用户名: 密码: 验证码:
基于溶液处理的有机半导体器件及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机发光二极管(organic light-emitting diodes, OLEDs),具有自发光、响应快、全固态、制备工艺简单、宽视角、超薄、耐高低温、柔性等优点,被誉为最理想和最有潜力的下一代显示技术。有机电致发光显示(OLED)可分为小分子发光显示(SMOLED)和聚合物发光显示(PLED)两种形式。SMOLED起步较早,但需要比较昂贵的真空和掩模设备,生产成本相对较高,而PLED一般采用溶液加工方式制备薄膜,具有低成本的优势。
     高质量聚合物薄膜的制备是PLED器件制作的关键。旋涂法无疑是最简便快捷的,而且成膜质量好。单色显示屏可以用旋涂法制备,但是全彩显示屏要用到微图案化技术,分别沉积三种不同颜色的电致发光聚合物。目前最有前途的方法就是喷墨打印。
     喷墨打印彩色图案化技术可以通过调整溶剂的挥发性来得到厚度均匀的膜层。这种非接触式打印方式避免了对功能溶液的接触性污染,而且能极大地节省昂贵的发光材料,因此在PLED制造领域已被确认为向产业化发展的主流技术。在喷墨打印制备全彩PLED显示屏过程中,如何配置可打印的墨水,如何选择溶剂调节参数控制液滴干燥成膜的过程形成均匀的薄膜是制备高性能显示屏的关键。我们将可溶性小分子溶液与聚合物溶液共混调节打印溶液的特性,同时利用高低沸点溶剂共混的方法有效地抑制了咖啡环现象。通过将共轭结构的树枝状蓝色荧光化合物与蓝光材料ADS329BE按照一定比例共混来调节蓝光能量转移层的表面能,改善了液滴在像素坑内的成膜,得到了均匀铺展的膜层,提高了像素的发光面积和显示屏性能。
     近年来,半导体纳米材料因为它们在纳米/微米集成光电器件应用方面展现出的巨大潜力吸引了无数的吸引力。自组装有机一维纳米晶体结构也因为它们可以通过分子设计调节电学和光学性质、器件制备成本低、操作简单逐渐成为高效有机场效应晶体管,高灵敏光探测器件的重要构成要素。但是目前大多数的工作都集中在FET方面,关于有机一维纳米结构光导器件的工作较少有见报道,而已报道的研究重点也更多偏向新分子的设计与合成。
     在这里,我们对化合物1的自组装条件进行优化,得到性能优越的有机一维纳米线单晶;接着通过对有机半导体材料和衬底之间的界面进行修饰,即在二者间旋涂PMMA和PS介电层,最终得到了目前已报道的最高性能的基于有机纳米/微米结构的光探测器件。光导增益相比之前提高到1.3×10~4,电场2×10~6V下得到的响应度为4,372A W~(-10,最高开关比高达10~4。讨论得出结论,这种相当高的光导增益主要得益于引入介电层之后,材料的载流子迁移率和寿命都得到了提高。
Owing to the advantages of self light-emission, fast response, solid thin film device, easyfabrication, wide view-angle, thin form factor, wide operation temperature, flexibility, etc.,organic light-emitting diodes (OLEDs) are considered as the next generation displaytechnology.
     There are two variations of the OLED display technology. One is so called “smallmolecule”(SMOLED) technology. The other is “conjugated polymer”(PLED) basedtechnology. Though SMOLED technology has become the most popular technology in theflat panel display, its fabrication requires vacuum deposition with shadow mask, leading to ahigh production cost. PLED are usually fabricated by solution process, such as spin-coating,dip-coating, screen printing, slot-die coating, and inkjet printing. The solution process can becarried out at low or room temperature without any shadow mask, which are more promisingfor large size, high definition, and high resolution displays.
     High quality film formation is critical in PLED device. The simplest process to achievehigh quality film is spin-coating. Spincoating is fit for fabricating monochrome PLED display.However, since we need to deposive three kind of polymer of different color to specific pixelsrepectively to achieve micro-patterning of full color display, the most promising option isinkjet printing.
     Inkjet printing is of great potential to patter colors for full color PLED display with theadvantages of material savings, low cost, and being environmentally friendly. Since inkjetprinting is a non-contact printing method, it avoids contamination to the functional layer. Toachieve uniform, pin-hole free, optical-quality solid films by inkjet printing, the most criticalprocess is to achieve high quality jetted solution drops. The quality of the drops depend on themolecular weight of the polymer, and the viscosity and the surface tension of the solution. Weblended the conjugated polymer with solution-procesable small molecule to obtain inkjetprintable inks with high performance. Moreover, the coffee ring was successfully suppressedby using the mixture of high and low boiling point solvents, leading to a more uniform filmand a larger fill factor for PLED displays.
     In recent years, semiconducting nanostructures have attracted enormous attention fortheir potential applications in the integrated nano-or micro-optoelectronics. Self-assembled,crystalline, organic, one-dimensional (1D) nanostructures become promising building blocksfor high-performance organic field-effect transistors (FETs), and highly sensitivephotodetectors, due to their tunable electronic and optical properties via molecular design, low-cost device fabrication, and process simplicity. While most efforts have beenconcentrated on FETs, only a few photoconductive organic1D nanostructures have beenreported, most of which focus on the design and synthesis of new molecules. By combining abetter crystalline structure with proper surface engineering, i.e. coating a dielectric layer ofPMMA between the substrate and the organic semiconductor, we achieved the world-recordperformance of organic nano/micro-structure based photodetectors with two-terminal devicestructure. The photoconductivity gain is enhanced to1.3×10~4, and the responsivity isimproved to4,372A W-1at the field of about2×106V m~(-1). The highest on/off ratio reaches104. The extremely high gain is attributed to the high mobility and the long photo carrier’slifetime induced by the dielectric layer.
引文
[1]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005
    [2] Pope M., Kallmann H.P., Magnante P., Electroluminescence in Organic Crystals, J. Chem.Phys.,1963,38:2042
    [3] Helfrich W., Schneider W.G., Recombination Radiation in Anthracene Crystals, Phys.Rev. Lett.,1965,14:229
    [4] Tessler N.,Medvedev V.,Kazes M.,et a1.Efficient Near-Infrared Polymer NanocrystalLight-Emitting Diodes [J]. Science,2002,295:1506—1508
    [5] Pyo S W, Lee S P, Lee H S, et al. White-light-emitting organic electroluminescent devicesusing new chelate metal complexes [J]. Thin Solid films,2000,363(1/2):232-235
    [6] Liu S., Huang J., Xie Z., et al. Organic white light electroluminescent devices [J]. ThinSolid films,2000,363(1/2):294-297
    [7] Gao Z., Lee C S, Bello I, et al. Brigt-blue electroluminescence from asilyl-substitutedter-(phenylene·vinylene) derivative [J]. Appl. Phys. Lett.,1999,74(6):865·867.
    [8] Shi J., Tang C W. Doped organic electroluminescent devices with improved stability [J].Appl. Phys. Lett.,1997,70(13):1665-1667
    [9] Tang C W. Vanslyke S A. Organic electroluminescent diodes [J]. Appl. Phys, Lett.,1987,51:913-915
    [10] Burroughes J. H., Bradly D. D. C., Broun A. R., et al. Light-emitting diodes based onconjugated polymers [J]. Nature,1990,347:539
    [11] Fehse K., Walzer K., Leo K., et al. Highly conductive polymer anodes as replacementsfor inorganic materials in high-efficiency organic light-emitting diodes [J]. Adv. Mater.,2007,19:441
    [12] Li J., Hu L., Wang L., et al. Organic light-emitting diodes having carbon nanotubeanodes [J]. Nano Lett.,2006,6:2472
    [13] Bharathan J. M., Yang Y. Polymer/metal interfaces and the performan-ce of polymerlight-emitting diodes [J]. J. Appl. Phys.,1998,84:3207-3211
    [14] Cao Y., Yu G., Parker I. D., et al. Ultrathin layer alkaline earth metals as stableelectron-injecting electrodes for polymer light-emitting diodes, J. Appl. Phys.,2000,88:3618-3623
    [15] Stoessel M., Wittmann G., Staudigel J., et al. Cathode-induced luminesce quenching inpolyfluorences [J]. J. Appl. Phys.,2000,87:4467-4475
    [16] Wu H., Huang F., Mo Y., et al. Efficient electron injection from a bilayer cathodeconsisting of aluminum and alcohol-/water-soluble conjugated polymers [J]. Adv. Mater.,2004,16:1826-1830
    [17] Nakayama T., Itoh Y., Kakuta A. Organic photo-and electroluminescent devices withdouble mirrors [J]. Appl. Phys. Lett.,1993,63:594
    [18] Liao L. S., Klubek K. P., Tang C. W. High-efficiency tandem organic light-emittingdiodes [J]. Appl. Phys. Lett.,2004,84:167
    [19] Shen Z., Burrows P. E., Bulovic V., et al. Three-color, tunable, organic light-emittingdevices [J]. Science,1997,276:2009
    [20] Kanno H., Holmes R. J., Sun Y., et al. White stacked electrophosphorescent organiclight-emitting devices employing MoO3as a charge-generation layer [J]. Adv. Mater.,2006,18:339
    [21] Parthasarathy G., Burrows P. E., Khalfin V., et al. A metal-free cathode for organicsemiconductor devices [J]. Appl. Phys. Lett.,1998,72:2138-2141
    [22] Graphic reproduced with kind permission by Vladimir Bulovic, Massachussetts Instituteof Technology,2001
    [23] Marks R. N., Bradley D. D. C., Jackson R. W., et al. Charge injection and transport inpoly(p-phenylene vinylene) light emitting diodes [J]. Synth. Met.,1993,57:4128-4131
    [24] Parker I. D. Carrier tunneling and device characteristics in polymer lithg-emitting diodes[J]. J. Appl. Phys.,1994,75:1656-1661
    [25]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:国防工业出版社,2004
    [26] Fowler R. H., Nordheim L. Electron emission in intense electric fields [J]. Proc R SocLondon Ser A.,1928,119:173
    [27] Burroughes J. H., Bradley D. D. C., Brown A. R., et al. Light-emitting diodes based onconjugated polymers [J]. Nature,1990,347:539-541
    [28] Shi S., Wudl F. Synthesis and characterization of a water-solublepoly(p-phenylenevinylene) derivative [J]. Macromolecules,1990,23:2119-2124
    [29] Peng Z. H., Xu B., Zhang J. H., et al. Synthesis and optical properties of water-solublepoly(p-phenylenevinylene)s [J]. Chem. Commun.,1999:1855-1856
    [30] Fujii, A., Sonoda, T., Fujisawa, T., et al. Synthesis and luminescent properties ofwater-soluble poly(p-phenylene vinylene)[J]. Synth. Met.,2001,119:189-190
    [31] Fan Q. L., Lu S., Lai Y. H., et al. Synthesis, characterization, and fluorescence quenchingof novel cationic phenyl-substituted poly(p-phenylenevinylene)s [J]. Macromolecules,2003,36:6976-6984
    [32] Greeham N. C., Moratti S. C., Bradley D. D. C., et al. Efficient light-emitting diodesbased on polymers with high electron affinities [J]. Nature,1993,365:628-630
    [33] Ohmori Y., Uchida M., Muro K., et al. Visible-light electro-luminescent diodes utilizingpoly (3-alkylthiophene)[J]. J. Appl. Phys.,1991,30: L1938-L1940
    [34] Xu X., Liao Y., Yu G., et al. Charge carrier transporting, photoluminescent, andelectroluminescent properties of Zinc(II)-2-(2-hydroxyphenyl) benzothiazolate complex [J].Chem. Mater.,2007,19:1740-1745
    [35] Zhang I. Z., Chen C. W., Lee C. F., et al. Non-amine-based furan-containing oligoryls asefficient hole transporting materials [J]. Chem. Commun.,2002,20:2336-2338
    [36] Tsuji H., Mitsui C., Ilies L., et al. Synthesis and properties of2,3,6,7-Tetraarylbenzo[1,2-b:4,5-b] difurans as hole-transporting material [J]. J. Am. Chem. Soc.,2007,129:11902-11904
    [37] Yan H., Lee P., Armstrong N. R., et al. High-performance hole-transport layers forpolymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry inpolymeric electroluminescent devices [J]. J. Am. Chem. Soc.,2005,127:3172-3174
    [38] Lim B., Hwang J. T., Kim J Y., et al. Synthesis of a new cross-linkableperfluorocyclobutane-based hole-transport material [J]. Org. Lett.,2006,8:4703-4706
    [39] Li C., Sakurai K., Kimura H., et al. Innovative Full Color OLED Technology Based onLight Emission from Guest Dye by Energy Transfer from EL-Excited Host Thin Film[A].SID Symposium Digest37[C]. San Francisco, California, USA: Society for InformationDisplay,2006:1372-1375
    [40] Kinura., Kawaguchi K., Saito T., et al. New Full Color OLEDs Techonoly based onAdvanced Color Conversion Method using Ink-jet Printing[A]. Morreale J. SID SymposiumDigest39[C]. Los Angeles, California, USA: Society for Information Display,2008:299-302
    [41] Carlson C. F. Xerography and related processes [M]. London: Focal Press,1965:15
    [42] Mort J. The anatomy of xerography [M]. Jefferson: McFarland,1989
    [43] Shattuck M. D., Vahtra U. Method for making two-piece hollow devitrified mirror blank:US,3484327,1969
    [44] Light W. A. Photoconductive compositions and elements and method of preparation: US,3615414.1971
    [45] Kampfer H. Sensitization of an inorganic photoconductive layer with1,3-and1,2-squario acid methane dyes: US,3617270.1971
    [46] Loutfy R. O., Hsiao C. K., Kazmaier P. M., Photoconductivity of organic particlesdispersions: squaraine dyes [J]. Photogr. Sci. Eng.,1983,27:5-9
    [47] Forster M., Herater R. E. Squarilium dyes, their infreared and resonance raman spectraand possible use in redox reactions for solar-energy conversion [J]. J. Chem. Soc.,1982,78:1847-1866
    [48] Kaka A. Infrared absorbing dyies [M]. New York: Plenum Press,1990, Chapter12
    [49] Popovic Z. D., Hor A. M., Loutfy R. O. A study of carrier generation mechanism inbenzimidazole perylene/tetraphenyldiamine thin film structures [J]. Chem. Phys.,1998,127:451-457
    [50] Pai D. M., Enck R. C. Onsager mechanism of photogeneration in amorphous selenium[J]. Phys. Rev. B.,1975,11:5163-5174
    [51] Chance R. R, Braun C. L. Intrins photoconduction in anthracene single crystals: electricfield dependence of hole and electron quantum yields [J]. J. Chem. Phys.,1973,59:2269-2272
    [52] Borsenberger P. M., Ateya A. I. Hole photogeneration in poly(N-vinylcarbazole)[J]. J.Appl. Phys.,1978,49:4035-4040
    [53] Onsager L. Initial recombination of ions [J]. Phys. Rev.,1938,54:554-557
    [54] Onsager L. Deviations from Ohm’s Law in weak electrolytes [J]. J. Chem. Phys.,1934,2:599-615
    [55]牛于华,侯琼,袁敏,等.烷基芴2噻吩无规则共聚物电致发光器件的谱色调节与稳定性研究[J].发光学报,23:431-434
    [56] Milliron D. J., Hill I. G., Shen C. A., et al. Surface oxidation activates indium tin oxidefor hole injection [J]. J. Appl. Phys.,2000,87:572-576
    [57]章勇.聚合物发光二极管的性能研究[D].华南理工大学,2005
    [58] Greenham N. C., Samuel I. D. W., Hayes G. R., et al. Measurement of absolutephotoluminescence quantum efficiencies in conjugated polymers [J]. Chem. Phys. Lett.,1995,241:89-96
    [59] Hebner T. R., Wu C. C., Marcy D., et al. Ink-jet printing of doped polymers for organiclight emitting devices [J]. Appl. Phys. Lett.,1998,72(5):519-521
    [60] Chang S C., Liu J., Bharathan J., et al. Multicolor organic light-emitting diodesprocessed by hybrid inkjet printing [J]. Adv. Mater.,1999,11(9):734-737
    [61] Pschenitzka F., Sturm J. C. Three-color organic light-emitting diodes patterned bymasked dye diffusion [J]. Appl. Phys. Lett.,1999,74(13):1913-1915
    [62] Pardo D. A., Jabbour G. E., Peyghambarian N. Application of screen printing in thefabrication of organic light-emitting devices [J]. Adv. Mater.,2000,12:1249-1252
    [63] Wolk M. B., Baude P. F., McCormick F. B., et al. Thermal transfer element and processfor forming organic electroluminescent devices [P]. U.S.,6410201,2002
    [64] Muller C D., Falcou A., Reckefuss N., et al. Multi-colour organic light-emitting displaysby solution processing [J]. Nature,2003,421:829-833
    [65] Gustafsson G., Cao Y., Treacy G. M., et al. Flexible light-emitting diodes made fromsoluble conducting polymers [J]. Nature,1992,357:477-479
    [66] Samsung SDI, IMID Exhibition, Asia Display/IMID’04, Daegu, Korean, August23-24,2004
    [67]彭俊彪.有机光电技术——有机/高分子电致发光技术及产业化进展[J].有机光电,2003,24:092-692
    [68]刘南柳.湿法制备有机半导体器件及其应用研究[D].华南理工大学,2008
    [69] Niu Q., Shao Y., Xu W., et al. Full color and monochrome passive matrix polymerlight-emitting diodes flat panel displays made with solution processed [J]. Organic Electronics,2008,9:95-100
    [70] http://en.wikipedia.org/wiki/Inkjet_printing
    [71] Chang S.C., Bharathan J., Yang Y., et al. Dual-color polymer light-emitting pixelsprocessed by hybrid inkjet printing [J]. Appl. Phys. Lett.1998,73:2561-2563
    [72] Duineveld P. C., Kok M. M. Buechel M., et al.[C]. Proc. SPIE2002,59:4464
    [73] Kamuira N., Mametsuka K., Hanari J., et al.[C]. Proc. AsiaDisplay/IDW, Nagoya2001,Society for Information Display, San Jose, CA2001, p.1403
    [74] van der Vaart N.C., Lifka H., Young N.D., et al. Towards large-area full-coloractive-matrix printed polymer OLED television [A]. SID Symposium Digest35[C]. Seattle,Washington, USA: Society for Information Display,2004:1284-1287
    [75] Grove M., Hayes D., Antohe B., et al. Array printheads for the ink jet fabrication of colorpolymer LEDs [A]. SID Symposium Digest33[C]. Boston, Massachusetts, USA: Society forInformation Display,2002:627-629
    [76] Grove M., Hayes D., Wallace D., et al. Variable ink-jet printing of polymer OLEDdisplay panels using array printheads [A]. SID Symposium Digest34[C]. Baltimore,Maryland, USA: Society for Information Display,2003:1182-1185
    [77] GeSiM Gesellschaft fur Silizium-Mikrosysteme mbH, Groberkmannsdorf, Germany;http://www.gesim.de
    [78] Microfab Technologies, Inc., Plano, TX; http://www.microfab.com
    [79] Litrex Corp., Pleasanton, CA; http://www.litrex.com
    [80] de Gans B.J., Duineveld P.C., Schubert U.S. Inkjet Printing of Polymers: State of the Artand Future Development [J]. Adv. Mater.,2004,16:203-213
    [81] Scientific Examination of Questioned Documents [C]. CRC Press,2006, p.204
    [82] de Gans B.J., Schubert U.S. Inkjet Printing of Polymer Micro-Arrays and Libraries:Instrumentation, Requirements, and Perspectives [J]. Macromol. Rapid Commun,2003,24:659-666
    [83] Attinger D., Zhao Z., Poulikakos D. An Experimental Study of Molten MicrodropletSurface Deposition and Solidification: Transient Behavior and Wetting Angle Dynamics [J]. J.Heat Transfer,2000,122:544-556
    [84] Spectra Inc., Lebanon, NH; http://www.spectra-inc.com
    [85] Xerox Corp., Wilsonville, OR; http://www.officeprinting.xerox.com
    [86] Tekin E., Holder E., Kozodaev D., et al. Controlled pattern formation of MEH-PPV byinkjet printing [J]. Adv. Funct. Mater.2007,17:277-284
    [87] Christanti Y, Walker L M. Surface tension driven jet break up of stain hardeningpolymer solutions [J]. J. N on Newtoniana Fluid Mech.2001,100:9226
    [88] Feehery W. F. Solution processing of small-molecule OLEDs [A]. SID SymposiumDigest38[C]. Long Beach, California, USA: Society for Information Display,2007:1834-1836
    [89] Sean X., Kwang C.O., Brown J.J., et al. Printable phosphorescent organic light emittingdevices [A]. Morreale J. SID Symposium Digest39[C]. Los Angeles, California, USA:Society for Information Display,2008:295-298
    [90] Yang X., Neher D., Daubler T.K., et al. Highly efficient single-layer polymer electrophosphorescent devices [J]. Adv. Mater.,2004,16:161-166
    [91] Letendre W. Challenges in jetting OLED fluids in the manufacturing of FPD usingpiezoelectric micro-pumps [A]. SID Symposium Digest35[C]. Seattle, Washington, USA:Society for Information Display,2004:1273-1275
    [92] Blazdell P. F., Evans J. R. G. Application of a continuous ink jet printer to solid freedomof ceramics [J]. J. Mater. Proc. Tech.2000,99:94-102
    [93] Deegan R D, Bakajin O, Dupont T F, et al. Capillary flow as the cause of ring stainsfrom dried liquid drops [J]. Nature,1997,389:827-829
    [94]彭俊彪,刘南柳,王坚.基于喷墨打印技术的聚合物电致发光显示[J].液晶与显示,2009,24:311-321
    [95] Fischer B. J. Particle conversion in an evaporating colloidal droplet [J]. Langmuir,2002,18:60-67
    [96] Deegan R. D. Pattern formation in drying drops [J]. Phys. Rev. E,2000,61:475-485
    [97] Deegan R. D., Bakajin O., Dupont T. F., et al. Contact line deposits in an evaporatingdrop [J]. Phy. Rev. E,2000,62:756-765
    [98] Maenosono S., Dushkin C. D., Saita S. Growth of a semiconductor nanoparticle ringduring the drying of a suspension droplet [J]. Langmuir1999,15:957-965
    [99] Tekin E., Smith P. J., Schubert U. S. Inkjet printing as a deposition and patterning toolfor polymers and inorganic particles [J]. Soft Matter,2008,4:703-713
    [100] Van den Berg A.M.J., de Laat A.W.M., Smith P.J., et al. Geometric control of inkjetprinted features using a gelating polymer [J]. J. Mater. Chem.,2007,17:677-683
    [101] Kang H. R. Water-based ink-jet ink. I. Formulation [J]. Imag. Sci.,1991,35:179-188
    [102] Tekin E., de Gans B.J., Schubert U.S. Ink-jet printing of polymers-from single dots tothin film libraries [J]. J. Mater. Chem.2004,14:2627-2632
    [103] Carter J., Lyon P., Gregory H., et al. Developing a scalable and adaptable ink jetprinting process for OLED displays [A]. SID Symposium Digest36[C]. Boston,Massachusetts, USA: Society for Information Display,2005:523-525
    [104] Gohda T., Kobayashi Y., Okano K., et al. A3.6-in.202-ppi full-color AMPLED displayfabricated by ink-jet method [A]. SID Symposium Digest37[C]. San Francisco, California,USA: Society for Information Display,2006:1767-1770
    [105] Wang L., Jiang Y., Luo J., et al. Highly efficient and color stable deep blue organiclight emitting diodes based on a solution processible dendrimer [J]. Adv. Mater.,2009,21:4854-4858
    [106]朱静.纳米材料和器件[M].北京:清华大学出版社,2003,1
    [107]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,11
    [108]曹茂盛,曹传宝,徐甲强.纳米材料学[M].哈尔滨:哈尔滨工程大学出版社,2002
    [109] Feynman R.在美国物理学会年会上的演说(1959年12月29日). Calthch’sEngineering and Science,1960
    [110] Yuan G. D., Zhang W. J., Jie J. S., et al. p-Type ZnO nanowire arrays [J]. Nano Lett.,2008,8:2591-2597
    [111] Zheng W. P., Zu R. D., Zhong L. W. Nanobelts of semiconducting oxides [J]. Science,2001,291:1947-1949
    [112]许并社.纳米材料及应用技术[M].北京:化学工业出版社,2004
    [113] Lu L., Sui M. L., Lu K. Superplastic extensibility of nanocrystalline copper at roomtemperature [J]. Science,2000,287:1463-1466
    [114]顾祖毅,田立林,富力文.半导体物理学[M].北京:电子工业出版社,1995
    [115]夏建白,朱邦芬.半导体超晶格物理[M].上海:上海科学技术出版社,1995
    [116] Service R. F. Self-assembly comes together [J]. Science,1994,265:316-318
    [117] Ozin G. A. Panoscopic materials: synthesis over ‘all’length scales [J]. Chem. Commun.,2000,6:419-432
    [118] Israelachvili J. N. Intermolecular and surface forces [M].2nd edition, San Diego:Academic Press,1992
    [119] Hilemenz P. C. Principles of colloid and surface chemistry [M].2nd edition, MarcelDekker Inc.,1986
    [120] Tiddy G. J. Surfactant-water liquid crystal phases [J]. Phys. Rep.,1980,57:1-46
    [121] Service R. F. Breakthrough of the year: molecules get wired [J]. Science,2001,294:2442-2443
    [122] Service R. F. Nanocomputing: assembling nanocircuits from the bottom up [J]. Science,2001,293:782-785
    [123]薛增泉.分子电子学.北京:北京大学出版社,2003
    [124] Andres R. P., Bein T., Dorogi M., et al.“Coulomb Staircase” at room temperature in aself-assembled molecular nanostructure [J]. Science,1996,272:1323-1325
    [125] Kouwenhoven L., Glazman L. Revival of the Kondo effect [J]. Phys World,2001,14:33-38
    [126] Kondo J. Resistance minimum in dilute magnetic alloys [J]. Prog Theor Phys,1964,32:37-49
    [127] Keyes R.W. Physical limits of silicon transistors and circuits [J]. Rep Prog Phys,2005,68:2701-2746
    [128] Chiang C. K., Park Y. W., Heeger A. J., et al. Electrical conductivity in dopedpolyacetylene [J]. Phys Rev Lett.,1977,39:1098
    [129] Smith W. Effect of Light on Selenium During the Passage of An Electric Current [J].Nature,1873,7:303
    [130] LeBlanc O. H. Band structure and transport of holes and electron in anthracene [J]. J.Chem. Phys.,1961,35:1275
    [131] Katz J. I., Jortner J., Choi S., et al. On the excess electron and hole band structure andcarrier mobility in naphthalene, anthracene, and several polyphenyls [J]. J. Chem. Phys.,1963,39:1683
    [132] B ssler H. Charge transport in disordered organic photoconductors-a Monte-Carlosimulation study [J]. Phys Dtat Sol B,1993,175:15
    [133] Garstein Y. N., Conwell E. M. High-field hopping mobility in molecular system withspatially correlated energetic disorder [J]. Chem. Phys. Lett.,1995,245:351
    [134] Hannewald K., Stojanovic V. M., Schellekens J. M. T., et al. Theory of polaronbandwidth narrowing in organic molecular crystals [J]. Phys. Rev. B,2004,69:075211
    [135] Pivovar A. M., Curtis J. E., Leao J. B., et al. Structural and vibrational characterizationof the organic semiconductor tetracene as a function of pressure and temperature [J]. Chem.Phys.,2006,325:138
    [136] Bube R. H. Photoelectronic Properties of Semiconductors [D]. Cambridge: CambridgeUniversity,1992
    [137] Lee K., Janssen R. A. J., Saricftci N. S., et al. Direct evidence of photoinduced electrontransfer in conducting-polymer–C60composites by infrared photoexcitation spectroscopy [J].Phys Rev. B.,1994,49:5781-5784
    [138] Yoshino K., Yin X. H., Morita S., et al. Enhanced photoconductivity of C60dopedpoly(3-alkylthiophene)[J]. Solid State Commun.,1993,85:85-88
    [139] Wudl F., Allemand P. M., Srdanov G., et al. Materials for non-linear potics: chemicalperspectives [M]. edited by S. R. Marder, Sohn J. E., Stucky G. D. TheAmerican ChemicalSocirty Washington D. C.1991,683
    [140] Scher H. In photoconductivity and related phenomena [M]. Mrot J., Pai D. M. NewYork: Elsevier,1976
    [141] Rose A. Concepts in Photoconductivity and Allied Problems [M]. New York: JohnWiley&Sons,1964
    [142] Hoeben F. J. M., Jonkheijm P., Meijer E. W., et al. About Supramolecular Assembliesof π-Conjugated Systems [J]. Chem. Rev.,2005,105:1491-1546
    [143] Kim D. H., Han J. T., Park Y. D., et al. Single-Crystal Polythiophene MicrowiresGrown by Self-Assembly [J]. Adv. Mater.,2006,18:719-723
    [144] Tang Q., Li H., He M., et al. Low Threshold Voltage Transistors Based on IndividualSingle-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine [J]. Adv. Mater.,2006,18:65-68
    [145] Xiao S., Tang J., Beetz T., et al. Transferring self-Assembled, nanoscale cables intoelectrical devices [J]. J. Am. Chem. Soc.,2006,128:10700-10701
    [146] Tang Q., Li H., Liu Y., et al. High-Performance Air-Stable n-Type Transistors with anAsymmetrical Device Configuration Based on Organic Single-CrystallineSubmicrometer/Nanometer Ribbons [J]. J. Am. Chem. Soc.2006,128:14634-14639
    [147] Tang Q., Li H., Song Y., et al. In Situ Patterning of Organic Single-CrystallineNanoribbons on a SiO2Surface for the Fabrication of Various Architectures andHigh-Quality Transistors [J]. Adv. Mater.,2006,18:3010-3014
    [148] Schwab A. D., Smith D. E., Bond-Watts B., et al. Photoconductivity of Self-AssembledPorphyrin Nanorodsm [J]. Nano Lett.,2004,4:1261-1265
    [149] Tang Q., Li L. Song Y., et al. Photoswitches and Phototransistors from OrganicSingle-Crystalline Sub-micro/nanometer Ribbons [J]. Adv.Mater.,2007,19:2624-2628
    [150] Mas-Torrent M., Hadley P., Crivillers N., et al. Large Photoresponsivity inHigh-Mobility Single-Crystal Organic Field-Effect Phototransistors [J]. Chem. Phys. Chem.,2006,7:86-88
    [151] Wang J., Gudiksen M. S., Duan X., et al. Highly polarized photoluminescence andphotodetection from single Indium Phosphide nanowires [J]. Sciense,2001,293:1455-1457
    [152] Yang C., Barrelet C. J., Capasso F., et al. Single p-Type/Intrinsic/n-Type SiliconNanowires as Nanoscale Avalanche Photodetectors [J]. Nano Lett.,2006,6:2929-2934
    [153] Kind H., Yan H., Messer B., et al. Nanowire Ultraviolet Photodetectors and OpticalSwitches [J]. Adv.Mater.2002,14:158-160
    [154] Jie J. S., Zhang W. J., Jiang Y., et al. Photoconductive Characteristics of Single-CrystalCdS Nanoribbons [J]. Nano Lett.2006,6:1887-1892
    [155] Soci C., Zhang A., Xiang B., et al. ZnO nanowire UV photodetectors with high internalgain [J]. Nano Lett.,2007,7:1003-1009
    [156] O’Brien G. A., Quinn A. J., Tanner D. A., et al. A single polymer nanowirephotodetector [J]. Adv. Mater.,2006,18:2379-2383
    [157] Kim D. H., Lee D. Y., Lee H. S., et al. High-Mobility Organic Transistors Based onSingle-Crystalline Microribbons of Triisopropylsilylethynyl Pentacene via Solution-PhaseSelf-Assembly [J]. Adv. Mater.,2007,19:678-682
    [158] Briseno A. L., Mannsfeld S. C. B., Lu X., et al. Fabrication of Field-Effect Transistorsfrom Hexathiapentacene Single-Crystal Nanowires [J]. Nano Lett.,2007,7:668-675
    [159] Briseno A. L., Mannsfeld S. C. B., Reese C., et al. Perylenediimide Nanowires andTheir Use in Fabricating Field-Effect Transistors and Complementary Inverters [J]. NanoLett.,2007,7:2847-2853
    [160] Zhou Y., Liu W., Ma Y., et al. Single Microwire Transistors of Oligoarenes by DirectSolution Process [J]. J. Am. Chem. Soc.2007,129:12386-12387
    [161] Zhou Y., Lei T., Wang L., et al. High-performance organic field-effect transistors fromorganic single-crystal microribbons formed by a solution process [J]. Adv. Mater.,2010,22:1484-1487
    [162] Zhou Y., Wang L., Wang J., et al. Highly sensitive, air-stable photodetectors based onsingle organic sub-micrometer ribbons self-assembled through soulution processing [J]. Adv.Mater.,2008,20:3745-3749
    [163] Soci C., Moses D., Xu Q-H., et al. Charge-carrier relaxation dymics in highly orderedpoly(p-phenylene vinylene): effects of carrier bimolecular recombination and trapping [J].Physical Review B,2005,72:245204
    [164] Pope M., Swenberg C. E. Electronic Processes in Organic Crystals and Polymers [M].Second Edition. New York: Oxford University Press,1999, Ch. II.G
    [165] Miozzo L., Yassar A., Horowitz G. Surface engineering for high performance organicelectronic devices: the chemical approach [J]. J. Mater. Chem.,2010,20:2513-2538
    [166] Kim F. S., Hwang D.K., Kippelen B. et al. Enhanced carrier mobility and electricalstability of n-channel polymer thin film transistors by use of low-k dielectric buffer layer [J].Appl. Phys. Lett.,2011,99:173303
    [167] Veres J., Ogier S. D., Leeming S. W., et al. Low-k insulators as the choice of dielectricsin organic field-effect transistors [J]. Adv. Funct. Mater.,2003,13:199-204
    [168] Freitag M., Martin Y., Misewich J. A., et al. Photoconductivity of Single CarbonNanotubes [J]. Nano Lett.,2003,3:1067-1071
    [169] Chen H.-Y., Chen R.-S., Rajan N. K., et al. Size-dependent persistent photocurrent andsurface band bending in m-axial GaN nanowires [J]. Physical Review B,2011,84:205443
    [170] Yadav H. K., Sreenivas K., Gupta V. Persistent photoconductivity due to trapping ofinduced charges in Sn/ZnO thin film based UV photodetector [J]. Appl. Phys. Lett.,2010,96:223507
    [171] Bao J., Shalish I., Su Z., et al. Photoinduced oxygen release and persistentphotoconductivity in ZnO nanowires [J]. Nanoscale Research Letters,2011,6:404-410
    [172] Huang K., Zhang Q. Giant persistent photoconductivity of the WO3nanowires invacuum condition [J]. Nanoscale Research Letters,2011,6:52-57
    [173] Sun X., Di C., Liu Y. Engineering of the dielectric-semiconductor interface in organicfield-effect transistors [J]. J. Mater. Chem.,2010,20:2599-2611

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700