用户名: 密码: 验证码:
基于聚芴为主体材料的高效聚合物电致磷光器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机发光二极管(OLEDs)分为有机小分子发光二极管(OLED)和聚合物发光二极管(PLED)两种,它们由于在发光、显示、背光源等方面的应用得到了学术界和工业界的广泛关注。虽然小分子的有机发光二极管已经得到了商业化的发展,但是由于设备投资过大,价格过高的原因,它的市场竞争力仍然需要增强。另外一方面,基于聚合物的发光二极管由于可以通过溶液加工工艺,如旋涂、喷墨打印、丝网印刷技术等低成本方法实现,也得到了广泛的关注。即便如此,基于聚合物的发光二极管在效率等方面都需要做进一步的改善。本文主要研究以聚芴(PFO)为主体材料的聚合物电致磷光器件,同时做了一些界面材料对光电子器件性能的影响。
     在前人的工作基础上,我们知道聚芴类材料具有较高荧光量子产率和电致发光效率,并且具有深蓝的光谱特性,因此是一种比较理想的主体材料。但是聚芴类材料具有较低的三线态能级,在掺杂磷光三线态材料的时候,如果客体磷光材料的三线态能级高于聚芴的三线态能级时,就会导致能量从客体的三线态能级反转到主体的三线态能级上,从而导致器件的发光淬灭。因此一般来讲,聚芴本身只能作为红光磷光的主体材料,而不能作为绿光和蓝光磷光的主体材料。但是,最近我们发现当在空穴注入层PEDOT:PSS和发光活性层之间插入一层具有高三线态能级的材料PVK作为缓冲层时,我们可以利用聚芴为主体材料获得高效的绿光器件。基于这样的思路,我们通过掺杂FIrpic蓝色磷光材料的方法,做了以PVK为缓冲层,以PFO为主体的高效蓝光器件。随后,我们又做了一些相关的研究,全文工作主要分为以下几个部分。
     首先,我们以PVK为空穴缓冲层,把FIrpic掺杂到PFO-POSS主体中实现了高效的蓝光发射,实验证明,当FIrpic的掺杂比例为10%的时候,我们得到了电流效率为16.8cd/A的蓝光发射。为了进一步提高器件效率,我们在PFO-POSS与FIrpic的混合母体中掺杂电子传输材料来提高活性层的电子迁移率。最后,通过掺杂40%的电子传输材料OXD-7,我们获得了电流效率为26.4cd/A,功率效率为17lm/W的高效蓝光器件,并且器件具有较低的启亮电压(3.6V)。和以PVK为主体的蓝光器件相比,我们在效率以及启亮电压方面都存在很多优势。利用器件能级以及激子寿命等方面分析,我们研究了获得高效蓝光器件的原因。
     在以聚芴为主体获得高效蓝光器件的基础上,我们通过在蓝光器件中掺杂黄色磷光客体的方法,研究了以PFO-POSS为主体的高效白光器件。通过改变黄光磷光的掺杂比例,我们得到了电流效率为40.9cd/A,功率效率为31.4lm/W的高效白光器件,并且具有较低的启亮电压(3.4V)。随后,我们也研究了以PVK和PFO-POSS为主体的双层发光白光器件,通过将Ir(piq)掺杂到PVK中实现红光发射,FIrpic掺杂到PFO-POSS中实现蓝光发射,我们最终得到了电流效率为12.1cd/A的双层白光器件。
     由于有机发光器件为双载流子注入器件,因此有效的载流子注入是获得高效发光器件的基本要素,在这个思路的指导下,我们研究了含硫氧芴(SO)基团的电子注入材料PFN-SO在发光器件中的应用。利用这种电子注入材料,我们研究了其对红绿蓝三色材料的电子注入性能,研究表明,对于这三种不同带隙的材料,PFN-SO皆能够实现高效的电子注入功能,和CsF/Al阴极器件相比,以PFN-SO/Al为阴极的器件能够获得相当的效率,远远高于以Al为单独阴极的器件。研究发现,即便以金属Au为阴极,这种材料也具有较好的电子注入性能。基于上面的结果,我们最后分析了这种材料提高电子注入的原因。
     最近,倒置光电子器件由于其潜在的有利因素引起了人们的广泛关注,并且实验也证明,利用水醇溶性的电子注入材料能够显著增强ITO的电子注入功能,获得高效的倒置光电子器件。这里,我们利用电子注入材料PFN-SO也实现了高效的倒置发光器件。通过UPS测试,我们发现,PFN-SO能够降低ITO的功函数,因此能够实现高效的电子注入。
Organic light-emitting diodes (OLEDs) include organic small molecule light-emittingdiode (OLED) and polymer light-emitting diode (PLED), and they have drawn great attentionby academic and industrial sections because of the attractive prospect of application in thelighting, display, backlighting and other fields. Although organic small molecule organiclight-emitting diodes have been commercially developed, due to the expensive equipmentinvestment, the product price is too high, so it sill needs to enhance its marketcompetitiveness. On the other hand, PLED based on polymer can be achieved bysolution-processed, such as spin-coating, inkjet printing and screen printing and otherlow-cost methods, which have drawn widespread attention. However, compared with OLED,PLED still need further improvement in luminous efficiency and other areas. In this article,we will mainly use the polyfluorene (PFO) as the host to improve the luminous efficiency ofPLED; besides, the effection of interface materials on the performance of optoelectronicdevices are also included.
     On the basis of previous work, we know that the polyfluorene and its dericatives havehigh fluorescence quantum efficiency, high electroluminescent efficiency anddeep-blue-emitting properties; therefore, it’s an ideal host material. But polyfluorene and itsdericatives have lower-lying triplet energy levels, so when the phosphorescent materials aredoped into the PFO host, if the triplet energy levels of the phosphorescent materials werehigher than PFO host, it would cause energy back transfer and could not get efficientlight-emitting. Therefore, the PFO itself is often used as the host for the red phosphorescentmaterials, but can not be used as the host for the green and blue phosphorescent materials.Recently, we find that if we insert a PVK layer which has a higher-lying triplet energy levelsbetween the PEDOT: PSS and the emitting layer as a buffer layer, we can get efficient greenphosphorescence emission by using the PFO as the host. Based on this idea, we get efficientblue light by doping the blue phosphorescent material FIrpic into the PFO host as theemitting layer and PVK as the buffer layer. Other researches about PLED are also included inthis article. The work is mainly divided into the following parts.
     In the first part, we get efficient blue light by doping the FIrpic into the PFO-POSS host, PVK as the buffer layer. Experiment shows that when the proportion of FIrpic is10%, we getefficient blue light with the luminous efficiency of16.8cd/A. In order to further improve thedevice efficiency, we dope electron transport material (OXD-7) into the PFO-POSS: FIrpichost. When the proportion of OXD-7is40%, we get efficient blue light with the luminousefficiency of26.4cd/A, power efficiency of17lm/W and a low turn on voltage (3.6V).Compared with the blue device using the PVK as the host, this device has higher efficiencyand lower turn-on voltage. Finally, we discuss the reasons why we get so high deviceefficiency by energy levels and exciton lifetime of this device.
     Based on the efficient blue light devices that we get in the first part, in this part, westudy the white light-emitting devices based on the PFO-POSS as the host by doping anorange phosphorescent material into the blue devices. By changing the doping proportion oforganic phosphorescent material, we get efficient white light with the luminous efficiency of40.9cd/A, power efficiency of31.4lm/W and a low turn on voltage (3.4V). Then, we studythe efficient white-light-emitting diodes based on bilayer structure. By doping the Ir(piq) intothe PVK host to emitting red light, FIrpic into the PFO-POSS host to emitting blue light, wefinally get efficient white light with a luminous efficiency of12.1cd/A with this bilayerstructure.
     As we know, efficient charge injection and transport are a basic requirement for highlyefficient light-emitting devices. Under the guidance of this idea, we study the character of anelectron injection material containing SO group in the light-emitting devices. By using thiselectron injection material PFN-SO as the electron injection layer and three different polymermaterials as the emitting layer, we find that the electron injection material PFN-SO canimprove the electron injection efficiently. Compared with the devices using CsF/Al as thecathode, the devices using PFN-SO/Al as the cathode can get similar results, far higher thanthe results using Al only as the cathode. We also find that this electron injection material haveefficient electron injection character even if we use the metal Au as the cathode. At last, weanalyze the reasons why this material can improve the electron injection efficiently.
     Recently, inverted devices have drawn a lot of attention because of its potentialadvantages. On the other hand, a variety of electron-injection conjugated polyelectrolyte,especially water/alcohol soluble polyfluorenes, have been reported to be able to realize efficient electron injection using ITO as the cathode and get efficient inverted devices. Here,we get efficient inverted light-emitting device with ITO/PFN-SO as the cathode andMoO3/Al as the anode. From the UPS analyze, we find that the PFN-SO layer can lower thework function of ITO, so it can inject electron efficiently.
引文
[1] Bernanose A. Electroluminescence of organic compounds [J]. British Journal of AppliedPhysics,1955,6(S4): S54-S56
    [2] Pope M.; Kallmann H. P.; Magnante P. Electroluminescence in Organic Crystals [J].Journal of Chemical Physics,1963,38:2042-2043
    [3] Roberts G. G.; McGinnity M.; Barlow W. A., et al. Electroluminescence,photoluminescence and electroabsorption of a lightly substituted anthracene langmuirfilm [J]. Solid State Communications,1979.32(8):683-686
    [4] Partridge R. H. Electroluminescence from polyvinylcarbazole films:3.Electroluminescent devices [J]. Polymer,1983.24(6):748-754
    [5] Vincett P. S.; Barlow W. A.; Hann R. A., et al., Electrical conduction and low voltage blueelectroluminescence in vacuum-deposited organic films [J]. Thin Solid Films,1982,94(2):171-183
    [6] Tang C.W.; VanSlyke S.A. Organic electroluminescent diodes [J]. Applied Physics Letters,1987,51(12):913-915
    [7] Burroughes J. H.; Brown A. R.; Friend R. H., et al. Light-emitting diodes based onconjugated polymers [J]. Nature,1990,347:539-541
    [8] Braun D.; Heeger A. J. Visible light emission from semiconducting polymer diodes [J].Applied Physics Letters,1991,58(18):1982-1984
    [9] http://www.fpdisplay.com/news/2012-11/info-154253-232.htm [EB]
    [10] http://www.oledw.com/oled-news/201302/7858.shtml [EB]
    [11] http://www.oledw.com/oled-news/201302/7840.shtml [EB]
    [12] http://baike.baidu.com/view/2188979.htm [EB]
    [13] D’Andrade B. Lighting: White phosphorescent LEDs offer efficient answer [J]. NaturePhotonics,2007,1:33-34
    [14] Windisch R.; Butendeich R.; Kugler S., ey al.100lm/W Ingaalp Thin-FilmLight-Emitting Diodes with Buried Microreflectors [J]. Photonics Technology Letters,IEEE,2007,19:774
    [15] http://www.cnledw.com/info/newsdetail-33443.htm [EB]
    [16] http://www.oledw.com/oled-news/201110/4588.shtml [EB]
    [17] http://www.oledw.com/oled-news/201210/7114.shtml [EB]
    [18] Reineke S.; Lindner F.; Karl L., et al. White organic light-emitting diodes withfluorescent tube efficiency [J]. Nature,2009,459(7244):234-238
    [19] http://www.universaldisplay.com/default.asp?contentID=586[EB]
    [20]吴宏滨,基于高功函数金属-醇/水溶性共轭聚合物的新型高效电子注入阴极的研究,华南理工大学博士论文,2006
    [21]许运华,高性能白光聚合物电致发光二极管的研究,华南理工大学博士论文,2009
    [22]邹建华,基于物理共混的高效白色有机电致发光器件的研究,华南理工大学博士论文,2010
    [23]胡苏军,高性能荧光/磷光混合式白光聚合物电致发光二极管的研究,华南理工大学博士论文,2012
    [24] Zou J. H.; Wu H.; Lam C.-S., et al. Simultaneous Optimization of Charge-CarrierBalance and Luminous Efficacy in Highly Efficient White Polymer Light-EmittingDevices [J]. Advanced Materials,2011,23(26):2976-2980
    [25] Wu H. B.; Zou J. H.; Liu F., et al. Efficient Single Active Layer ElectrophosphorescentWhite Polymer Light-Emitting Diodes [J]. Advanced Materials,2008,20(4):696-702
    [26] Wu H. B.; Zhou G. J.; Zou J. H., et al. Efficient Polymer White-Light-Emitting Devicesfor Solid-State Lighting [J]. Advanced Materials,2009,21(41):4181-4184
    [27] Becker S.; Ego C.; Grimsdale A. C., et al. Optimisation of polyfluorenes for lightemitting applications [J]. Synthetic Metals,2001,125:73-80
    [28] Zou J.H.; Liu J.; Wu H. B., et al. High-efficiency and good color quality whitelight-emitting devices based on polymer blend [J]. Organic Electronics,2009,10:843-848
    [29] Sudhakar M.; Djurovich P. I.; Thompson M. E., et al. Phosphorescence Quenching byConjugated Polymers [J]. Journals of Amercian Chemcial Society,2003,125:7796-7797
    [30] Wu Z. L.; Xiong Y.; Zou J. H., et al. High-Triplet-Energy Poly(9,9′-bis(2-ethylhexyl)-3,6-fluorene) as Host for Blue and Green Phosphorescent Complexes [J].Advanced Materials,2008,20(12):2359-2364
    [31] Kim T.-H.; Lee H. K.; Park O. O., et al. White-Light-Emitting Diodes Based on IridiumComplexes via Efficient Energy Transfer from a Conjugated Polymer [J]. AdvancedFunctional Materials,2006,16(5):611-617
    [32] Rizzo A.; Solin N.; Andersson M. R., et al. White Light with Phosphorescent ProteinFibrils in OLEDs [J]. Nano Letters,2010,10(6):2225-2230
    [33] Chen Z.; Jiang C. Y.; Niu Q. L., et al. Enhanced green electrophosphorescence by usingpolyfluorene host via interfacial energy transfer from polyvinylcarbazole [J]. OrganicElectronics,2008,9(6):1002-1009
    [34] Li A. Y.; Li Y. Y.; Cai W. Z., et al. Realization of highly efficient white polymerlight-emitting devices via interfacial energy transfer from poly(N-vinyl carbazole)[J].Organic Electronics,2010,11(4):529-534
    [35] Hu S. J.; Zhu M. R.; Zou Q. H., et al. Efficient hybrid white polymer light-emittingdevices with electroluminescence covered the entire visible range and reduced efficiencyroll-off [J]. Applied Physics Letters,2012,100:063304(1-3)
    [36] Campbell A. J.; Bradley D. D. C.; Lidzey D. G. Space-Charge Limited Conduction withTraps in Poly(phenylene vinylene) Light Emitting Diodes [J]. Journal of Applied Physics,1997,82:6326-6330
    [37] Mark P.; Helfrich W. Space-Charge-Limited Currents in Organic Crystals [J]. Journal ofApplied Physics,1962,33:205-215
    [38] Park I. D. Carrier Tunneling and Device Characteristics in Polymer Light-EmittingDiodes [J]. Journal of Applied Physics,1994,75:1656-1659
    [39] Munn R. W.; Siebrand W. Sign of the Hall Effect for Hopping Transport in MolecularCrystals [J]. Physical Review B,1970,2:3435-3437
    [40] Vincett P. S.; Barlow W. A.; Hann R. A., et al. Electrical conduction and low voltage blueelectroluminescence in vacuum-deposited organic films [J]. Thin Solid Films,1982,94(2):171-183
    [41] Patel N. K.; Cinà S.; Burroughes J. H. High-efficiency organic light-emitting diodes [J].Selected Topics in Quantum Electronics IEEE Journal of,2002,8(2):346-361
    [42] Brütting W.; Berleb S.; Mückl A. G. Device physics of organic light-emitting diodesbased on molecular materials [J]. Organic Electronics,2001,2(1):1-36
    [43]黄春辉;李富友;黄维.有机电致发光材料与器件导论[M].复旦大学出版社,2005:1-297
    [44] Cao Y.; Parker I. D.; Yu G., et al. Improved Quantum Efficiency for Electroluminescencein Semiconducting Polymers [J]. Nature,1999,397:414-416
    [45] Luo Y. C.; Aziz H. Correlation Between Triplet-Triplet Annihilation andElectroluminescence Efficiency in Doped Fluorescent Organic Light-Emitting Devices[J]. Advanced Functional Materials,2010,20(8):1285-1293
    [46] Adachi C.; Baldo M. A.; Thompson M. E., et al. Nearly100%internal phosphorescenceefficiency in an organic light-emitting device [J]. Journal of Applied Physics,2001,90(10):5048-5051
    [47] Uoyama H.; Goushi K.; Shizu K., et al. Highly efficient organic light-emitting diodesfrom delayed fluorescence [J]. Nature,2012,492:234-238
    [48] Kim J.-S. S.; Ho P. K.-H.; Friend R. H., et al. Electroluminescence emission pattern oforganic light-emitting diodes: Implications for device efficiency calculations [J]. Journalof Applied Physics,2000,88(2):1073-1081
    [49] Huang F.; Wu H. B.; Wang D. L., et al. Novel Electronluminescent ConjugatedPolyelectrolytes Based on Polyfluorene [J]. Chemistry of Materials,2004,16:708-716
    [50] Liu G.; Li A. Y.; An D., et al. An Ionic Molecular Glass as Electron Injection Layer forEfficient Polymer Light-Emitting Diode [J]. Macromoecular Rapid Communications,2009,30:1484-1491
    [51] Ho P. H.; Kim J.-S.; Burroughes J. H., et al. Molecular-scale interface engineering forpolymer light-emitting diodes [J]. Nature,2000,404:481-484
    [52] Greenham N. C.; Moratti S. C.; Bradley D. D. C., et al. Efficient light-emitting diodesbased on polymers with high electron affinities [J]. Nature,1993,365:628-630
    [53] Berggren M.; Inganas O.; Gustafsson G., et al. Light-emitting diodes with variable colorsfrom polymer blends [J]. Nature,1994,372:444-446
    [54] Yang Y.; Pei Q.; Heeger A. J. Efficient blue polymer light-emitting diodes from a seriesof soluble poly(para-phenylene)s [J]. Journal of Applied Physics,1996,79:934-939
    [55] Grem G., and Leising G. Electroluminescence of "wide-bandgap" chemically tunablecyclic conjugated polymers [J]. Synthetic Metals,1993,57:4105-4110
    [56] Bernius M. T., Inbasekaran M., Woo E. P. et al. Application of polyfluorenes and relatedpolymers in light-emitting diodes [J]. Proceedings of SPIE-The International Society forOptical Engineering,1999,3621:93-102
    [57] Hou Q., Xu Y., Yang W. et al. Novel red-emitting fluorene-based copolymers [J]. Journalof Materials Chemistry,2002,12:2887-2892
    [58] Huang J.; Hou Q.; Yang W., et al. Novel Red Electroluminescent Polymers Derived fromCarbazole and3,6-Bis(2-thienyl)-1,2,7-Benzothiadiazole [J]. Macromolecular RapidCommunications,2002,23:709-712
    [59] Huang J., Niu Y., Yang W. et al. Novel Electroluminescent Polymers Derived fromCarbazole and Benzothiadiazole [J]. Macromolecules,2002,35:6080-608
    [60] Romero D. B.; Schaer M.; Leclerc M., et al. The role of carbazole in organiclight-emitting devices [J]. Synthetic Metals,1996,80(3):271-277
    [61] Becker S.; Ego C.; Grimsdale A. C., et al. Optimisation of polyfluorenes for lightemitting applications [J]. Synthetic Metals,2001,125(1):73-80
    [62] Bernius M.; Inbasekaran M.; Woo E., et al. The Application of polyfluorenes and relatedpolymers in light-emitting diodes [J]. SPIE,1999,3621:93-102
    [63] Yang W.; Hou Q.; Liu C. Z., et al. Improvement of color purity in blue-emittingpolyfluorene by copolymerization with dibenzothiophene [J]. Journal of MaterialsChemistry,2003,13(6):1351-1355
    [64] Milliron D. J.; Hill I. G.; Shen C. A., et al. Surface oxidation activates indium tin oxidefor hole injection [J]. Journal of Applied Physics,2000,87(1):572-576
    [65] Kim J.-S.; Ho K. H.; Greenham N. C., et al. Electroluminescence Emission Pattern ofOrganic Light-Emitting Diodes: Implications for Device Efficiency Calculations [J].Journal of Applied Physics,2000,88:1073-1081
    [66]李艳虎;方圆;邹建华,等.基于蓝黄磷光二元互补色的高效聚合物白光器件[J].物理化学学报,2010,26:2752-2756
    [67] Zhu M. R.; Li Y. H.; Yang C. L., et al. Tuning the energy levels and photophysicalproperties of triphenylamine-featured iridium(III) complexes: application in highperformance polymer light-emitting diodes [J]. Journal of Materials Chemistry,2012,22:11128-11133
    [68] Liu J.; Xie Z. Y.; Cheng Y. X., et al. Molecular Design on Highly Efficient WhiteElectroluminescence from a Single-Polymer System with Simultaneous Blue, Green,and Red Emission [J]. Advanced Materials,2007,19:531-535
    [69] Niu X. D.; Zhang B. H.; Xie Z. Y., et al. Balanced charge transport and enhanced whiteelectroluminescence from a single white emissive polymer via thermal annealing [J].Applied Physical Letters,2010,96:073303(1-3)
    [70] Gebler D. D.; Wang Y. Z.; Blatchford J. W., et al. Exciplex emission in bilayer polymerlight-emitting devices [J]. Applied Physical Letters,1997,70:1644-1646
    [71] Mazzeo M.; Pisignano D.; Sala F. D., et al. Organic single-layer white light-emittingdiodes by exciplex emission from spin-coated blends of blue-emitting molecules [J].Applied Physical Letters,2003,82:334-336
    [72] Kim J. S.; Friend R. H.; Cacialli F., et al. Indium-tin oxide treatments for single-anddouble-layer polymeric light-emitting diodes: The relation between the anode physical,chemical, and morphological properties and the device performance [J]. Journal ofApplied Physics,1998,84(12):6859-6871
    [73] Osada T.; Kugler T.; Salaneck W. R., et al. Polymer-based light-emitting devices:investigations on the role of the indium—tin oxide (ITO) electrode [J]. Synthetic Metals,1998,96(1):77-80
    [74] Helander M. G.; Wang Z. B.; Qiu J., et al. Chlorinated Indium Tin Oxide Electrodes withHigh Work Function for Organic Device Compatibility. Science [J].2011,332(6032):944-947
    [75] Wang Z. B.; Helander M. G.; Qiu J, et al. Direct hole injection in to4,4’-N,N’-dicarbazole-biphenyl: A simple pathway to achieve efficient organic lightemitting diodes [J]. Journal of Applied Physics,2010,108(2):024510(1-4)
    [76] Brown T. M.; Kim J. S.; Friend R.H., et al. Built-in field electroabsorption spectroscopyof polymer light-emitting diodes incorporating a doped poly(3,4-ethylenedioxythiophene) hole injection layer [J]. Applied Physics Letters,1999,75(12):1679-1681
    [77] Shi W.; Fan S. Q.; Cao Y., et al. Synthesis of novel triphenylamine-based conjugatedpolyelectrolytes and their application as hole-transport layers in polymeric light-emittingdiodes [J]. Journal of Materials Chemistry,2006,16(24):2387-2394
    [78] Ghosh S.; Rasmusson J.; Ingan s O. Supramolecular Self-Assembly for EnhancedConductivity in Conjugated Polymer Blends: Ionic Crosslinking in Blends ofPoly(3,4-ethylenedioxythio phene)-Poly(styrenesulfonate) and Poly(vinylpyrrolidone)[J]. Advanced Materials,1998.10(14):1097-1099
    [79] Cao Y.; Yu G.; Heeger A. J., et al. Polymer light-emitting diodes with polyethylenedioxythiophene–polystyrene sulfonate as the transparent anode [J]. Synthetic Metals,1997,87(2):171-174
    [80] Groenendaal L.; Jonas F.; Freitag D., et al. Poly(3,4-ethylenedioxythiophene) and ItsDerivatives: Past, Present, and Future [J]. Advanced Materials,2000,12(7):481-494
    [81] Kirchmeyer S.; Reuter K.. Scientific importance, properties and growing applications ofpoly(3,4-ethylenedioxythiophene)[J]. Journal of Materials Chemistry,2005,15(21):2077-2088
    [82] Ouyang J.; Chu C.-W.; Chen F.-C., et al. High-Conductivity Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film and Its Application in Polymer OptoelectronicDevices[J]. Advanced Functional Materials,2005,15(2):203-208
    [83] Fehse K.; Walzer K.; Leo K., et al. Highly Conductive Polymer Anodes as Replacementsfor Inorganic Materials in High-Efficiency Organic Light-Emitting Diodes[J]. AdvancedMaterials,2007,19(3):441-444
    [84] Wu H. B.; Zou J. H.; An D., et al. A new approach to efficiency enhancement of polymerlight-emitting diodes by deposition of anode buffer layers in the presence of additives[J].Organic Electronics,2009,10(8):1562-1570
    [85] Piromreun P.; Shen Y. L.; Malliaras G. G., et al. Role of CsF on electron injection into aconjugated polymer. Applied Physics Letters,2000,77(15):2403-2405
    [86] Huang F.; Hou L. T.; Wu H. B., et al. High-Efficiency, Environment-FriendlyElectroluminescent Polymers with Stable High Work Function Metal as a Cathode:Green-and Yellow-Emitting Conjugated Polyfluorene Polyelectrolytes and TheirNeutral Precursors [J]. Journals of Amercian Chemcial Society,2004,126:9845-9853
    [87] Wu H. B.; Huang F.; Mo Y. Q., et al. Efficient Electron Injection from a Bilayer CathodeConsisting of Aluminum and Alcohol-/Water-Soluble Conjugated Polymers [J].Advanced Materials,2004,16(20):1826-1830
    [88] Wu H. B.; Huang F.; Cao Y., et al. High-efficiency electron injection cathode of Au forpolymer light-emitting devices[J]. Organic Electronics,2005,6(3):118-128
    [89] Huang F.; Niu Y.-H.; Zhang Y., A Conjugated, Neutral Surfactant as Electron-InjectionMaterial for High-Efficiency Polymer Light-Emitting Diodes [J]. Advanced Materials,2007,19(15):2010-2014
    [90] Zhou G.; Geng Y. H.; Cheng Y. X., et al. Efficient blue electroluminescence from neutralalcohol-soluble polyfluorenes with aluminum cathode [J]. Applied Physics Letters,2006,89(23):233501(1-3)
    [91] Zhang B. H.; Qin C. J.; Ding J. Q.,et al. High-Performance All-PolymerWhite-Light-Emitting Diodes Using Polyfluorene Containing Phosphonate Groups as anEfficient Electron-Injection Layer[J]. Advanced Functional Materials,2010,20(17):2951-2957
    [92] Huang F.; Chi Y.; Jen A. K.-Y., et al. Highly Efficient Polymer White-Light-EmittingDiodes Based on Lithium Salts Doped Electron Transporting Layer [J]. AdvancedMaterials,2009,21(3):361-365
    [93] Liu G.; Li Y. H.; Tan W. Y., et al. Alcohol-Processable Organic Amorphous Electrolytesas an Effective Electron-Injection layer for Organic Light-Emitting Diodes [J].Chemistry An Asian Journal,2012,7:2126-2132
    [94]刘刚,醇溶性有机小分子电子注入/传输材料的合成与表征,华南理工大学博士论文,2011
    [95] Duan C. H.; Wang L.; Zhang K., et al. Conjugated Zwitterionic Polyelectrolytes andTheir Neutral Precursor as Electron Injection Layer for High-Performance PolymerLight-Emitting Diodes [J]. Advanced Materials,2011,23(14):1665-1669
    [96] Kawamura Y.; Yanagida S.; Forrest S. R. Energy transfer in polymerelectrophosphorescent light emitting devices with single and multiple doped luminescentlayers [J]. Journal of Applied Physics,2002,92:87-93
    [97] Pina J.; Burrows H. D.; Monkman A. P., et al. On the triplet of poly(N-vinylcarbazole)[J]. Chemcial Physics Letters,2004,400:441-445
    [98] Yang X. Y.; Jaiser F.; Klinger S.; et al. Blue polymer electrophosphorescent devices withdifferent electron-transporting oxadiazoles [J]. Applied Physics Letters,2006,88:021107(1-3)
    [99] Suzuki M.; Tokito S.; Sato F., et al. Highly efficient polymer light-emitting devices usingambipolar phosphorescent polymers [J]. Applied Physics Letters,2005,86:103507-103509
    [100] Tokito S.; Suzuki M.; Sato F., et al. High-efficiency phosphorescent polymerlight-emitting devices [J]. Organic Electronics,2003,4:105-111
    [101] Huang F.; Shih P.-I.; Liu M. S., et al. Lithium salt doped conjugated polymers aselectron transporting materials for highly efficient blue polymer light-emitting diodes[J]. Applied Physics Letters,2008,93:243302(1-3)
    [102] Mathew M. K.; Choong V.-E.; Choulis S. A., et al. Highly efficient solution processedblue organic electrophosphorescence with14lm/W luminous efficacy [J]. AppliedPhysics Letters,2006,88:243512(1-3)
    [103] Li L.; Liu J.; Yu Z. B., et al. Highly efficient blue phosphorescent polymerlight-emitting diodes by using interfacial modification [J]. Applied Physics Letters,2011,98:201110(1-3)
    [104] Earmme T.; Ahmed E.; Jenekhe S. A. Solution-Processed Highly Efficient BluePhosphorescent Polymer Light-Emitting Diodes Enable by a New Electron TransportMaterial [J]. Advanced Materials,2010,22:4744-4748
    [105] Zhang K.; Tao Y. T.; Yang C. L., et al. Synthesisi and Properities of Carbazole MainChain Copolymers with Oxadiazole Pendant toward Bipolar Polymer Host: Tuning theHOMO/LUMO Level and Triplet Energy [J]. Chemistry of Materials,2008,20(23):7324-7331
    [106] Zhang K.; Chen Z.; Y C. L., et al. Effective Suppression of Intra-and Interchain TripletEnergy Transfer to Polymer Backbone from the Attached phosphor for EfficientPolymeric Electrophosphorescence [J]. Chemistry of Materials,2009,21(14):3306-3314
    [107] Gong S. L.; Yang C. L.; Qin J. G. Efficient phosphorescent polymer light-emittingdiodes by suppressing triplet energy back transfer [J]. Chemical social review,2012,41:4797-4807
    [108] Wang Y. Dramatic effects of hole transport layer on the efficiency of iridium-basedorganic light-emitting diodes [J]. Applied Physical Letters,2004,85(21):4848-4850
    [109] Swensen J. S.; Polikarpov E.; Tuden A. V., et al. Improved Efficiency in bluePhosphorescent Organic Light-Emitting Devices Using Host Materials of Lower TripletEnergy than the Phosphorescent Blue Emitter [J]. Advanced Functional Materials,2011,21:3250-3258
    [110] Gather M. C.; Khnen A.; Meerholz K. White Organic Light-Emitting Diodes[J].Advanced Materials,2011,23:233-248
    [111] Andrade W. D.; Forrest S. R. White Organic Light-Emitting Devices for Solid-StateLighting [J]. Advanced Materials,2004,16:1585-1595
    [112] Wu H. B.; Ying L.; Yang W., et al. Progress and perspective of polymer whitelight-emitting devices and materials [J]. Chemical Society Reviews,2009,38:3391-3400
    [113]张蕾,郭霞,沈光地,等.两基色白光LED的光视效能的研究[J].半导体光电,2006,27:387-389
    [114] Lu H.-H.; Liu C.-Y.; Chang C-H., et al. Self-Dopant Formation inPoly(9,9-di-n-octylfuorene) Via a Dipping Method for Efficient and Stale Pure-BlueElectroluminescence [J]. Advanced Materials,2007,19:2574-2579
    [115] Zhu R.; Lin J.-M.; Wang W.-Z., et al. Use of theβ-Phase of Poly(9,9-dioctylfluorene) asa Probe into the Interfacial Interplay for the Mixed Bilayer Films Formed by SequentialSpin-Coating [J]. Journal of Physical Chemistry B,2008,112:1611-1618
    [116] Grell M.; Bradley D. D. C.; Ungar G., et al. Interplay of Physical Structure andPhotophysics for a Liquid Crystalline Polyfluorene [J]. Macromolecules,1999,32:5810-5817
    [117] Wyszecki G.; Stiles W.S. Color Science [M].2nd edition, New York: John Wiley andSons,2000
    [118]荆其诚,焦书兰,喻柏林,等.色度学[M].北京:科学出版社,1979
    [119] Schwartz G.; Reineke S.; Leo K., et al. Triplet Harvesting in Hybrid White OrganicLight-Emitting Diodes [J]. Advanced Functional Materials,2009,19:1319-1333
    [120] Sun Y.; Giebink N. C.; Kanno H., etal. Management of singlet and triplet excitons forefficient white organic light-emitting devices [J]. Nature,2006,440:908-912
    [121] Xu Y. H.; Peng J. B.; Cao Y., et al. Efficient polymer white-light-emitting diodes [J].Applied Physical Letters,2005,86:163502(1-3)
    [122]邹建华,陶洪,吴宏滨,等.修饰阴极界面提高聚合物白光二极管发光效率[J].物理学报,2009,58(2):1224-1228
    [123] D’Andrade B. W.; Holmes R. J.; Forrest S. R. Efficient Organic ElectrophosphorescentWhite-Light-Emitting Device with a Triplet Doped Emissive Layer [J]. AdvancedMaterials,2004,16:624-628
    [124] Liew Y.-F.; Aziz H.; Hu N. X., et al. Investigation of the sites of dark spots in organiclight-emitting devices [J]. Applied Physics Letters,2000,77:2650-2652
    [125] Weaver M. S.; Michalski L. A.; Rajan K., et al. Organic light-emitting devices withextended operating lifetimes on plastic substrates [J]. Applied Physics Letters,2002,81:2929-2931
    [126] Kim S. H.; Park S.; Kwon J. E., et al. Organic Light-Emitting Diodes with aWhite-Emitting Molecule: Emission Mechanism and Device Characteristics [J].Advanced Functional Materials,2011,21:644-651
    [127]肖慧萍,基于S,S-二氧-二苯并噻吩单元共聚物的合成及光电性能,华南理工大学博士论文,2012
    [128] Lee J. H.; Kim J. W.; Kim S.-Y., et al. An organic p-n junction as an efficient andcathode independent electron injection layer for flexible inverted organic light emittingdiodes [J]. Organic Electronics,2012,13:545-549
    [129] Chung D.-Y.; Leem D.-S.; Bradley D. D. C., et al. Flexible multilayer inverted polymerlight-emitting diodes with a gravure contact printed Cs2CO3electron injection layer [J].Applied Physics Letters,2011,98:103306(1-3)
    [130] Lu M. T.; Bruyn P. D.; Blom W. M., et al. Hole-enhanced electron injection from ZnOin inverted polymer light-emitting diodes [J]. Organic Electronics,2012,13:1693-1699
    [131] Kr ger M.; Hamwi S.; Meyer J., ey al. Role of the deep-lying electronic states ofMoO3in the enhancement of hole-injection in organic thin films [J]. Applied PhysicsLetters,2009,95:123301(1-3)
    [132] Bolink H. J.; Coronado E.; Repetto D., et al. Inverted Solution Processble OLEDsUsing a Metal Oxide as an Electron Injection Contact [J]. Advanced FunctionalMaterials,2008,18:145-150
    [133] Kabra D.; Song M. H.; Wenger B., et al. High Efficiency Composite MetalOxide-Polymer Electroluminescent Devices: A Morphological and Material BasedInvestigation [J]. Advanced Materials,2008,20:3447-3452
    [134] Bolink H. J.; Coronado E.; Orozco J., et al. Efficient Polymer Light-Emitting DiodeUsing Air-Stable Metal Oxides as Electrodes [J]. Advanced Materials,2009,21:79-82
    [135] Sun Y. M.; Seo J. H.; Takacs C. J., et al. Inverted Polymer Solar Cells Integrated with aLow-Temperature-Annealed Sol-Gel-Derived ZnO Film as Electron Transport Layer [J].Advanced Materials,2011,23:1679-1683
    [136] Choi H.; Cho H.; Song S., et al. Enhanced open circuit voltage by hydrophilic ionicliquids as buffer layer in conjugated polymer-nanoporous titania hybrid solar cells [J].Physical Chemistry Chemical Physics,2010,12:15309-15314
    [137] Ma H.; Yip H.-L.; Huang F., et al. Interface Engineering for Organic Electronics [J].Advanced Functional Materials,2010,20:1371-1388
    [138] Park J.S.; Lee B.R.; Jeong E., et al. High performance polymer light-emitting diodeswith N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers [J].Applied Physical Letters,2011,99:163305(1-3)
    [139] Choi H.; Park J. S.; Jeong E., et al. Combination of Titanium Oxide and a ConjugatedPolyelectrolyte for High-Performance Inverted-Type Organic Optoelectronic Devices[J]. Advanced Materials,2011,23:2759-2763
    [140] Yang T.B.; Wang M.; Duan C. H., et al. Inverted polymer solar cells with8.4%efficiency by conjugated polyelectrolyte [J]. Energy﹠Environmental Science,2012,5:8208-8214
    [141] He Z. C.; Zhong C. M.; Su S. J., et al. Enhanced power-conversion efficiency inpolymer solar cells using an inverted device structure [J]. Nature Photonics,2012,6:591-595
    [142] Ye T.L.; Zhu M. R.; Chen J. S., et al. Efficient electron injection layer based onthermo-cleavable materials for inverted bottom-emission polymer light emitting diodes[J]. Journal of Materials Chemistry,2012,22:6413-6418
    [143] Zhong C. M.; Liu S. J.; Huang F., et al. Highly Efficient Electron Injectio from IndiumTin Oxide/Cross-Linkable Amino-Functionalized Polyfluorene Interface in InvertedOrganic Light Emitting Devices [J]. Chemistry of Materials,2011,23:4870-4876
    [144] Zhou Y. H.; Shim J.; Meyer J., et al. A Universal Method to Produce Low-WorkFunction Electrodes for Organic Electronics [J]. Science,2012,336:327-332
    [145] Fang Y.; Li Y. H.; Wang S. J., et al. Synthesis, characterization and electroluminescenceproperties of iridium complexes based on pyridazine and phthalazine derivatives withCN=N structure [J]. Synthetic Metals,2010,160:2231-2238
    [146] Zheng W. J.; Wu H. B.; Zhang C., et al. Polymer Light-emitting Diodes with CathodesPrinted from Conducting Ag Paste [J]. Advanced Materials,2007,19(6):810-814
    [147] Kotlarski J. D.; Blom P. W. M. Impact of unbalanced charge transport on the efficiencyof normal and inverted solar cells [J]. Applied Physical Letters,2012,100:013306(1-3)
    [148] Donley C. L.; Zaumaeil J.; Andreasen J. W., et al. Effects of Packing Structure on theOptoelectronic and Charge Transport Properties in Poly(9.9-di-n-octylfluorene-alt-benzothiadiazole)[J]. Journals of Amercian Chemcial Society,2005,127:12890-12899

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700