用户名: 密码: 验证码:
土壤动物(线虫、蚯蚓)对污染土壤多环芳烃去除的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业的迅速发展,大量的有机污染物进入土壤,严重影响了土壤环境质量及其生态功能,尤其是POPs、PAHs和PCBs有机污染在我国土壤中均有不同程度的输出。由于多环芳烃的毒性作用和土壤中过量存在严重影响和抑制作物的生长发育,降低农产品品质,通过食物链的富集传递作用,危害人体健康,故PAHs等污染问题已成为人类面临的十分严重的环境问题。开展对土壤有机污染的生物修复研究,对防治有机污染土壤修复具有重要意义。
     土壤动物(线虫和蚯蚓)作为土壤生物的重要组成部分,与土壤微生物之间存在着密切的关系,并在生物修复过程中发挥着重要的作用,成为PAHs污染土壤生物修复的研究热点。然而,土壤动物(线虫和蚯蚓)在PAHs污染的生物修复体系(土壤动物-微生物-植物)中的作用及机理还不清楚。因此,本文以线虫和蚯蚓作为土壤动物的代表,菲和荧蒽作为PAHs污染物的代表,设置了一系列的室内培养试验,主要研究:(1)食细菌线虫与恶臭假单胞菌相互作用对砂培体系中菲去除的影响及外加碳源(葡萄糖)与否的影响;(2)食细菌线虫与恶臭假单胞菌相互作用对未灭菌土壤中菲去除的影响;(3)蚯蚓与黑麦草的相互作用对土壤中荧蒽去除的影响;(4)蚯蚓粘液对黑麦草生长及其对荧蒽去除的影响。以试图揭示线虫和蚯蚓在PAHs污染的生物修复体系(土壤动物-微生物-植物)中的作用及机理,为线虫和蚯蚓在PAHs污染的生物修复中的应用提供理论依据。
     主要结果如下:
     (1)通过悉生培养试验研究食细菌线虫与恶臭假单胞菌相互作用对砂培体系中细菌去除菲的影响。结果显示,与对照及只接种细菌的处理相比,接种线虫显著促进处理中菲的去除(P<0.05);接种食细菌线虫处理还促进了C230酶活性和过氧化氢酶活性的增强。
     (2)采用悉生培养试验,探讨了外加碳源(葡萄糖)对食细菌线虫和恶臭假单胞菌的相互作用去除砂培体系中菲的影响。结果表明,与对照相比,外加碳源葡萄糖和接种食细菌线虫处理在培养结束时菲的去除率分别提高了25.6%和36.6%;在外加葡萄糖条件下,食细菌线虫显著提高了培养体系中细菌数量以及C230酶活性。因此,葡萄糖和食细菌线虫可能通过刺激细菌数量和C230酶活性来促进培养体系中菲的去除。
     (3)通过室内培养试验研究了食细菌线虫与恶臭假单胞菌相互作用对未灭菌土壤中菲去除的影响。结果表明,与对照相比,接种食细菌线虫处理能显著(P<0.05)促进土壤酶活性(过氧化氢酶和FDA水解酶)。但是接种线虫处理并未显著促进土壤中菲的去除,可能是由于复杂的土壤环境所致。
     (4)通过室内土培试验研究了蚯蚓和黑麦草相互作用对土壤中荧蒽去除的影响。结果表明,各处理条件下土壤中荧蒽浓度均按照一阶指数方程递减,其中种植黑麦草同时接种蚯蚓的处理土壤荧蒽的半衰期(5.3天)最小,比对照减少了36.3%;在培养结束(第70天)时,蚯蚓和黑麦草处理显著促进土壤微生物生物量及过氧化物酶活性(P<0.01);相关分析表明,微生物生物量和过氧化物酶活性与土壤中荧蒽的残留量均呈显著(P<0.01)的负相关关系。因此,蚯蚓促进土壤中荧蒽的去除与土壤微生物生物量和过氧化物酶活性密切相关。
     (5)通过室内水培试验,探讨蚯蚓粘液对黑麦草生长及其对荧蒽去除的影响。结果表明,与只添加蚯蚓粘液和只种植黑麦草的处理相比,两者的交互作用对培养体系中荧蒽的去除率更高,尤其在培养第12天时最显著。蚯蚓粘液促进黑麦草根系生长以及超氧化物歧化酶(SOD)的活性(P<0.05);蚯蚓粘液提高了荧蒽在黑麦草体内的富集量以及黑麦草对荧蒽的传导系数,这可能是蚯蚓促进土壤荧蒽去除的机理之一。
     以上结果表明,(1)食细菌线虫能促进悉生培养体系中菲的去除;(2)外加碳源(葡萄糖)可有效的提高食细菌线虫对细菌数量的增多和C230酶活性的增强,进而有助于培养体系中菲的去除;(3)蚯蚓存在条件下,土壤中荧蒽的去除跟土壤中微生物生物量与过氧化物酶(POD)活性密切相关;(4)蚯蚓粘液可有效的促进微生物的生长繁殖、黑麦草根系生长及其超氧化物歧化酶(SOD)的活性,以及黑麦草对荧蒽富集量和传导系数的提高。
With the rapid development of industry and agriculture, there are amounts of organic contaminants enter into the soil, which seriously affect the soil environmental quality and ecological function. Especially the POPs, PAHs and PCBs, of which there are different levels of output in soil in our country. As the PAHs toxicity and its amounts in soil seriously inhibit the crops growth, it reduces the quality of agricultural product. Moreover, it is also harmful to human health through the food chain enrichment transmission function. The PAHs pollution problem becomes the most serious environmental problems. The development of bioremediation research is conducive to the remediation of organic contaminated soil.
     Many researches have focused on the effects of soil fauna (nematodes and earthworms) on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soil because soil fauna were closely related to soil microorganisms and played key roles in bioremediating the contaminated soils. However, the inherent mechanisms of soil fauna in the bioremediation of the PAHs contaminated soils were still unclear. Therefore, we conducted a series of experiments to investigate the effects of soil fauna (nematodes and earthworms) on the bioremediation of PAHs contaminated soils. Our studies were mainly concentrated on:(1) Effects of bacterial-feeding nematodes and bacteria(Pseudomonas Putida) interactions, in the presence of glucose or not, on the degradation of phenanthrene in gnotobiotic system;(2) Effects of bacterial-feeding nematodes on phenanthrene removal from the contaminated soil;(3) Effects of earthworms and ryegrass interaction on the removal of fluoranthene from contaminated soil;(4) Effects of earthworm mucus on ryegrass growth and the removal of fluoranthene from hydroponic system.
     The main results were shown as following:
     (1) A gnotobiotic culture experiment was constructed to study the effects of bacterial-feeding nematodes and bacteria(Pseudomonas Putida) interactions on phenanthrene removal from the gnotobiotic system. Bacterial-feeding nematodes could promote the removal of phenanthrene from gnotobiotic system. Compared with the treatments of control and bacteria inoculated only, the inoculation of bacterial-feeding nematodes significantly accelerated the phenanthrene removal from gnotobiotic system (P <0.05). Bacterial-feeding nematodes also could promote the catechol2,3-dioxygenase (C23O) and catalase (CAT) activity.
     (2) The effect of adding carbon (glucose) and bacterial-feeding nematodes on the phenanthrene removal was investigated in a gnotobiotic system. Compared with control, the removal of phenanthrene was increased by25.6%and36.6%in the presence of carbon (glucose) and bacterial-feeding nematodes, respectively. Nematodes could also significantly increase the bacterial abundance and the catechol2,3-dioxygenase (C23O) activity, especially when the glucose present. These results implied that nematodes might promote the removal of phenanthrene from medium via stimulating bacteria performance and catechol2,3-dioxygenase (C23O) activity.
     (3) A soil microcosm incubation experiment was constructed to study the effect of bacteria-feeding nematodes, which feed phenanthrene-degrading bacteria (Pseudomonas Putida), on phenanthrene removal from the unsterilied soil. Compared with control, the inoculation of bacteria-feeding nematodes could increase the soil enzyme activities (Catalase and Hydrolysis rate of fluorescein diacetate)(P<0.05). But inoculation of bacteria-feeding nematodes could not significantly increase the removal of phenanthrene from contaminated soils. It was contributed to the complex environment in soil.
     (4) The effects of earthworms and ryegrass interaction on the removal of fluoranthene from contaminated soil were investigated in a70-day microcosm experiment. During the incubation time, the changes of fluoranthene in soil among all four treatments were fitted with the first-order kinetic model. The half-life (T1/2) of the fluoranthene in soil with earthworms and ryegrass together was the smallest among all treatments and36.3%smaller than that of control. Earthworms significantly increased microbial biomass and polyphenol oxidase activity (POD) in the presence of ryegrass at the final sampling (P<0.01). Microbial biomass and polyphenol oxidase activity (POD) were significantly (P<0.05) and negatively related to the residual fluoranthene concentration, respectively. The results implied that earthworms might promote the removal of fluoranthene from soil via stimulating microbial biomass and POD activity.
     (5) A hydroponic culture study was carried out to study the effects of earthworm mucus on ryegrass growth and the removal of fluoranthene from hydroponic system. Results indicated that compared with treatments with only amending earthworm mucus or growing ryegrass, the interaction between earthworm mucus and ryegrass was more significantly on the removal of fluoranthene, especially on the12th day. Earthworm mucus significantly increased ryegrass root growth and superoxide dismutase (SOD) activity (P<0.05). The earthworm mucus also promoted the concentration and translocation factor (TF) of fluoranthene in plant.
     In conclusion, these results demonstrated:1) Bacteria-feeding nematodes promoted the removal of phenanthrene from the contaminated gnotobiotic culture;2) Adding the carbon (glucose) could promote the stimulation effects of the bacteria-feeding nematodes on the bacteria abundance and C23O activity, and be helpful on the removal of phenanthrene from the gnotobiotic system;3) In the presence of earthworm, the fluoranthene removal from contaminated soil were closely related to the increase of soil microbial biomass and polyphenol oxidizes (POD) activity;4) Earthworm mucus significantly increased the bacterial growth and reproduction, and ryegrass root growth and superoxide dismutase (SOD) activity. Earthworm mucus also promoted the concentration and translocation factor (TF) of fluoranthene in plant.
引文
程国玲,李培军,王凤友,等.2003.多环芳烃污染土壤的植物与微生物修复研究进展.环境污染治理技术与设备.4(006):30-36.
    陈静,王学军,陶澍,等.2004.天津地区土壤多环芳烃在剖面中的纵向分布特征.环境科学学报.24(002):286-290.
    陈小云,胡锋,李辉信,等.2003.不同悉生培养条件下食细菌线虫对细菌种群的影响.应用生态学报.14(9):1585-1587.
    陈小云,李辉信,胡锋,等.2004.食细菌线虫对土壤微生物量和微生物群落结构的影响.生态学报.24(12):2825-2831.
    陈小云,刘满强,胡锋,等.2007.根际微型土壤动物—原生动物和线虫的生态功能.生态学报.27(8).3132-3143.
    丁克强,骆永明.2001.多环芳烃污染土壤的生物修复.土壤.33(004):169-178.
    丁克强,骆永明,刘世亮,等.2004.黑麦草对土壤中苯并[a]芘动态变化的影响.土壤学报.41(003):348-353.
    范淑秀,李培军,何娜,等.2007.多环芳烃污染土壤的植物修复研究进展.农业环境科学学报.26(006):2007-2013.
    高学晟,姜霞,区自清.2002.多环芳烃在土壤中的行为.应用生态学报.13(4):501-504.
    高岩,骆永明.2005.蚯蚓对土壤污染的指示作用及其强化修复的潜力.土壤学报.42(1):140-148.
    高彦征,朱利中,胡辰剑,等.2004.Tween80对植物吸收菲和芘的影响.环境科学学报.24(4):713-718.
    高彦征.2004.土壤多环芳烃污染植物修复及强化的新技术原理研究浙江大学.
    高彦征,朱利中,凌婉婷,等.2005.土壤和植物样品的多环芳烃分析方法研究.农业环境科学学报.24(005):1003-1006.
    葛成军,俞花美.2006.多环芳烃在土壤中的环境行为研究进展.中国生态农业学报.14(1):163-165.
    郝蓉,万洪富,杜卫兵,等.2005.亚热带地区农业土壤和植物中多环芳烃的分布.浙江大学学报.31(004):374-380.
    胡锋,李辉信.1999.土壤食细菌线虫与细菌的相互作用及其对N,P矿化—生物固定的影响及机理.生态学报.19(006):914-920.
    胡锋,武心齐,李辉信,等.1998.蚯蚓和蚁类活动对红壤性质的影响.红壤生态系统研究(第五集).北京:中国农业科技出版社.
    胡淼,陈欢, 田蕾,等.2008.蚯蚓对细菌降解土壤中菲的作用.应用生态学报,19(1):218-222.
    胡佩,刘德辉.2002.蚓粪中的植物激素及其对绿豆插条不定根发生的促进作用.生态学报,22(008):1211-1214.
    胡晓捷,杨炜春,刘维屏.2004.莠去津对土壤过氧化氢酶活性的影响研究.环境污染与防治.26(002):87-88.
    胡艳霞,孙振钧,程文玲.2003.蚯蚓养殖及蚓粪对植物土传病害抑制作用的研究进展.应用生态学报.14(002):296-300.
    焦杏春,陈素华,沈伟然,等.2005.水稻根系对多环芳烃的吸着与吸收.环境科学.27(4):760-764.
    姜霞,井欣.2002.表面活性剂对土壤中多环芳烃生物有效性,影响的研究进展.应用生态学报.13(009):1179-1186.
    姜永海,韦尚正,席北斗,等.2009.PAHs在我国土壤中的污染现状及其研究进展.生态环境学报.18(3):1176-1181.
    刘德绍,郑强.2001.关于环境生物技术在水污染治理中的研究与应用.重庆环境科学.23(001):56-58.
    刘期松,杨桂芬,张春桂,等.1984.污灌土壤中多环芳烃自净的微生物效应.环境科学学报.4(2):185-192.
    刘世亮,骆永明.2002.多环芳烃污染土壤的微生物与植物联合修复研究进展.土壤.34(005):257-265.
    李辉信,陈小云,胡锋.2002.土壤食细菌线虫的分离和富集培养方法.南京农业大学学报.25(2):71-74.
    李辉信,胡锋.2002.接种蚯蚓对秸秆还田土壤碳、氮动态和作物产量的影响.应用生态学报.13(12):1637-1641.
    李培军,白玉兴.2002.不同类型原油污染土壤生物修复技术研究.应用生态学报.13(011):1455-1458.
    李晓军,李培军,蔺昕.2007.土壤中难降解有机污染物锁定机理研究进展.应用生态学报.18(7):1624-1630.
    李玉娟,吴纪华,陈慧丽,等.2005.线虫作为土壤健康指示生物的方法及应用.应用生态学报.16(8):1541-1546.
    梁文举,闻大中.2001.土壤生物及其对土壤生态学发展的影响.应用生态学报.12(001):137-140.
    凌婉婷,高彦征,李秋玲,等.2006.植物对水中菲和芘的吸收.生态学报.26(10):3332-3338.
    凌婉婷,徐建民,高彦征,等.2004.溶解性有机质对土壤中有机污染物环境行为的影响.应用生态学报.15(002):326-330.
    毛小芳,胡锋,陈小云,等.2007.不同土壤水分条件下华美新小杆线虫对枯草芽孢杆菌数量,活 性及土壤氮素矿化的影响.应用生态学报.18(002):405-410.
    毛小芳,李辉信,龙梅,等.2005.不同食细菌线虫取食密度下线虫对细菌数量活性及土壤氮素矿化的影响.应用生态学报.16(6):1112-1116.
    马星竹.2010.长期施肥土壤的FDA水解酶活性.浙江大学学报.36(4):451-455.
    聂麦茜,吴蔓莉,王晓昌,等.2006.一株黄杆菌及其粗酶液对芘降解的动力学特征研究.环境科学学报.26(002):181-185.
    聂麦茜,张志杰.2001.环境中多环芳烃污染规律及其生物净化技术.环境导报.001:18-21.
    潘声旺,魏世强,袁馨,等.2010.环毛蚓在高羊茅修复土壤菲污染过程中的作用.生态环境学报.19(3):594-598
    祈士华,王新明,傅家谟,等.2000.珠江三角洲经济区主要城市不同功能区大气气溶胶中优控多环芳烃污染评价.地球化学.29(4):337-342.
    任丽丽,凌婉婷,高彦征.2008.外源有机质对土壤中菲的增强固定作用.应用生态学报.19(03):647-652.
    沈德中.2002.污染环境的生物修复.北京:化学工业出版社.
    宋玉芳,常士俊,李利,等.污灌土壤中多环芳烃的积累与动态变化研究.应用生态学报.1997.8(1):93-98.
    宋玉芳,周启星,宋雪英,等.2003.菲和芘对土壤中植物根伸长抑制的生态毒性效应.生态学杂志.22(5):6-9.
    孙红文,李书霞.1998.多环芳烃的光致毒效应.环境科学进展.6(006):1-11.
    孙铁珩,宋玉芳.1999.植物法生物修复PAHs和矿物油污染土壤的调控研究.应用生态学报.10(002):225-229.
    孙铁珩,周启星,李培军.2001.污染生态学.北京:科学出版社.
    谭文捷,李宗良,丁爱中,等.2007.土壤和地下水中多环芳烃生物降解研究进展.生态环境.16(4):1310-1317.
    田蕾,陈小云,胡淼,等.2008.蚯蚓及蚓粪对白腐真菌降解土壤中菲的动态影响.27(1):0221-0225.
    田蕴,郑凌,王新红.2004.厦门西港表面沉积物中芳烃含量、分布及来源.海洋与湖沼.35(1):15-20.
    万寅婧,占新华,周立祥.2005.土壤中芘、菲、萘、苯对小麦的生态毒性影响.中国环境科学.25(5):563-566.
    文倩,关欣.2004.土壤团聚体形成的研究进展.干旱区研究.21(004):434-438.
    吴蔓莉,聂麦茜,王晓昌,等.2007.蒽和菲的酶促降解条件及动力学特征.环境化学.26(003):314-317.
    徐国良,莫江明,周国逸,等.2003.土壤动物与N素循环及对N沉降的响应.生态学报.23(11):2453-2463.
    许姗姗.2005.全国多环芳烃年排放量估算.农业环境与发展.22(3):49-49.
    徐忠东,陈峰.2003.原生动物在环境污染监测与净化中应用的研究.安徽教育学院学报.21(3):61-62.
    杨若明.2001.环境中有毒有害化学物质的污染和监测.北京:中央民族大学出版社.
    余刚,牛军峰,黄俊,等.2005.持久性有机污染物一新的全球性环境问题.北京:科学出版社.
    张宝贵,李贵桐,申天寿.2000.威廉环毛蚯蚓对土壤中微生物量及活性的影响.生态学报.20(1):168-172.
    张宝贵.蚯蚓与微生物的相互作用.1997.生态学报.17(5):556-560.
    张福锁,曹一平.1992.根际动态过程与植物营养.土壤学报.29(3):239-250.
    张蓬,宋金明,刘志刚.2008.海洋沉积物中PAHs和PCBs的来源与微生物降解.海洋环境科学.27(1):91-96.
    张薇,宋玉芳,孙铁珩,等.2004.土壤线虫对环境污染的指示作用.应用生态学报.15(010):1973-1978.
    占新华,周立祥,万寅婧,等.2006.水溶性有机物对植物吸收菲的影响及其机制研究.环境科学.27(009):1884-1888.
    周乐,盛下放,张士晋,等.2005.一株高效菲降解菌的筛选及降解条件研究.应用生态学报.16(12):2399-2402.
    周礼凯.1987.土壤酶学.北京:科学出版社.
    周文敏,傅德黔,孙宗先.1990.水中优先控制污染物黑名单.中国监测.6(4):1-3.
    周燚,刘小锦,朱晨光,等.2004.细菌中群体感应调节系统.微生物学报.44(1):122-126.
    朱玲,李辉信,刘宾,等.2007.老化和风干处理对蚓粪微生物学性质和结构稳定性的影响.生态学报.27(001):120-127.
    朱利中.1999.土壤及地下水有机污染的化学及生物修复.7(2):65-71.
    邹德勋,骆永明,滕应,等.2006.多环芳烃长期污染土壤的微生物强化修复初步研究.土壤.38(005):652-656.
    Achazi R.K., Flenner C., Livingstone D.R., Peters L.D., Schaub K., Scheiwe E.,1998. Cytochrome P450 and dependent activities in unexposed and PAH-exposed terrestrial annelids. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology.121(1-3): 339-350.
    Aira M., Monroy F., Dominguez J.,2007. Microbial biomass governs enzyme activity decay during aging of worm-worked substrates through vermicomposting. Journal of environmental quality. 36(2):448.
    Alef K., Nannipieri P.,1995. Methods in applied soil microbiology and biochemistry. Academic Press.
    Alexander R.R., Alexander M.,1999. Genotoxicity of two polycyclic aromatic hydrocarbons declines as they age in soil. Environmental toxicology and chemistry.18(6):1140-1143.
    Allard A.S., Remberger M., Neilson A.H.,2000. The negative impact of aging on the loss of PAH components in a creosote-contaminated soil. International Biodeterioration & Biodegradation. 46(1):43-49.
    Alphei J, Bonkowski M, Scheu S.,1996. Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaers (Poaceae):Faunal interactions, response of microorganisms and effects on plant growth. Oecologia.106:111-126
    Amador J.A., Gorres J.H.,2005. Role of the anecic earthworm Lumbricus terrestris L. in the distribution of plant residue nitrogen in a corn (Zea mays)-soil system. Applied Soil Ecology.30(3): 203-214.
    Amador J.A., Gorres J.H., Savin M.C.,2006. Effects of Lumbricus terrestris L. on nitrogen dynamics beyond the burrow. Applied Soil Ecology.33(1):61-66.
    Anderson T.A., Guthrie E.A., Walton B.T.,1993. Bioremediation in the rhizosphere. Environmental science & technology.27(13):2630-2636.
    Aprill W., Sims R.C., Sims J.L., Matthews J.E.,1990. Assessing detoxification and degradation of wood preserving and petroleum wastes in contaminated soil. Waste Management & Research.8(1): 45-65.
    Araujo, Y., Luizao F.J., Barros E.,2004. Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms. Biology and Fertility of Soils.39(3): 146-152.
    Baker GH., Williams P.M.L., Carter P.J., Long N.R.,1997. Influence of lumbricid earthworms on yield and quality of wheat and clover in glasshouse trials. Soil Biology and Biochemistry.29(3-4): 599-602.
    Beare, M.H., Cabrera M.L., Hendrix P.F., Coleman D.C.,1994. Aggregate-protected and unprotected organic matter pools in conventional-and no-tillage soils. Soil Science Society of America journal (USA)
    Beare M.H., Parmelee R.W., Hendrix P.F., Cheng W.X., Coleman D.C., Crossley Jr D.,1992. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecological monographs.62(4):569-591.
    Belfroid A., Meiling J., Drenth H.J., Hermens J., Seinen W., Vangestel K.,1995. Dietary uptake of superlipophilic compounds by earthworms(Eisenia andrei). Ecotoxicology and environmental safety.31(3):185-191.
    Belfroid A., Meiling J., Sijim D., Hermens J., Seinen W., Gestel K.,1994. Uptake of hydrophobic halogenated aromatic-hydrocarbons from food by earthworms(Eisenia andrei). Archives of Environmental Contamination and Toxicology.27(2):260-265.
    Benner Jr, B.A., Bryner N.P., Wise S.A., Mulholland GW., Lao R.C., Fingas M.F.,1990. Polycyclic aromatic hydrocarbon emissions from the combustion of crude oil on water. Environmental science & technology.24(9):1418-1427.
    Bilal Butt S., Qureshi R.N.,2008. Gamma radiolytic degradation of fluoranthene and monitoring of radiolytic products using GC-MS and HPLC. Radiation Physics and Chemistry.77(6):768-774.
    Binet P., Portal J.M., Leyval C.,2000. Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biology and Biochemistry.32(14):2011-2017.
    Bird D.M.K., Opperman C.H., Davies K.G.,2003. Interactions between bacteria and plant-parasitic nematodes:now and then. International journal for parasitology.33(11):1269-1276.
    Bongers T., Ferris H.,1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution.14(6):224-228.
    Bonkowski M.2004. Protozoa and plant growth:the microbial loop in soil revisited. New Phytologist. 162(3):617-631.
    Bonkowski M., Cheng W.X., Griffiths B.S., Alphei J., Scheu S.,2000. Microbial-faunal interactions in the rhizosphere and effects on plant growth. European Journal of Soil Biology.36(3):135-147.
    Bouche M.B., Al-Addan F.,1997. Earthworms, water infiltration and soil stability:some new assessments. Soil Biology and Biochemistry.29(3-4):441-452.
    Brookes P.C., Landman A., Pruden G., Jenkinson D.S.,1985. Chloroform fumigation and the release of soil nitrogen:a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry.17(6):837-842.
    Brown G.G., Edwards C.A., Brussaard L.,2004. How earthworms affect plant growth:burrowing into the mechanisms. Earthworm ecology.2:13-49.
    Brown GG, Barois I., Lavelle P.,2000. Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactions with other edaphic functional domains. European Journal of Soil Biology.36(3-4):177-198.
    Bumpus J.A.1989. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Applied and environmental microbiology.55(1):154-158.
    Byzov B.A., Khomyakov N.V., Kharin S.A., Kurakov A.V.,2007. Fate of soil bacteria and fungi in the gut of earthworms. European Journal of Soil Biology.43(1):149-156.
    Carmichael L.M., Christman R.F., Pfaender F.K.,1997. Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soil. Environmental science & technology.31: 126-132.
    Carr R.S., Biedenbach J.M., Hooten R.L., et al.2001. Sediment quality assessment survey and toxicity identification evaluation studies in Lavaca Bay, Texas, a marine superfund site. Environmental Toxicology.16(1):20-30.
    Cells R., Barriuso E., Houot S.,1998. Effect of liquid sewage sludge addition on atrazine sorption and desorption by soil. Chemosphere.37(6):1091-1107.
    Cemiglia C.E., Campbell W.L., Freeman J.P., Evans F.E.,1989. Metabolism of phenanthrene by the fungus Cunninghamella elegans:identification of a novel metabolite. Appl. Environ. Microbiol. 55(9):2275-2279.
    Cerniglia C.E.1984. Microbial metabolism of polycyclic aromatic hydrocarbons. Advances in applied microbiology.30:31-71.
    Cerniglia C.E.1992. Biodegradation of polycyclic aromatic hydrocarbons. Current opinion in biotechnology.3(2-3):351-368.
    Chen Y.C., Banks M.K., Schwab A.P.,2003. Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass(Panicum virgatum L.). Environmental science & technology.37(24):5778-5782.
    Chiou C.T., Peters L.J., Freed V.H.,1979. A physical concept of soil-water equilibria for nonionic organic compounds. Science.206(4420):831-832.
    Chiou C.T., Sheng G.Y., Manes M.,2001. A partition-limited model for the plant uptake of organic contaminants from soil and water. Environmental science & technology.35(7):1437-1444.
    Christian M.2002. Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycyclic Aromatic Compounds.22:1011-1043.
    Clapperton M.J., Lee N.O., Binet F., Conner R.L.,2001. Earthworms indirectly reduce the effects of take-all(Gaeumannomyces graminis var. tritici) on soft white spring wheat (Triticum aestivum cv. Fielder). Soil Biology and Biochemistry.33(11):1531-1538.
    Coleman R.A. Coleman.1983. Structural systems design. Prentice-Hall (Englewood Cliffs, NJ).
    Contreras-Ramos S.M., Alvarez-Bernal D., Dendooven L.,2006. Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Environmental Pollution.141(3):396-401.
    Contreras-Ramos S.M., Alvarez-Bernal D., Dendooven L.,2008. Removal of polycyclic aromatic hydrocarbons from soil amended with biosolid or vermicompost in the presence of earthworms (Eisenia fetida). Soil Biology and Biochemistry.40(7):1954-1959.
    Corgie S.C., Beguiristain T., Leyval C.,2004. Spatial distribution of bacterial communities and phenanthrene degradation in the rhizosphere of Lolium perenne L. Applied and environmental microbiology.70(6):3552-3557.
    Cortez J., Billes G, Bouche M.B.,2000. Effect of climate, soil type and earthworm activity on nitrogen transfer from a nitrogen-15-labelled decomposing material under field conditions. Biology and Fertility of Soils.30(4):318-327.
    Coutino-Gonzalez E., Hernandez-Carlos B., Gutierrez-Ortiz R., Dendooven L.,2010. The earthworm Eisenia fetida accelerates the removal of anthracene and 9,10-anthraquinone, the most abundant degradation product, in soil. International Biodeterioration & Biodegradation.64(6):525-529.
    Cox L., Celis R., Hermosin M.C., Cornejo J., Zsolnay A., Zeller K.,2000. Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter. Environmental science & technology.34(21):4600-4605.
    Crawford S.L., Johnson G.E., Goetz F.L.,1993. Potential for bioremediation of soils containing PAHs by composting. Compost Science & Utilization.1(3):41-47.
    Cunningham S.D., Berti W.R., Huang J.W.,1995. Phytoremediation of contaminated soils. Trends in Biotechnology.13(9):393-397.
    Dick R.P, Pankhurst C., Doube B., Gupta V.,1997. Soil enzyme activities as integrative indicators of soil health. Biological indicators of soil health.121-156.
    Djigal D., Brauman A., Diop T.A., Chotte J.L., Villenave C.,2004. Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biology and Biochemistry.36(2):323-331.
    Djigal D., Sy M., Brauman A., Diop T.A., Mountport D., Chotte J.L., Villenave C.,2004. Interactions between Zeldia punctata (Cephalobidae) and bacteria in the presence or absence of maize plants. Plant and Soil.262(1):33-44.
    Donkin S.G., Dusenbery D.B.,1993. A soil toxicity test using the nematode Caenorhabditis elegans and an effective method of recovery. Environmental Contamination Toxicology.25(2):145-151.
    Driscoll S.B.K., McElroy A.E.,1997. Elimination of sediment-associated benzo[a]pyrene and its metabolites by polychaete worms exposed to 3-methylcholanthrene. Aquatic toxicology.39(1): 77-91.
    Duarte C.M., and Cebrian J.,1996. The fate of marine autotrophic production. Limnology and Oceanography.48(1):1758-1766.
    Edwards, C.A.,2004. The use of earthworms in processing organic wastes into plant growth media and animal feed protein. Edwards. CA (ed),327
    Edwards C.A., Bohlen P.J.,1996. Biology and ecology of earthworms.
    Edwards N.T.,1983. Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment:a review. J. Environ. Qual.(United States).12(4):427-441.
    Ekschmitt K., Bakonyi G, Bongers M., Bongers T., Bostrom S., Dogan H., Harrison A., Kallimanis A., Nagy P., O'Donnell A.G.,1999. Effects of the nematofauna on microbial energy and matter transformation rates in European grassland soils. Plant and Soil.212(1):45-61.
    Enami Y., Okano S., Yada H., Nakamura Y.,2001. Influence of earthworm activity and rice straw application on the soil microbial community structure analyzed by PLFA pattern. European Journal of Soil Biology.37(4):269-272.
    Eriksen-Hamel N.S., Whalen J.K.,2007. Impacts of earthworms on soil nutrients and plant growth in soybean and maize agroecosystems. Agriculture, Ecosystems & Environment.120(2-4): 442-448.
    Eriksen-Hamel N.S., Whalen J.K.,2008. Earthworms, soil mineral nitrogen and forage production in grass-based hayfields. Soil Biology and Biochemistry.40(4):1004-1010.
    Essink K., Keidel H.,1998. Changes in estuarine nematode communities following a decrease of organic pollution. Aquatic Ecology.32(3):195-202.
    Ferris H., Bongers T., De Goede R.G.M.,2001. A framework for soil food web diagnostics:extension of the nematode faunal analysis concept. Applied Soil Ecology.18(1):13-29.
    Ferris H., Matute M.M.,2003. Structural and functional succession in the nematode fauna of a soil food web. Applied Soil Ecology.23(2):93-110.
    Fischer O.A., Matlova L., Bartl J.,2003. Earthworms (Oligochaeta, Lumbricidae) and mycobacteria. Veterinary Microbiology.91(4):325-338.
    Flury M.,1996. Experimental evidence of transport of pesticides through field soils—a review. Journal of Environmental Quality.25(1):25-45.
    Freeman D.J., Cattell F.C.R.,1990. Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environmental science & technology.24(10):1581-1585.
    Fuhr F., Scheele H., Kloster G 1986. Schadstoeffintrgae in den boden dureh industrie, besiedlung, verkehr und landbewirtschaftung. Vdluf-Schriftenreihe.16:73-84.
    Fu S., Ferris H., Brown D., Plant R.,2005. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biology and Biochemistry.37(11):1979-1987.
    Gunther T., Dornberger U., Fritsche W.,1996. Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere.33(2):203-215.
    Gao Y.Z, Zhu L.Z.,2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere.55(9):1169-1178.
    Gao Y., Zhu L.Z., Ling W.T,2005. Application of the partition-limited model for plant uptake of organic chemicals from soil and water. Science of the total environment.336(1-3):171-182.
    Gianfreda L., Rao M.A., Piotrowska A., Palumbo G, Colombo C.,2005. Soil enzyme activities as affected by anthropogenic alterations:intensive agricultural practices and organic pollution. Science of the total environment.341(1-3):265-279.
    Gianfreda L., Rao M.A.,2004. Potential of extra cellular enzymes in remediation of polluted soils:a review. Enzyme Microbial Technology.35(4):339-354.
    Goldberg E.D.,1975. The mussel watch:A first step in global marine monitoring. Marine Pollution Bulletin.6(7):111-114.
    Griffiths B.S., Bonkowski M., Dobson G., Caul S.,1999. Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia.43(4):297-304.
    Gunster D.G., Bonnevie N.L., Gillis C.A., Wenning R.J.,1993. Assessment of chemical loadings to Newark Bay, New Jersey from petroleum and hazardous chemical accidents occurring from 1986 to 1991. Ecotoxicology and environmental safety.25(2):202-213.
    Gyedu-Ababio T.K., Furstenberg J.P., Baird D., Vanreusel A.,1999. Nematodes as indicators of pollution: a case study from the Swartkops River system, South Africa. Hydrobiologia.397:155-169.
    Hallaire V., Curmi P., Duboisset A., Lavelle P., Pashanasi B.,2000. Soil structure changes induced by the tropical earthworm Pontoscolex corethrurus and organic inputs in a Peruvian ultisol. European Journal of Soil Biology.36(1):35-44.
    Haritash A.K., Kaushik C.P.,2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of hazardous materials.169(1-3):1-15.
    Heneghan L., Coleman D.C., Zou X., Crossley Jr D.A., Haines B.L.,1999. Soil microarthropod contributions to decomposition dynamics:tropical-temperate comparisons of a single substrate. Ecology.80(6):1873-1882.
    Herbes S.E., Schwall L.R.,1978. Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Applied and environmental microbiology.35(2): 306-316.
    Heredia R.B., Duenas S., Castillo L., Ventura J.J., Silva Briano M., Posadas del Rio F., Rodriguez M.G., 2008. Autofluorescence as a tool to study mucus secretion in Eisenia foetida. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology.151(3):407-414.
    Hickman Z.A., Reid B.J.,2008. Earthworm assisted bioremediation of organic contaminants. Environment international.34(7):1072-1081.
    Ingham R.E., Trofymow J.A., Ingham E.R., Coleman D.C.,1985. Interactions of bacteria, fungi, and their nematode grazers:effects on nutrient cycling and plant growth. Ecological monographs. 55(1):119-140.
    Jegou D., Schrader S., Diestel H., Cluzeau D.,2001. Morphological, physical and biochemical characteristics of burrow walls formed by earthworms. Applied Soil Ecology.17(2):165-174.
    Johnsen A.R., Wick L.Y., Harms H.,2005. Principles of microbial PAH-degradation in soil. Environmental Pollution.133(1):71-84.
    Jones K.C., Stratford J.A., Waterhouse K.S., Furlong E.T., Giger W., Hites R.A., Schaffner C., Johnston A.,1989. Increases in the polynuclear aromatic hydrocarbon content of an agricultural soil over the last century. Environmental science & technology.23(1):95-101.
    Kanaly R.A., Harayama S.,2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology.182(8):2059-2067.
    Ketterings Q.M., Blair J.M., Marinissen J.C.Y.,1997. Effects of earthworms on soil aggregate stability and carbon and nitrogen storage in a legume cover crop agroecosystem. Soil Biology and Biochemistry.29(3-4):401-408.
    Kickuth R.,1977. Degradation and incorporation of nutrients from rural wastewaters by plant rhizosphere under limnic conditions. Utilization of manure by land spreading.235-243.
    Kim J.D., Shim S.H., Lee C.G.,2005. Degradation of phenanthrene by bacterial strains isolated from soil in oil refinery fields in Korea. Journal of Microbiology and Biotechnology.15(2):337-345.
    Kirk J.L., Klironomos J.N., Lee H., Trevors J.T.,2005. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution. 133:245-465.
    Kiyohara H., Nagao K., Nomi R.1976. Degradation of phenanthrene through o-Phthalate by an Aeromonas sp. Agricultural and Biological Chemistry.40(6):1075-1082.
    Kojima K., Kamijyo A., Masumori M., Sasaki S.,1994. Cellulase activities of pine-wood nematode [Bursaphelenchus xylophilus] isolates with different virulences. Journal of the Japanese Forestry Society (Japan).
    Korthals G.W., Ende A., Megen H.,1996. Short-term effects of cadmium, copper, nickel and zinc on soil nematodes form different feeding and life-history strategy groups. Applied Soil Ecology. 4:107-117.
    Lanno R., Wells J., Conder J., et al., The bioavailability of chemicals in soil for earhworms. Ecotoxicology and Envionmental Safety.2004.57(1):39-47.
    Larson J.L.Z., Sinsabaugh D.R., Robert L.,2002. Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Science Society of America Journal. 66(6):1848-1856.
    Lau P.C.K., Lorenzo V.,1999. Peer Reviewed:Genetic Engineering:The Frontier of Bioremediation. Environmental science & technology.33(5):124-128.
    Lavelle P., Bignell D., Lepage M., Wolters W., Roger P., Ineson P., Heal O.W, Dhillion S.,1997. Soil function in a changing world:the role of invertebrate ecosystem engineers. European Journal of Soil Biology.33(4):159-193.
    Le Bayon R.C., Binet F.,2006. Earthworms change the distribution and availability of phosphorous in organic substrates. Soil Biology and Biochemistry.38(2):235-246.
    Lei A.P., Hu Z.L., Wong Y.S., Tam N.F.Y.,2007. Removal of fluoranthene and pyrene by different microalgal species. Bioresource technology.98(2):273-280.
    Li H., Sheng G, Chiou C.T., Xu O.,2005. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants. Environmental science & technology.39(13):4864-4870.
    Li H., Sheng G, Sheng W., Xu O.,2002. Uptake of trifluralin and lindane from water by ryegrass. Chemosphere.48(3):335-341.
    Li Y., Yediler A., Ou Z., Conrad I., Kettrup A.,2001. Effects of a non-ionic surfactant (Tween-80) on the mineralization, metabolism and uptake of phenanthrene in wheat-solution-lava microcosm. Chemosphere.45(1):67-75.
    Lord H., Pawliszyn J., Evolution of solid-phase microextraction technology. Journal of Chromatography A.2000.885(1-2):153-193.
    Luepromchai E., Singer A.C., Yang C.H.,2002. Interactions of earthworms with indigenous and bioaugmented PCB-degrading bacteria. FEMS Microbiology Ecology.41(3):191-197.
    Ma W.C., Immerzeel J., Bodt J.,1995. Earthworm and food interactions on bioaccumulation and disappearance in soil of polycyclic aromatic hydrocarbons:Studies on phenanthrene and fluoranthene. Ecotoxicology and environmental safety.32(3):226-232.
    Mahaffey W.R., Gibson D.T., Cerniglia C.E.,1988. Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz [a] anthracene. Applied and environmental microbiology.54(10):2415-2423.
    Mai B., Qi S., Zeng E.Y., Yang Q., Zhang G, Fu J., Sheng G., Peng P., Wang Z.,2003. Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China:Assessment of input sources and transport pathways using compositional analysis. Environmental science & technology.37(21):4855-4863.
    Mamilov A.S., Byzov B.A., Zvyagintsev D.G., Dilly O.M.,2001. Predation on fungal and bacterial biomass in a soddy-podzolic soil amendedwith starch, wheat straw and alfalfa meal. Applied Soil Ecology.16(2):131-139.
    Manilal V.B., Alexander M.,1991. Factors affecting the microbial degradation of phenanthrene in soil. Applied microbiology and biotechnology.35(3):401-405.
    Mao X.F., Hu F., Griffiths B., Li H.X.,2006. Bacterial-feeding nematodes enhance root growth of tomato seedlings. Soil Biology and Biochemistry.38(7):1615-1622.
    Marinari S., Masciandaro G, Ceccanti B., Grego S.,2000. Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresource technology.72(1):9-17.
    Marschner H.,1995. Mineral nutrition of higher plants. San Diego.
    Mattison R., Taki H., Harayama S.,2005. The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. Microbial ecology.49(1):142-150.
    Meagher R.B.,2000. Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology.3(2):153-162.
    Menzie C.A., Potocki B.B., Santodonato J.,1992. Exposure to carcinogenic PAHs in the environment. Environmental science & technology.26(7):1278-1284.
    Moens T., dos Santos GA.P., Thompson F., Swings J., Fonseca-Genevois V., Vincx M., De Mesel I., 2005. Do nematode mucus secretions affect bacterial growth? Aquatic microbial ecology.40(1): 77-83.
    Mueller J.G, Chapman P.J., Pritchard P.H.,1989. Creosote-contaminated sites. Their potential for bioremediation. Environmental science & technology.23(10):1197-1201.
    Nam K., Rodriguez W., Kukor J.J.,2001. Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere.45(1):11-20.
    Nannipieri P., Ascher J., Ceccherini M., Landi L., Pietramellara G., Renella G.,2003. Microbial diversity and soil functions. European Journal of Soil Science.54(4):655-670.
    Neher D.A.,2001. Role of nematodes in soil health and their use as indicators. Journal of Nematology. 33(4):161-168.
    Nichols T., Wolf D., Rogers H., Beyrouty C., Reynolds C.,1997. Rhizosphere microbial populations in contaminated soils. Water, Air, & Soil Pollution.95(1):165-178.
    Ockenden W.A., Prest H.F., Thomas G.O., Sweetman A., Jones K.C.,1998. Passive air sampling of PCBs: Field calculation of atmospheric sampling rates by triolein-containing semipermeable membrane devices. Environmental science & technology.32(10):1538-1543.
    Olmos E., Martinez-Solano J.R., Piqueras A., Hellin E.,2003. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). Journal of experimental botany.54(381): 291-301.
    Parkin T.B., Berry E.C.,1999. Microbial nitrogen transformations in earthworm burrows. Soil Biology and Biochemistry.31(13):1765-1771.
    Parrish Z.D., Banks M.K., Schwab A.P.,2005. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environmental Pollution. 137(2):187-197.
    Perucci P., Bonciarelli U., Santilocchi R., Bianchi A.,1997. Effect of rotation, nitrogen fertilization and management of crop residues on some chemical, microbiological and biochemical properties of soil. Biology and Fertility of Soils.24(3):311-316.
    Popovici Ⅰ.,1992. Nematodes as indicators of ecosystem disturbance due to pollution. Studia Universitatis Babes Bolyai Biologia.37:15-27.
    Pothuluri J.V., Cerniglia C.E.,1994. Microbial metabolism of polycyclic aromatic hydrocarbons. Biological Degradation and Bioremediation Toxic Chemicals. London:Chapman and Hall. 92-124.
    Prabhu Y., Phale P.,2003. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2:novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Applied microbiology and biotechnology.61(4):342-351.
    Qiu R.L., Zhao X., Tang Y.T., Yu F.M., Hu P.J.,2008. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere.74(1):6-12.
    Ratsak C., Maarsen K., Kooijman S.,1996. Effects of protozoa on carbon mineralization in activated sludge. Water Research.30(1):1-12.
    Reed J.P., Kremer R.J., Keaster A.J.,1987. Characterization of microorganisms in soils exhibiting accelerated pesticide degradation. Bulletin of environmental contamination and toxicology. 39(5):776-782.
    Rentz J.A., Alvarez P.J.J., Schnoor J.L.,2004. Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environmental Microbiology.6(6):574-583.
    Riemann F., Helmke E.,2002. Symbiotic Relations of Sediment-Agglutinating Nematodes and Bacteria in Detrital Habitats:The Enzyme Sharing Concept. Marine Ecology,23(2):93-113.
    Ritz K, Trudgill D.L.1999. Utility of nematode community analysis as an integrated measure of the functional state of soils:Peres perceive and challenges. Plant Soil.212(1)1-11.
    Rodrigues A.C., Wuertz S., Brito A.G, Melo L.F.,2005. Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514:kinetics and physiological aspects. Biotechnology and bioengineering.90(3):281-289.
    Romero M.C., Salvioli M.L., Cazau M.C., Arambarri A.,2002. Pyrene degradation by yeasts and filamentous fungi. Environmental Pollution.117(1):159-163.
    Ross J.R.M., Oros D.R.,2004. Polycyclic aromatic hydrocarbons in the San Francisco Estuary water column:sources, spatial distribution and temporal trend. Chemosphere.57 (8):909-920.
    Ryan J., Bell R., Davidson J., O'connor G.,1988. Plant uptake of non-ionic organic chemicals from soils. Chemosphere.17(12):2299-2323.
    Saison C., Perrin-Ganier C., Amellal S., Morel J.L., Schiavon M.,2004. Effect of metals on the adsorption and extractability of 14C-phenanthrene in soils. Chemosphere.55(3):477-485.
    Salmon S., Ponge J.F.,2001. Earthworm excreta attract soil springtails:laboratory experiments on Heteromurus nitidus (Collembola:Entomobryidae). Soil Biology and Biochemistry.33(14): 1959-1969.
    Samanta S.K., Singh O.V., Jain R.K.,2002. Polycyclic aromatic hydrocarbons:environmental pollution and bioremediation. Trends in Biotechnology.20(6):243-248.
    Schaefer M., Juliane F.,2007. The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. Applied Soil Ecology.36(1):53-62.
    Scheu S.,2003. Effects of earthworms on plant growth:patterns and perspectives:The 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia.47(5-6):846-856.
    Schnoor J.L., Light L.A., McCutcheon S.C., Wolfe N.L., Carreia L.H.,1995. Phytoremediation of organic and nutrient contaminants. Environmental science & technology.29(7):318-323.
    Schroll R., Bierling B., Cao G., D rfler U., Lahaniati M., Langenbach T., Scheunert I., Winkler R.,1994. Uptake pathways of organic chemicals from soil by agricultural plants. Chemosphere.28(2): 297-303.
    Seeber J., Seeber G.U.H., Langel R., Scheu S., Meyer E.,2008. The effect of macro-invertebrates and plant litter of different quality on the release of N from litter to plant on alpine pastureland. Biology and Fertility of Soils.44(5):783-790.
    Shuster W.D., Subler M.J., Aref S., McCoy S., Edward L.,2003. Earthworm additions affect leachate production and nitrogen losses in typical midwestern agroecosystems. Journal of environmental quality.32(6):2132-2139.
    Sonnemann I., Dogan H., Klein A., Pieper B., Ekschmitt K., Wolters V.,1999. Response of soil microflora to changes in nematode abundance-evidence for large scale effects in grassland soil. Journal of Plant Nutrition and Soil Science.162(4):385-391.
    Subler S., Baranski C.M., Edwards C.A.,1997. Earthworm additions increased short-term nitrogen availability and leaching in two grain-crop agroecosystems. Soil Biology and Biochemistry. 29(3-4):413-421.
    Sundin P., Valeur A., Olsson S., Odham G.,1990, Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere:effects on root exudation and distribution of bacteria. FEMS Microbiology Letters.73(1):13-22.
    Tian G., Kang B., Brussaard L.,1997. Effect of mulch quality on earthworm activity and nutrient supply in the humid tropics. Soil Biology and Biochemistry.29(3-4):369-373.
    Tian L., Ma P., Zhong J.J.,2002. Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina. Process Biochemistry.37(12):1431-1437.
    Tiunov A.V., Scheu S.,1999. Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L.(Lumbricidae). Soil Biology and Biochemistry.31(14): 2039-2048.
    Tso S.F., Taghon GL.,2006. Protozoan grazing increases mineralization of naphthalene in marine sediment. Microbial ecology.51(4):460-469.
    Tuveson R., Kagan J., Shaw M., Moresco G.,1987. Phototoxic effects of fluoranthene, a polycyclic aromatic hydrocarbon, on bacterial species. Environmental and molecular mutagenesis.10(3): 245-261.
    Veransa U.M.,1989. Metabolism of polycyclic aiomatic hydrocarbons in the Aquatie. Environment Bocaraton, FL.23:1045-1452
    Wasilewska L., Jakubczyk H., Paplinska E.,1975. Production of Aphelenchus avenae Bastian (Nematoda) and reduction of mycelium of saprophytic fungi by them. Polish Ecological Studies. 1:61-73.
    Watts R.J., Kong S., Dippre M., Barnes W.T.,1994. Oxidation of sorbed hexachlorobenzene in soils using catalyzed hydrogen peroxide. Journal of hazardous materials.39(1):33-47.
    Watts R.J., Stanton P.C., Howsawkeng J., Teel A.L.,2002. Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide. Water Research.36(17): 4283-4292.
    Weber Jr W.J., McGinley P.M., Katz L.E.,1992. A distributed reactivity model for sorption by soils and sediments.1. Conceptual basis and equilibrium assessments. Environmental science & technology.26(10):1955-1962.
    Wei S., Zhou Q., Zhang K., Liang J.,2003. Roles of rhizosphere in remediation of contaminated soils and its mechanisms. The journal of applied ecology.14(1):143-147.
    Whalen J.K., Parmelee R.W., McCartney D.A., Vanarsdale J.L.,1999. Movement of N from decomposing earthworm tissue to soil, microbial and plant N pools. Soil Biology and Biochemistry.31(4):487-492.
    Widada J., Nojiri H., Kasuga K., Yoshida T., Habe H., Omori T.,2002. Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Applied microbiology and biotechnology.58(2):202-209.
    Wild E., Dent J., Thomas GO., Jones K.C.,2005. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environmental science & technology.39(10): 3695-3702.
    Wild S.R., Jones K.C.1995. Polyeyelic aromatic hydrocarbons in the United Kingdom environment:a preliminary source inventory and budget. Environmental Pollution.88(1):91-108.
    Wilson S.C., Jones K.C.,1993. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs):a review. Environmental Pollution.81(3):229-249.
    Winding A., Ronn R., Hendriksen N.B.,1997. Bacteria and protozoa in soil microhabitats as affected by earthworms. Biology and Fertility of Soils.24(2):133-140.
    Winsome T., McColl J.G.,1998. Changes in chemistry and aggregation of a California forest soil worked by the earthworm Argilophilus papillifer Eisen (Megascolecidae). Soil Biology and Biochemistry.30(13):1677-1687.
    Wolter C., Scheu S.,1999. Changes in bacterial numbers and hyphal lenghts during the gut passage through Lumbricus terrestris (Lumbricidae, Oligochaeta). Pedobiologia.43(6):891-900.
    Woods L., Cole C., Elliott E., Anderson R., Coleman D.,1982. Nitrogen transformations in soil as affected by bacterial-microfaunal interactions. Soil Biology and Biochemistry.14(2):93-98.
    Wu F., Zhang G., Dominy P.,2003. Four barley genotypes respond differently to cadmium:lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany. 50(1):67-78.
    Xing B.,2001. Sorption of naphthalene and phenanthrene by soil humic acid. Environmental Pollution. 111(2):303-309.
    Zarda B., Mattison G, Hess A., Hahn D., hener P.H., Zeyer J.,1998. Analysis of bacterial and protozoan communities in an aquifer contaminated with monoaromatic hydrocarbons. FEMS microbiology ecology.27(2):141-152.
    Zhan X.H., Wu W.Z., Zhou L.X., Liang J.R., Jiang T.H.,2010. Interactive effect of dissolved organic matter and phenanthrene on soil enzymatic activities. Journal of Environmental Sciences.22(4): 607-614.
    Zhang S.J., Hu F., Li H.X., Li X.Q.,2009. Influence of earthworm mucus and amino acids on tomato seedling growth and cadmium accumulation. Environmental Pollution.157(10):2737-2742.
    Zhou J.H., Li X.C., Jiang Y., Wu Y., Chen J.D., Hu F., Li. H.X.,2011. Combined Effects of Bacterial-feeding Nematodes and Prometryne on the Soil Microbial Activity. Journal of hazardous materials.192(3):1243-1249.
    Zhou Q., Song Y., Sun T.,2004. Progress of Bioremediation Study and Application. Program of National Science.11:37-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700