.
引文
[1]肖培根,姜艳,李萍,罗毅波,刘勇.中药贝母的基原植物和药用亲缘学的研究[J].植物分类学报,2007,(04):473-487.
    [2]周剑侠,康露,毕京博,沈征武.贝母药材在中药和保健食品中使用的安全性探讨[J].上海中医药杂志,2006,(04):66-67.
    [3]严玉平,雷宇华,由会玲,郑玉光.川贝母及代用品种源与分布初步研究[J].河北中医药学报,2007,(02):42-44.
    [4]阎博华,丁红,丰芬,曾洁萍.不同基源川贝母研究进展[J].四川中医,2010,(05):48-50.
    [5]陈士林,贾敏如,王瑀,薛刚,肖培根.川贝母野生抚育之群落生态研究[J].中国中药杂志,2003,(05):18-22.
    [6]陈士林,魏建和,黄林芳,郭宝林,肖培根.中药材野生抚育的理论与实践探讨[J].中国中药杂志,2004,(12):5-8.
    [7]李萍,徐国钧.中药贝母类的资源利用研究[J].植物资源与环境,1993,(03):12-17.
    [8]罗毅波,陈心启.中国横断山区及其邻近地区贝母属的研究(一)——川贝母及其近缘种的初步研究[J].植物分类学报,1996,(03):304-312.
    [9]Boit, H. G.. Uber Imperialin, I. Mitteil [J]. Chemische Berichte,1954,87 (4):472-475.
    [10]周荣汉,段金廒.植物化学分类学[M].上海:上海科学技术社,2005:1110-1129.
    [11]Li, S. L., Li, P., Lin, G., Chan, S. W., Ho, Y. P.. Simultaneous determination of seven major isosteroidal alkaloids in bulbs of Fritillaria by gas chromatography[J]. Journal of chromatography A,2000,873(2):221-228.
    [12]李松林,李萍,林鸽,周国华,任延军,阙宁宁.药用贝母中几种活性异甾体生物碱的分布[J].药学学报,1999,(11):842-847.
    [13]Li, S. L., Lin, G., Chan, S. W., Li, P.. Determination of the major isosteroidal alkaloids in bulbs of Fritillaria by high-performance liquid chromatography coupled with evaporative light scattering detecti on [J]. Journal of chromatography A,2001,909(2): 207-214.
    [14]Hu, C., Shang, E., Lin, W., Cai, M.. Studies on the chemical constituents of Fritillaria taipaiensis L[J]. Acta pharmaceutica Sinica,1993,28(7):516.
    [15]Wang, H., Zhang, A., Tang, X., Zheng, Y., Yi, X., Yu, K.. Isolation and structure flucidation of alkaloids from the bulb of Fritillaria Wabuensis SY Tang et SC Yueh. [J]. Journal of West China University of Medical Sciences,1996,27(1):100.
    [16]Kaneko, K., Katsuhara, T., Kitamura, Y., Nishizawa, M., Chen, Y. P., Hsu, H. Y.. New steroidal alkaloids from the Chinese herb drug, Bei-mu[J]. Chemical and pharmaceutical bulletin,1988,36(12):4700-4705.
    [17]Kaneko, K., Tanaka, M., Haruki, K., Naruse,N., Mitsuhashi, H.. I3C-NMR studies on the cevanine alkaloids:the application of I3C-NMR spectrum for structure elucidation of new alkaloids, baimonidine and isoverticine[J]. Tetrahedron letters,1979,20(39): 3737-3740.
    [18]Kaneko, K., Katsuhara, T., Mitsuhashi, H., Chen, Y. P., Hsu, H. Y., Shiro, M.. Chuanbeinone, a novel D/E cis-(22R,25S)-5a-cevanine alkaloid from Chinese herbal drug, chuanbeimu[J]. Tetrahedron letters,1986,27(21):2387-2390.
    [19]曹新伟.川贝母的化学成分研究与贝母属药用植物质量评价[D].北京:中国协和医科大学,2008.
    [20]Kaneko, K., Katsuhara, T., Mitsuhashi, H., Chen, Y. P., Hsu, H. Y., Shiro, M. Isolation and structure elucidation of new alkaloids from Fritillaria delavayi Franch[J]. Chemical & pharmaceutical bulletin,1985,33(6):2614-2617.
    [21]余世春,肖培根.暗紫贝母生物碱成分研究[J].Journal of Integrative Plant Biology, 1990, (12):929-935.
    [22]余世春.贝母属植物异甾体生物碱的存在及其分类学意义[J].植物分类学报,30(5):450-459.
    [23]严忠红,陆阳,丁维功,陈泽乃.卷叶贝母化学成分研究[J].上海第二医科大学学报,1999,(06):487-489,507.
    [24]余世春,肖培根.中国贝母属植物种质资源及其应用[J].中药材,1991,(01):18-23.
    [25]陈阳.川贝母非生物碱类成份的研究[D].成都:四川大学,2004.
    [26]马利琼,王晓铭,王化远.17个不同产地的川贝母总生物碱的含量测定[J].华西药学杂志,2001,(01):60-61.
    [27]王曙,徐小平,李涛.川贝母与其他贝母类药材总生物碱和总皂苷的含量测定与比较[J].中国中药杂志,2002,(05):25-27.
    [28]黄梦娴.三蛇胆川贝糖浆中总生物碱含量测定[J].广西医学,2001,(04):757-759.
    [29]李萍,徐国钧,金蓉鸾,徐珞珊.中药贝母类的研究XV-21种贝母总生物碱含量测定[J].中国药科大学学报,1990,(05):319-320.
    [30]刘辉,黄林芳,陈士林,张艺,王丽芝,代勇.川贝母采收期的初步研究[J].中药材,2009,(03):331-332.
    [31]张兰珍,樊晓霞,郭亚健.薄层扫描法测定蛇胆川贝液中贝母甲素、贝母乙素含量[J].中国实验方剂学杂志,1996,(06):2-5.
    [32]梁海慧.薄层扫描法测定蜜炼川贝枇杷膏中贝母素乙的含量[J].广东药学,2001,(01):21-22.
    [33]蓝日盛,辛宁,樊泽华.不同采收期及加工方法的川贝母有效成分含量测定[J].广西中医学院学报,2000,(03):93-94.
    [34]李松林,李萍,林鸽,周国华,任延军,阙宁宁.药用贝母中几种活性异甾体生物碱的分布[J].药学学报,1999,(11):842-847.
    [35]刘震东,王曙.HPLC-ELSD测定栽培的瓦布贝母中西贝碱[J].华西药学杂志,2005, (03):257-258.
    [36]朱丹妮,谭丰萍,高山林.HPLC-ELSD分析测定贝母类药材中生物碱成分[J].药物分析杂志,2000,(02):87-91.
    [37]刘晶,王曙,辛贵忠,李会军,李萍.HPLC-ELSD测定太白贝母和瓦布贝母中贝母辛的含量[J].中国药学杂志,2010,(13):1032-1034.
    [38]徐汝明,刘海卫,陆阳,陈泽乃.双波长紫外分光光度法测定贝母中腺昔和胸苷的含量[J].药学学报,1997,(08):58-60.
    [39]徐汝明,陆阳,陈泽乃.紫外分光光度法测定贝母中腺苷的含量[J].中国中药杂志,1996,(09):44-45,65.
    [40]Duan, B., Wang, L., Dai, X., Huang, L., Yang, M., Chen, S.. Identification and quantitative analysis of nucleosides and nucleobases in aqueous extracts of Fritillaria Cirrhosa D. Don. using HPLC-DAD and HPLC-ESI-MS[J]. Analytical Letters,2011, 44(15):2491-2502.
    [41]王聪,王曙,马静.川贝母的HPLC指纹图谱研究[J].华西药学杂志,2010,(01):61-63.
    [42]沈力,周浓,易东阳,李洁玉.太白贝母与暗紫贝母皂苷类成分的HPLC指纹图谱研究[J].中国药房,2012,(35):3313-3315.
    [43]李斌,于海英,程秀民,周永妍,汪淑峰.5种贝母的弱极性成分HPLC指纹图谱研究[J].中国实验方剂学杂志,2010,(08):54-57.
    [44]李萍,季晖,徐国钧,徐珞珊.贝母类中药的镇咳祛痰作用研究[J].中国药科大学学报,1993,(06):360-362.
    [45]汪丽燕,韩传环,王萍.皖贝与川贝和浙贝止咳祛痰的药理作用比较[J].安徽医学,1993,(03):57-58.
    [46]沈力,马羚,刘书显,贾晗.太白贝母与暗紫贝母镇咳祛痰药理作用比较研究[J].实用中医药杂志,2012,(09):784-785.
    [47]颜晓燕,童志远,晏子俊,罗燕秋,唐丽,吴珊珊,杨军,彭成.暗紫贝母、栽培瓦布贝母及浙贝母药效学比较[J].中国实验方剂学杂志,2012,(10):244-248
    [48]杜少芬.川贝母、平贝母有效性的比较[J].中药新药与临床药理,1996,(02):45-46.
    [49]莫正纪,唐心曜,孙中,李玮.引种栽培瓦布贝母、浓蜜贝母与野生川松贝母的药理作用比较研究[J].中国中药杂志,1998,(01):14-16,61.
    [50]周颖,季晖,李萍,姜艳.五种贝母甾体生物碱对豚鼠离体气管条M受体的拮抗作用[J].中国药科大学学报,2003,(01):60-62.
    [51]赵益,朱卫丰,刘红宁,余日跃,梁迎春.贝母辛平喘作用及机制研究[J].中草药,2009,(04):597-601.
    [52]江苏省防疫站.中草药防治结核病[M].南京:江苏省防疫站,1977:8.
    [53]陈泽乃,陆阳,徐佩娟,高用明,邓克敏,陈聪颖.中药贝母中水溶性成分的研究[J].中国中药杂志,1996,(07):420-422,447.
    [54]Kang, D. G., Sohn, E. J., Lee, Y. M., Lee, A. S., Han, J. H., Kim, T. Y., Lee, H. S.. Effects of bulbus Fritillaria water extract on blood pressure and renal functions in the L-NAME-induced hypertensive rats [J]. Journal of ethnopharmacology,2004,91(1): 51-56.
    [55]章鸣玉,周晓琳.宁国贝母总碱的镇静镇痛作用[J].安徽医学,1990,(05):46.
    [56]熊玮,郭小玲.湖北贝母药理作用的初步研究[J].中草药,1986,17(3):19.
    [57]Ramachandra Rao, S., Ravishankar, G.. Plant cell cultures:chemical factories of secondary metabolites[J]. Biotechnology Advances,2002,20(2):101-153.
    [58]Leonard, E., Nielsen, D., Solomon, K., Prather, K. J.. Engineering microbes with synthetic biology frameworks[J]. Trends in biotechnology,2008,26(12):674.
    [59]Canton, B., Labno, A., Endy, D.. Refinement and standardization of synthetic biological parts and devices [J]. Nature biotechnology,2008,26(7):787-793.
    [60]Martin, C.H., Nielsen, D. R., Solomon, K. V., Prather, K. L. J.. Synthetic metabolism: engineering biology at the protein and pathway scales[J].2009,277-286.
    [61]Guerra-Bubb, J., Croteau, R., Williams, R. M.. The early stages of taxol biosynthesis:An interim report on the synthesis and identification of early pathway metabolites[J]. Natural Product Reports,2012,29(6):683-696.
    [62]Jiang, M., Stephanopoulos, G., Pfeifer, B. A.. Downstream reactions and engineering in the microbially reconstituted pathway for Taxol [J]. Applied microbiology and biotechnology,2012,94(4):841-849.
    [63]Newman, J. D., Marshall, J., Chang, M., Nowroozi, F., Paradise, E., Pitera, D., Newman, K. L., Keasling, J. D.. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli[J]. Biotechnology and bioengineering,2006,95(4):684-691.
    [64]Dietrich, J. A., Yoshikuni, Y., Fisher, K. J., Woolard, F. X., Ockey. D., McPhee, D. J. Renninger, N. S., Chang, M. C., Baker, D., Keasling, J. D.. A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450BM3[J]. ACS chemical biology,2009,4(4):261-267.
    [65]Chen, S., Luo.H., Li,Y., Sun, Y, Wu, Q., Niu. Y., Song. J., Lv.A., Zhu, Y., Sun. C.454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng[J]. Plant cell reports,2011,1-9.
    [66]Sun, C., Li,Y., Wu,Q., Luo,H., Sun,Y., Song,J., Lui,E.M.K., Chen, S.. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis[J]. BMC genomics,2010,11(1):262.
    [67]Luo,H., Sun,C., Sun,Y., Wu,Q., Li,Y., Song,J., Niu,Y., Cheng, X., Xu, H., Li, C Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers[J]. BMC genomics,2011, 12(Suppl 5):S5.
    [68]Graham, I. A., Besser, K., Blumer, S., Branigan, C. A., Czechowski, T., Elias, L., Guterman, I., Harvey, D., Isaac, P. G, Khan, A. M.. The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin[J]. Science,2010, 327(5963):328-331.
    [69]U.Y., Luo,H.M., Sun,C., Song,J. Y., Sun, Y.Z., Wu,Q., Wang,N., Yao,H., Steinmetz, A., Chen, S. L.. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis[J]. BMC genomics,2010,11(1):268.
    [70]涂珺.中国红豆杉紫杉醇生物合成相关基因的克隆和异源表达研究[D].北京:中国协和医科大学,2004.
    [71]Goldstein, J. L., Brown, M. S.. Regulation of the mevalonate pathway[J]. Nature,1990, 343(6257):425.
    [72]Schaller, H.. New aspects of sterol biosynthesis in growth and development of higher plants[J]. Plant Physiology and Biochemistry,2004,42(6):465-476.
    [73]Benveniste, P.. Biosynthesis and accumulation of sterols[J]. Annu. Rev. Plant Biol., 2004,55429-457.
    [74]鞠世杰,阎秀峰.高等植物的3-羟基-3-甲基戊二酰辅酶A还原酶[J].植物生理学通讯,2004,(01):104-110.
    [75]李嵘,王喆之.植物萜类合成酶3-羟基-3-甲基戊二酰辅酶A还原酶的生物信息学分析[J].广西植物,2006,(05):464-473.
    [76]杨锦芬,何国振,阿迪卡利,徐晖,何瑞,詹若挺,陈蔚文.阳春砂3-羟基-3-甲基戊二酰辅酶A还原酶基因的克隆及分析[J].时珍国医国药,2010,(08):1893-1897.
    [77]Dubey, V. S., Bhalla, R., Luthra, R.. An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants[J]. Journal of biosciences,2003,28(5):637-646.
    [78]Learned, R. M., Fink, G. R..3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes[J]. Proceedings of the National Academy of Sciences,1989,86 (8): 2779-2783.
    [79]Caelles, C., Ferrer, A., Balcells, L., Hegardt, F. G., Boronat, A.. Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase[J]. Plant molecular biology,1989,13(6):627-638.
    [80]Enjuto, M., Balcells, L., Campos, N., Caelles, C., Arro, M., Boronat, A.. Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme[J]. Proceedings of the National Academy of Sciences,1994,91(3):927-931.
    [81]Korth, K. L., Stermer, B. A., Bhattacharyya, M. K., Dixon, R. A.. HMG-CoA reductase gene families that differentially accumulate transcripts in potato tubers are developmentally expressed in floral tissues[J]. Plant molecular biology,1997,33 (3): 545-551.
    [82]Daraselia, N. D., Tarchevskaya, S., Narita, J.O.. The promoter for tomato 3-hydroxy-3-methylglutaryl coenzyme A reductase gene 2 has unusual regulatory elements that direct high-level expression[J]. Plant physiology,1996,112(2):727-733.
    [83]Suzuki, M., Kamide, Y., Nagata, N., Seki, H., Ohyama, K., Kato, H., Masuda, K., Sato, S., Kato, T., Tabata, S.. Loss of function of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels[J]. The Plant Journal,2004,37(5):750-761.
    [84]Enjuto, M., Lumbreras, V., Marin, C., Boronat, A.. Expression of the Arabidopsis HMG2 gene, encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase, is restricted to meristematic and floral tissues[J]. The Plant Cell Online,1995,7(5):517-527.
    [85]Corey, E., Matsuda, S., Bartel, B.. Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen[J]. Proceedings of the National Academy of Sciences,1993,90(24):11628-11632.
    [86]Morita, M., Shibuya, M, Lee, M.-S., Sankawa, U., Ebizuka, Y.. Molecular cloning of pea cDNA encoding cycloartenol synthase and its functional expression in yeast[J]. Biological and Pharmaceutical Bulletin,1997,20770-775.
    [87]Kushiro, T., Shibuya, M., Ebizuka, Y.. β-Amyrin synthase[J]. European Journal of Biochemistry,1998,256(1):238-244.
    [88]Kawano, N., Ichinose. K., Ebizuka, Y.. Molecular cloning and functional expression of cDNAs encoding oxidosqualene cyclases from Cost us speciosus[J]. Biological and Pharmaceutical Bulletin,2002,25(4):477-482.
    [89]Hayashi, H., Hiraoka,N., Ikeshiro, Y., Yazaki, K., Tanaka, S., Kushiro, T., Shibuya, M., Ebizuka, Y.. Molecular cloning of a cDNA encoding cycloartenol synthase from Luffa cylindrica[J]. Plant Physiol,1999,121 1384.
    [90]Zhang, H., Shibuya, M., Yokota, S., Ebizuka, Y.. Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var.japonica:molecular evolution of oxidosqualene cyclases in higher plants[J]. Biological and Pharmaceutical Bulletin, 2003,26(5):642-650.
    [91]Shibuya, M., Adachi, S., Ebizuka, Y.. Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis[J]. Tetrahedron,2004,60(33):6995-7003.
    [92]Toshihiro, I., Jeong, T. M., Yutaka, H., Toshitake, T., Taro, M.. Occurrence of lanosterol and lanostenol in seeds of red pepper (Capsicum cannuum)[J]. Steroids,1977,29(5): 569-577.
    [93]Giner, J.-L., Djerassi, C.. A reinvestigation of the biosynthesis of lanosterol in Euphorbia lathyris[J]. Phytochemistry,1995,39(2):333-335.
    [94]Giner, J. L., Berkowitz, J. D., Andersson, T.. Nonpolar Components of the Latex of Euphorbia p eplus[J]. Journal of natural products,2000,63(2):267-269.
    [95]Rahier, A., Cattel, L., Benveniste, P.. Mechanism of the enzymatic cleavage of the 9β, 19-cyclopropane ring of cycloeucalenol[J]. Phytochemistry,1977,16 (8):1187-1192.
    [96]Zhu, Z. H., Liu, W. H., Ge, L. J., YU, Q., Zhao, W. C., Yang, J. H., Wan, H. T.. Molecular cloning and characterization of a cDNA encoding cycloartenol synthase from Fritillaria thunbergii Miq[J]. African Journal of Biotechnology,2012,11 (26): 6896-6903.
    [97]Sun, C., Sun, Y., Song,J., Li, C., Li,X., Zhang, X., Li,Y., Hu, S., Luo,H., Zhu, Y.. Discovery of genes related to steroidal alkaloid biosynthesis in Fritillaria cirrhosa by generating and mining a dataset of expressed sequence tags (ESTs)[J]. Journal of Medicinal Plants Research,2011,5(21):5307-5314.
    [1]肖培根,姜艳,李萍,罗毅波,刘勇.中药贝母的基原植物和药用亲缘学的研究[J].植物分类学报,2007,(04):473-487.
    [2]尚志钧,刘晓龙.贝母药用历史及品种考察[J].中华医史杂志,1995,(01):38-42.
    [3]赵宝林,刘学医.药用贝母品种的变迁[J].中药材,2011,(10):1630-1634.
    [4]陈心启,夏光成.中药贝母名实考订[J].植物分类学报,1977,15(2):31.
    [5]王林辉,季晖,王长礼,何倩,李萍.伊犁贝母总生物碱的药效学研究[J].中国药科大学学报,2003,(02):76-80.
    [6]徐惠波,孙晓波,温富春,周继胡,丁涛,孙利雯,李瑛.伊犁贝母和梭砂贝母生理活性的初步比较[J].中国中药杂志,2000,(07):7-9.
    [7]张勇慧,阮汉利,曾凡波,皮慧芳,赵薇,吴继洲.湖北贝母镇咳、祛痰、平喘药效部位的筛选[J].中草药,2003,(11):59-61.
    [8]徐仿周,张鹏,张勇慧,阮汉利,皮慧芳,吴继洲.湖北贝母总生物碱平喘作用及其机理的研究[J].时珍国医国药,2009,(06):1335-1337.
    [9]颜晓燕,彭成.川贝母药理作用研究进展[J].中国药房,2011,(31):2963-2965.
    [10]肖培根.湖北贝母的研究进展[J].中国中药杂志,2002,(10):9-11.
    [11]姜艳,李萍.HPLC-ELSD测定浙贝母中贝母素甲、贝母素乙的含量[J].中国药学杂志,2005,(16):1257-1259.
    [12]段宝忠,黄林芳,陈士林.UPLC-ELSD法同时测定伊贝母中贝母辛和西贝母碱的含量[J].药学学报,2010,45(12):1541-1544.
    [13]辛宁.不同规格川贝母的总生物碱、西贝素含量测定[J].广西中医药,1997,(03):45-46.
    [14]赵德永.4种川贝母的总皂甙、总生物碱及西贝素的含量测定[J].中国中药杂志,1994,(02):71-72,126.
    [15]王曙,徐小平,李涛.川贝母与其他贝母类药材总生物碱和总皂苷的含量测定与比较[J].中国中药杂志,2002,(05):25-27.
    [16]陈泽乃,陆阳,徐佩娟,高用明,邓克敏,陈聪颖.中药贝母中水溶性成分的研究[J].中国中药杂志,1996,(07):420-422,447.
    [17]Asako, H., Wolf, R., Granger, D.. Leukocyte adherence in rat mesenteric venules:effects of adenosine and methotrexate[J]. Gastroenterology,1993,104(1):31.
    [18]黄丽晶,高文远,李霞,张艳军.平贝母水提物抗炎作用研究[J].天津中医药,2009,(06):495-496.
    [19]Li, X., Xiong, Z., Ying, X., Cui, L., Zhu, W., Li, F.. A rapid ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometric method for the qualitative and quantitative analysis of the constituents of the flower of Trollius ledibouri Reichb[J]. Analytica Chimica Acta,2006,580(2):170-180.
    [20]Wang, Y. F., Wu,B., Yang,J., Hu,L. M., Su,Y. F., Gao, X. M. A Rapid Method for the Analysis of Ten Compounds in Psoralea corylifolia L. by UPLC[J]. Chromatographia,2009,70(1-2):199-204.
    [1]Gobel, R., Lusky, K.. Simultaneous determination of aflatoxins, ochratoxin A, and zearalenone in grains by new immunoaffinity column/liquid chromatography[J]. Journal of AOAC International,2004,87(2):411-416.
    [2]Rahmani, A., Jinap, S., Soleimany, F., Khatib, A., Tan, C.. Sample preparation optimization for the simultaneous determination of mycotox-ins in cereals[J]. European Food Research and Technology,2011,232(4):723-735.
    [3]Braicu, C., Puia, C., Bodoki, E., Socaciu, C.. Screening and quantification of aflatoxins and ochratoxin A in different cereals cultivated in romania using thin-layer chromatography-densitometry [J]. Journal of Food Quality,2008,31(1):108-120.
    [4]Songsermsakul, P.,Razzazi-Fazeli, E.. A review of recent trends in applications of liquid chromatography-mass spectrometry for determination of mycotoxins[J]. Journal of Liquid Chromatography & Related Technologies(?),2008,31(11-12):1641-1686.
    [5]Commission Regulation (EC) (2001). Setting maximum levels for certain contaminants in food stuffs. Official Journal of the European Communities, L77,1-13.< http:// www.seafoodnet.info/media/pdf/eudirectives/CReg_2001_No466.pdf>.
    [6]Commission Regulation (EC) (2002). Amending Regulation (EC) No 466/2001 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities, L75,1-3..
    [7]Commission Regulation(EC) (2004). Amending Regulation (EC) No 466/2001 as regards aflatoxins and ochratoxin A in foods for infants and young children. Official Journal of the European Communities, L106,1-3.
    [8]Commission Regulation(EC) (2006). No 1881/2006, setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities, L364,5-20.< http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:P DF>.
    [9]Trucksess, M. W., Weaver, C. M., Oles, C. J., Rump, L. V., White, K. D., Betz, J. M., Rader, J. I.. Use of multitoxin immunoaffinity columns for determination of aflatoxins and ochratoxin A in ginseng and ginger[J]. Journal of AOAC International,2007,90 (4): 1042-1049.
    [10]Korea Food and Drug Administration. The Korea Pharmacopeia. (8th Revision). Seoul: Seoul yakup daily,2002.
    [11]Kokkonen, M. K., Jestoi, M. N.. A Multi-compound LC-MS/MS Method for the Screening of Mycotoxins in Grains[J]. Food analytical methods,2009,2(2):128-140.
    [12]Rahmani, A., Jinap, S., Soleimany, F., Khatib, A., Tan, C. Sample preparation optimization for the simultaneous determination of mycotoxins in cereals [J]. European Food Research and Technology,2011,232 (4):723-735.
    [13]Flamini, R., Vedova, A. D., De Rosso, M., Panighel, A.. A new sensitive and selective method for analysis of ochratoxin A in grape and wine by direct liquid chromatography/surface-activated chemical ionization tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry,2007,21 (22): 3737-3742.
    [1]陈士林,贾敏如,王踽,薛刚,肖培根.川贝母野生抚育之群落生态研究[J].中国中药杂志,2003,(05):18-22.
    [2]陈士林,肖小河,陈善墉.暗紫贝母的群落生态研究[J].中药材,1989,(11):7-10.
    [3]唐心跃.川贝母栽培技术[J].四川医学院学报,1978,(01):33-38.
    [4]陈平,叶卯祥,严宜昌,霍春生.五峰尖贝原植物形态及有效成分研究[J].武汉植物学研究,1993,(03):215-218.
    [5]陈心启,夏光成.中药贝母名实考订[J].植物分类学报,1977,15(2):31.
    [6]孙成忠,刘召芹,陈士林,魏建和,赵润怀,王继永,周应群.基于GIS的中药材产地适宜性分析系统的设计与实现[J].世界科学技术,2006,(03):112-117.
    [7]王瑀,魏建和,陈士林,孙成忠,刘召芹,赵润怀,王继永,周应群,肖小河.基于TCMGIS-Ⅰ的暗紫贝母生态气候产地适宜性分析[J].世界科学技术,2006,(03):122-124,117.
    [8]陈士林等编著.中国药材产地生态适宜性区划[M].北京:科学出版社,2011:45-57.
    [1]Li, P., Ji, H., Xu, G., Xu, L.. Studies on the antitussive and expectorant effects of Chinese drug Beimu[J]. JOURNAL-CHINA PHARMACEUTICAL UNIVERSITY,1993, (24): 360.
    [2]Kang, D. G., Oh,H., Cho, D. K., Kwon, E. K., Han, J. H., Lee, H. S.. Effects of bulb of Fritillaria ussuriensis maxim, on angiotensin converting enzyme and vascular release of NO/c GMP in rats[J]. Journal of ethnopharmacology,2002,81(1):49-55.
    [3]Kang, D. G., Sohn, E. J.,Lee, Y. M., Lee, A. S.,Han, J. H.,Kim, T. Y., Lee, H. S.. Effects of bulbus Fritillaria water extract on blood pressure and renal functions in the L-NAME-induced hypertensive rats[J]. Journal of ethnopharmacology,2004,91(1): 51-56.
    [4]Li, S. L., Li, P., Lin, G., Chan, S. W., Ho, Y. P.. Simultaneous determination of seven major isosteroidal alkaloids in bulbs of Fritillaria by gas chromatography[J]. Journal of chromatography A,2000,873(2):221-228.
    [5]Li, S. L., Lin, G., Chan, S. W., Li, P.. Determination of the major isosteroidal alkaloids in bulbs of Fritillaria by high-performance liquid chromatography coupled with evaporative light scattering detection[J]. Journal of chromatography A,2001,909(2): 207-214.
    [6]Yu. X., Ji, H., Wang, C., Li, P.. Advances in studies on pharmacological effects of plants from Fritillaria L[J]. Chin Tradit Herb Drugs,2000,31313-315.
    [7]王曙,徐小平,李涛.川贝母与其他贝母类药材总生物碱和总皂苷的含量测定与比较[J].中国中药杂志,2002,(05):25-27.
    [8]Sun, C., Sun, Y., Song, J., Li, C., Li, X., Zhang, X., Li, Y., Hu, S., Luo, H., Zhu, Y.. Discovery of genes related to steroidal alkaloid biosynthesis in Fritillaria cirrhosa by generating and mining a dataset of expressed sequence tags (ESTs)[J]. Journal of Medicinal Plants Research,2011,5(21):5307-5314.
    [9]Zhu, Z. H., Liu, W. H., Ge, L. J., YU, Q., Zhao, W. C., Yang, J. H., Wan, H. T.. Molecular cloning and characterization of a cDNA encoding cycloartenol synthase from Fritillaria thunbergii Miq[J]. African Journal of Biotechnology,2012,11(26):6896-6903.
    [10]Leitch, I., Soltis, D., Soltis, P., Bennett, M.. Evolution of DNA amounts across land plants (Embryophyta)[J]. Annals of Botany,2005,95(1):207-217.
    [11]ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.17/
    [12]http://www.uniprot.org/downloads
    [13]http://www.genome.jp/kegg/
    [14]ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz
    [15]ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nt.gz
    [16]ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR9_blastsets/
    [17]Corey, E., Matsuda. S., Bartel, B.. Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen [J]. Proceedings of the National Academy of Sciences,1993,90(24):11628-11632.
    [18]Morita, M., Shibuya, M., Lee, M.S., Sankawa, U., Ebizuka, Y.. Molecular cloning of pea cDNA encoding cycloartenol synthase and its functional expression in yeast[J]. Biological and Pharmaceutical Bulletin,1997,20:770-775.
    [19]Enjuto. M., Balcells. L., Campos, N., Caelles. C., Arro, M., Boronat, A.. Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme[J]. Proceedings of the National Academy of Sciences,1994,91(3):927-931.
    [20]Enjuto, M., Lumbreras, V., Marin, C., Boronat, A.. Expression of the Arabidopsis HMG2 gene, encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase, is restricted to meristematic and floral tissues[J]. The Plant Cell Online,1995,7(5):517-527.
    [21]Kushiro, T., Shibuya, M., Ebizuka, Y.. p-Amyrin synthase[J]. European Journal of Biochemistry,1998,256(1):238-244.
    [22]Kawano, N., Ichinose, K., Ebizuka, Y.. Molecular cloning and functional expression of cDNAs encoding oxidosqualene cyclases from Costus speciosus[J]. Biological and Pharmaceutical Bulletin,2002,25(4):477-482.
    [23]Hayashi, H., Hiraoka, N., Ikeshiro, Y., Yazaki, K., Tanaka,S., Kushiro, T., Shibuya, M., Ebizuka, Y.. Molecular cloning of a cDNA encoding cycloartenol synthase from Luffa cylindrica[J]. Plant Physiol,1999,121 1384.
    [24]Zhang, H., Shibuya, M., Yokota, S., Ebizuka, Y.. Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var. japonica:molecular evolution of oxidosqualene cyclases in higher plants[J]. Biological and Pharmaceutical Bulletin, 2003,26(5):642-650.
    [25]Shibuya, M., Adachi, S., Ebizuka, Y.. Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis[J]. Tetrahedron,2004,60(33):6995-7003.
    [26]Chapple, C.. Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases[J]. Annual review of plant biology,1998,49(1):311-343.
    [27]Umemoto, N., Kobayashi, O., Ishizaki-Nishizawa, O., Toguri, T.. cDNAs sequences encoding cytochrome P450 (CYP71 family) from eggplant seedlings[J]. FEBS letters, 1993,330(2):169-173.
    [28]Seitz, C, Eder, C., Deiml, B., Kellner, S., Martens, S., Forkmann, G.. Cloning, functional identification and sequence analysis of flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase cDNAs reveals independent evolution of flavonoid 3', 5'-hydroxylase in the Asteraceae family[J]. Plant molecular biology,-2006,61 (3): 365-381.
    [29]Lepesheva, G. I., Waterman, M. R.. CYP51—the omnipotent P450[J]. Molecular and cellular endocrinology,2004,215(1):165-170.
    [30]Fujita, S.. Ohnishi, T., Watanabe, B., Yokota, T., Takatsuto, S., Fujioka, S., Yoshida, S., Sakata, K., Mizutani, M.. Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols[J]. The Plant Journal,2006,45 (5):765-774.
    [31]Fujioka, S., Takatsuto, S., Yoshida, S.. An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway[J]. Plant physiology,2002,130(2):930-939.
    [32]Ohnishi, T., Szatmari, A. M., Watanabe, B., Fujita, S., Bancos, S., Koncz, C., Lafos, M, Shibata, K., Yokota, T., Sakata, K.. C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis[J]. The Plant Cell Online,2006,18(11):3275-3288.
    [33]Sakamoto, T., Ohnishi, T., Fujioka, S., Watanabe, B., Mizutani, M.. Rice CYP90D2 and CYP90D3 catalyze C-23 hydroxylation of brassinosteroids in vitro [J]. Plant Physiology and Biochemistry,2012,58:220-226.
    [34]Sakamoto, T., Kawabe, A., Tokida-Segawa, A., Shimizu, B., Takatsuto, S., Shimada, Y., Fujioka, S., Mizutani, M.. Rice CYP734As function as multisubstrate and multifunctional enzymes in brassinosteroid catabolism[J]. The Plant Journal,2011,67 (1):1-12.
    [35]Thornton, L. E., Rupasinghe, S. G., Peng, H., Schuler, M. A., Neff, M. M.. Arabidopsis CYP72C1 is an atypical cytochrome P450 that inactivates brassinosteroids [J]. Plant molecular biology,2010,74(1):167-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700