用户名: 密码: 验证码:
心房肌建模与房颤消融的初步仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心房颤动(简称房颤)是临床中最常见的心律失常疾病。房颤的特点是心房快速、不规则的活动,继而导致其失去机械收缩功能。随着年龄的增长,房颤的发病率不断上升,50多岁人群的发病率在0.5%,而80-90岁人群的发病率就上升到10%,最近几年,房颤的发病率呈日益增长的趋势。目前为止,虽然有很多关于房颤产生和维持机制的各种假说,如多子波折返假说、主导环折返假说和肺静脉异位局灶触发假说等,但房颤的确切机制仍不明确。
     房颤的药物治疗主要有两种治疗策略:节律控制和心率控制。但多种药物治疗房颤的效果相对较低且有副作用和并发症,并不能长期维持窦性心律,很难达到预期的效果。
     因此临床医生更多地追求确定的治疗方法,基于导管或外科手术消融的方法来治疗房颤,该方法是通过射频能量在心脏表面形成一些透壁消融线,通过去除导致房颤的潜在机制来治疗房颤。外科手术治愈房颤的同时,也提高了对房颤诱发和维持机制的认识,这在很大程度上也是导管消融技术发展的结果。
     对于房颤患者的各种治疗方法常常以经验为依据,且需要临床研究和动物实验来评价方法的有效性。心脏建模仿真是研究房颤的有效方法之一,可以研究房颤的发生和维持的潜在机制,同时也可以评价房颤治疗方法的有效性。与临床研究和动物实验相比较,模型仿真的方法可以控制不同的实验条件,具有可重复性、可再现的优点。但现有心房模型在很多方面还有局限性,需要进一步完善。
     本论文针对不同部位心房肌模型进行建模仿真研究,然后对房颤外科/射频导管消融方法进行仿真研究。主要研究内容有以下几个方面。
     首先,对房颤基本概念、发生机制和主要治疗方法进行了回顾。
     其次,基于犬心房肌的实验数据和前人发表的一些相关数据,首次建立了犬左心房肌和肌袖细胞模型。
     第三,基于其他学者新近发表的人心房肌模型,仿真重现了正常人心房肌细胞的各离子流和动作电位曲线。在此基础上,通过改变相关的离子流参数,实现了不同部位人心房肌动作电位的仿真。
     第四,基于Iyer和Gray发表的相位空间分布理论,提出了一种心脏折返模型中自动检测、跟踪相位奇异点的改进算法、比较分析了该算法的有效性和参数敏感精确性,并与Fenton和Karma提出的算法进行了比较。
     最后,基于我们实验室构建的具有详细解剖结构的心房模型(3-D Cardiome-CN human heart model)上对8种临床上常用的术式(其中也包括了Cox-MazeⅢ术式)进行了仿真和评价,并提出了几种基于Cox-MazeⅢ的优化改进消融术式。
     本论文的研究工作,对于今后进一步研究房颤的机制和房颤治疗方法具有重要意义。
Atrial fibrillation (AF) is the most common form of cardiac arrhythmia in clinical practice. AF is characterized by rapid and irregular activation of the atria, with consequence deterioration of atrial mechanical function. The occurrence of AF increases with age, with a prevalence rising from0.5%of people in their50s to nearly10%of the octogenarian population, and its incidence is increasing in the last few years. Despite different hypotheses are proposed such as multiple wavelet hypothesis, mother rotor hypothesis and focal triggers and drivers from the PVs etc., the exact mechanisms leading to perpetuation of AF are still undetermined so far.
     There are two main pharmacological treatment strategies for patients with AF:rhythm control and rate control. Multiple pharmacological approaches have been tried to convert AF to sinus rhythm (SR). However, many of such drugs are relatively ineffective for maintaining sinus rhythm in the long term and are associated with significant side effects and complications.
     Clinicians have therefore pursued more definitive treatment options, both catheter based and surgical, to treat patients with AF. Surgical/Radiofrequency (RF) catheter ablation is a therapeutic procedure that consists of creating lines of conduction block to interrupt AF. Surgical therapies designed to cure AF have developed in parallel with an improved understanding of the key pathophysiological concepts important in initiation and maintenance of AF, largely as a result of advances in catheter ablation technology.
     The various treatments of AF remain largely based on empirical considerations and are usually evaluated in clinical study or in animal experiment. Heart modeling and simulation is one of the effective methods for AF research, it can be used to simulate AF and thus answer questions such as the mechanism involved in AF initiation or perpetration and the efficiency of therapy techniques. Compared to clinical and animal studies, an in silico approach has the advantages of repeatability and reproducibility under controlled conditions.
     This thesis is focus on modeling of atrial cells with different areas and simulation study of the AF therapies:Surgical/Radiofrequency catheter ablation.
     First, a brief review of the concepts and mechanisms of atrial fibrillation is presented, as well as a description of therapies aimed at AF including pharmacological treatments and non- pharmacological treatments.
     Second, based on the RNC model, which is only specific to canine right atrial region, we developed models of left atrial myocytes and myocardial sleeves in PVs for the first time, based on our own experiment data and other published data.
     Third, based on the published researches in recent years, ionic currents and action potential (AP) curves of normal human atrial myocytes are reproduced in our computer simulations. Then APs of human atrial myocytes with different anatomical regions of are simulated by changing ionic current parameters.
     Fourth, based on the phase spatial distribution theory developed by Iyer and Gray, an automatic method is proposed to identify the phase singularity in cardiac reentry simulation, and the efficiency, accuracy and parameter sensitivity of the method are studied and compared with another commonly used method developed by Fenton and Karma.
     Finally, based on3-D Cardiome-CN human heart model developed by our group,8different ablation patterns including the gold standard Cox-Maze Ⅲ are evaluated. Then several refined Cox-Maze Ⅲ ablation patterns are proposed.
     The work of this thesis is very useful for further understanding the mechanisms underlying AF as well as refining AF therapeutic techniques.
引文
1. Nattel, S., New ideas about atrial fibrillation 50 years on. Nature,2002.415(6868):p.219-26.
    2. Chung, M.K., Current clinical issues in atrial fibrillation. Cleve Clin J Med,2003.70 Suppl 3:p. S6-11.
    3. Savelieva, I. and A.J. Camm, Atrial pacing for the prevention and termination of atrial fibrillation. Am J Geriatr Cardiol,2002.11(6):p.380-98.
    4. Fuster, V., L.E. Ryden, D.S. Cannom, et al., ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation):developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation,2006.114(7):p. e257-354.
    5. Fuster, V., L.E. Ryden, D.S. Cannom, et al., ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation:full text:a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 guidelines for the management of patients with atrial fibrillation) developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Europace,2006.8(9):p.651-745.
    6. Calkins, H., J. Brugada, D.L. Packer, et al., HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation:recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation developed in partnership with the European Heart Rhythm Association (EHRA) and the European Cardiac Arrhythmia Society (ECAS); in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), and the Society of Thoracic Surgeons (STS). Endorsed and approved by the governing bodies of the American College of Cardiology, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, and the Heart Rhythm Society. Europace,2007.9(6):p.335-79.
    7. Garrey, W.E., A URICULAR FIBRILLATION. Physiological Reviews,1924.4(2):p.215-250.
    8. Moe, G.K., W.C. Rheinboldt, and J.A. Abildskov, A Computer Model of Atrial Fibrillation. Am Heart J, 1964.67:p.200-20.
    9. Moe, G.K. and J.A. Abildskov, Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am Heart J,1959.58(1):p.59-70.
    10. Haissaguerre, M., P. Jais, D.C. Shah, et al.. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med,1998.339(10):p.659-66.
    11. Jalife, J., O. Berenfeld, and M. Mansour, Mother rotors and fibrillatory conduction:a mechanism of atrial fibrillation. Cardiovasc Res,2002.54(2):p.204-16.
    12. Mines, G.R., On dynamic equilibrium in the heart, J Physiol,1913.46(4-5):p.349-83.
    13. Pappone, C., V. Santinelli, F. Manguso, et al., Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation,2004.109(3):p.327-34.
    14. Hohnloser, S.H., K.H. Kuck, and J. Lilienthal, Rhythm or rate control in atrial fibrillation--Pharmacological Intervention in Atrial Fibrillation (PIAF):a randomised trial. Lancet,2000. 356(9244):p.1789-94.
    15. Van Gelder, I.C., V.E. Hagens, H.A. Bosker, et al., A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med,2002.347(23):p.1834-40.
    16. Carlsson. J., S. Miketic, J. Windeler, et al.. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation:the Strategies of Treatment of Atrial Fibrillation (STAF) study. Journal of the American College of Cardiology,2003.41(10):p.1690-6.
    17. Hagens, V.E., A.V. Ranchor, E. Van Sonderen, et al., Effect of rate or rhythm control on quality of life in persistent atrial fibrillation:Results from the Rate Control Versus Electrical Cardioversion (RACE) study. Journal of the American College of Cardiology,2004.43(2):p.241-247.
    18. Singh, S.N., X.C. Tang. B.N. Singh, et al., Quality of Life and Exercise Performance in Patients in Sinus Rhythm Versus Persistent Atrial Fibrillation:A Veterans Affairs Cooperative Studies Program Substudy. Journal of the American College of Cardiology,2006.48(4):p.721-730.
    19. Atwood, J.E., J.N. Myers, X.C. Tang, et al., Exercise capacity in atrial fibrillation:a substudy of the Sotalol-Amiodarone Atrial Fibrillation Efficacy Trial (SAFE-T). Am Heart J,2007.153(4):p.566-72.
    20. Pedersen, O.D., H. Bagger, N. Keller, et al., Efficacy of dofetilide in the treatment of atrial fibrillation-flutter in patients with reduced left ventricular function:a Danish investigations of arrhythmia and mortality on dofetilide (diamond) substudy. Circulation,2001.104(3):p.292-6.
    21. Corley, S.D., A.E. Epstein, J.P. DiMarco, et al., Relationships between sinus rhythm, treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) Study. Circulation,2004.109(12):p.1509-13.
    22. Van Gelder,I.C, A.E. Tuinenburg, B.S. Schoonderwoerd, et al., Pharmacologic versus direct-current electrical cardioversion of atrial flutter and fibrillation. Am J Cardiol,1999.84(9A):p.147R-151R.
    23. Fuster, V., Atrial fibrillation:an epidemiologic, scientific and clinical challenge. Nat Clin Pract Cardiovasc Med,2005.2(5):p.225.
    24. Ewy, G.A., Optimal technique for electrical cardioversion of atrial fibrillation. Circulation,1992.86(5):p. 1645-7.
    25. Knight, B.P., B.J. Gersh, M.D. Carlson, et al., Role of permanent pacing to prevent atrial fibrillation: science advisory from the American Heart Association Council on Clinical Cardiology (Subcommittee on Electrocardiography and Arrhythmias) and the Quality of Care and Outcomes Research Interdisciplinary Working Group, in collaboration with the Heart Rhythm Society. Circulation,2005.111(2):p.240-3.
    26. Aliot, E., C. De Chillou, and N. Sadoul, Catheter ablation or modulation of the AV node. Card Electrophysiol Rev,2002.6(4):p.406-13.
    27. Scheinman, M.M., F. Morady. D.S. Hess, et al., Catheter-induced ablation of the atrioventricular junction to control refractory supraventricular arrhythmias. JAMA,1982.248(7):p.851-5.
    28. Hindricks, G., The Multicentre European Radio frequency Survey (MERFS):complications of radiofrequency catheter ablation of arrhythmias. The Multicentre European Radiofrequency Survey (MERFS) investigators of the Working Group on Arrhythmias of the European Society of Cardiology. Eur Heart J,1993.14(12):p.1644-53.
    29. Darpo, B., H. Walfridsson, M. Aunes, et al., Incidence of sudden death after radiofrequency ablation of the atrioventricular junction for atrial fibrillation. Am J Cardiol,1997.80(9):p.1174-7.
    30. Geelen, P., J. Brugada, E. Andries, et al., Ventricular fibrillation and sudden death after radiofrequency catheter ablation of the atrioventricular junction. Pacing Clin Electrophysiol,1997.20(2 Pt 1):p.343-8.
    31. Cox, J.L., The surgical treatment of atrial fibrillation. IV. Surgical technique. J Thorac Cardiovasc Surg, 1991.101(4):p.584-92.
    32. Cox, J.L., Cardiac surgery for arrhythmias. Pacing Clin Electrophysiol,2004.27(2):p.266-82.
    33. Cox, J.L., N. Ad, T. Palazzo, et al., Current status of the Maze procedure for the treatment of atrial fibrillation. Semin Thorac Cardiovasc Surg,2000.12(1):p.15-9.
    34. Yuda, S., S. Nakatani, Y. Kosakai, et al., Long-term follow-up of atrial contraction after the maze procedure in patients with mitral valve disease. Journal of the American College of Cardiology,2001. 37(6):p.1622-7.
    35. Schaff, H.V., J.A. Dearani, R.C. Daly, et al., Cox-Maze procedure for atrial fibrillation:Mayo Clinic experience. Semin Thorac Cardiovasc Surg,2000.12(1):p.30-7.
    36. Cox, J.L., R.B. Schuessler, H.J. D'Agostino, Jr., et al., The surgical treatment of atrial fibrillation. Ⅲ. Development of a definitive surgical procedure. J Thorac Cardiovasc Surg,1991.101(4):p.569-83.
    37. Cox, J.L., R.D. Jaquiss, R.B. Schuessler, et al., Modification of the maze procedure for atrial flutter and atrial fibrillation. Ⅱ. Surgical technique of the maze Ⅲ procedure. J Thorac Cardiovasc Surg,1995.110(2): p.485-95.
    38. Cox, J.L., R.B. Schuessler, and J.P. Boineau, The surgical treatment of atrial fibrillation. Ⅰ. Summary of the current concepts of the mechanisms of atrial flutter and atrial fibrillation. J Thorac Cardiovasc Surg,1991. 101(3):p.402-5.
    39. Cox, J.L., T.E. Canavan, R.B. Schuessler, et al., The surgical treatment of atrial fibrillation. Ⅱ Intraoperative electrophysiologic mapping and description of the electrophysiologic basis of atrial flutter and atrial fibrillation. J Thorac Cardiovasc Surg,1991.101(3):p.406-26.
    40. Khargi, K., B.A. Hutten, B. Lemke, et al., Surgical treatment of atrial fibrillation; a systematic review. Eur J Cardiothorac Surg,2005.27(2):p.258-65.
    41. Keane, D., New catheter ablation techniques for the treatment of cardiac arrhythmias. Card Electrophysiol Rev,2002.6(4):p.341-8.
    42. Haissaguerre, M., P. Jais, D.C. Shah, et al., Electrophysiological end point for catheter ablation of atrial fibrillation initiated from multiple pulmonary venous foci. Circulation,2000.101(12):p.1409-17.
    43. Haissaguerre, M., D.C. Shah, P. Jais, et al., Electrophysiological breakthroughs from the left atrium to the pulmonary veins. Circulation,2000.102(20):p.2463-5.
    44. Jais, P., M. Hocini, L.F. Hsu, et al., Technique and results of linear ablation at the mitral isthmus. Circulation,2004.110(19):p.2996-3002.
    45. Haissaguerre, M., P. Sanders, M. Hocini, et al., Catheter ablation of long-lasting persistent atrial fibrillation:critical structures for termination. J Cardiovasc Electrophysiol,2005.16(11):p.1125-37.
    46. Haissaguerre, M., M. Hocini, P. Sanders, et al., Catheter ablation of long-lasting persistent atrial fibrillation:clinical outcome and mechanisms of subsequent arrhythmias. J Cardiovasc Electrophysiol, 2005.16(11):p.1138-47.
    47. Ouyang, F., D. Bansch, S. Ernst, et al., Complete isolation of left atrium surrounding the pulmonary veins: new insights from the double-Lasso technique in paroxysmal atrial fibrillation. Circulation,2004.110(15): p.2090-6.
    48. Haissaguerre, M., P. Sanders, M. Hocini, et al., Pulmonary veins in the substrate for atrial fibrillation:the "venous wave" hypothesis. Journal of the American College of Cardiology,2004.43(12):p.2290-2.
    49. Verma, A., O.M. Wazni, N.F. Marrouche, et al., Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation:an independent predictor of procedural failure. Journal of the American College of Cardiology,2005.45(2):p.285-92.
    50. Ouyang, F., S. Ernst, J. Chun, et al., Electrophysiological findings during ablation of persistent atrial fibrillation with electroanatomic mapping and double Lasso catheter technique. Circulation,2005.112(20): p.3038-48.
    51. Pappone, C, S. Rosanio, G. Oreto, et al., Circumferential radiofrequency ablation of pulmonary vein ostia: A new anatomic approach for curing atrial fibrillation. Circulation,2000.102(21):p.2619-28.
    52. Oral, H., C. Scharf. A. Chugh, et al.. Catheter ablation for paroxysmal atrial fibrillation:segmental pulmonary vein ostial ablation versus left atrial ablation. Circulation,2003.108(19):p.2355-60.
    53. Oral, H., A. Chugh, K. Lemola, et al.. Noninducibility of atrial fibrillation as an end point of left atrial circumferential ablation for paroxysmal atrial fibrillation:a randomized study. Circulation,2004.110(18): p.2797-801.
    54. Pappone, C., S. Rosanio, G. Augello, et al., Mortality, morbidity, and quality of life after circumferential pulmonary vein ablation for atrial fibrillation:outcomes from a controlled nonrandomized long-term study. Journal of the American College of Cardiology,2003.42(2):p.185-97.
    55. Pappone, C., F. Manguso, G. Vicedomini, et al., Prevention of iatrogenic atrial tachycardia after ablation of atrial fibrillation:a prospective randomized study comparing circumferential pulmonary vein ablation with a modified approach. Circulation,2004.110(19):p.3036-42.
    56. Pappone, C. and V. Santinelli, Atrial fibrillation ablation:state of the art. Am J Cardiol,2005.96(12A):p. 59L-64L.
    57. Nademanee, K., J. McKenzie, E. Kosar, et al., A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology.2004.43(11): p.2044-53.
    58. Konings, K.T., C.J. Kirchhof, J.R. Smeets, et al., High-density mapping of electrically induced atrial fibrillation in humans. Circulation,1994.89(4):p.1665-80.
    59. Konings, K.T., J.L. Smeets, O.C. Penn, et al., Configuration of unipolar atrial electrograms during electrically induced atrial fibrillation in humans. Circulation,1997.95(5):p.1231-41.
    60. Wu, J., H. Estner, A. Luik, et al., Automatic 3D mapping of complex fractionated atrial electrograms (CFAE) in patients with paroxysmal and persistent atrial fibrillation. J Cardiovasc Electrophysiol.2008. 19(9):p.897-903.
    61. Tada. H., K. Yoshida, A. Chugh, et al., Prevalence and characteristics of continuous electrical activity in patients with paroxysmal and persistent atrial fibrillation. J Cardiovasc Electrophysiol,2008.19(6):p. 606-12.
    62. Scherlag, B.J., H. Nakagawa, W.M. Jackman, et al., Electrical stimulation to identify neural elements on the heart:their role in atrial fibrillation. J Interv Card Electrophysiol,2005.13 Suppl 1:p.37-42.
    63. Schauerte, P., B.J. Scherlag, J. Pitha, et al., Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation. Circulation,2000.102(22):p.2774-80.
    64. Nakagawa, H., S. BJ, P.S. Wu R, et al., Addition of Selective Ablation of Autonomic Ganglia to Pulmonary Vein Antrum Isolation for Treatment of Paroxysmal and Persistent Atrial Fibrillation (abstract). Circulation,2004.110:p. M1-543.
    65. Hodgkin, A.L. and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol,1952.117(4):p.500-44.
    66. Noble, D., Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature, 1960.188:p.495-7.
    67. Beeler, G.W. and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres. J Physiol,1977.268(1):p.177-210.
    68. Luo, C.H. and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res,1991.68(6):p.1501-26.
    69. Luo, C.H. and Y. Rudy, A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res,1994.74(6):p.1097-113.
    70. Luo, C.H. and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res,1994.74(6):p.1071-96.
    71. Rudy, Y. and C.H. Luo, Cellular responses to electrical stimulation:a study using a model of the ventricular cardiac action potential. Adv Exp Med Biol,1993.346:p.79-90.
    72. ten Tusscher, K.H., D. Noble, P.J. Noble, et al., A model for human ventricular tissue. Am J Physiol Heart Circ Physiol,2004.286(4):p. H1573-89.
    73. Demir, S.S., J.W. Clark, C.R. Murphey, et al., A mathematical model of a rabbit sinoatrial node cell. Am J Physiol,1994.266(3 Pt 1):p. C832-52.
    74. Zhang, H., A.V. Holden, and M.R. Boyett, Gradient model versus mosaic model of the sinoatrial node. Circulation,2001.103(4):p.584-8.
    75. Lindblad, D.S., C.R. Murphey, J.W. Clark, et al., A model of the action potential and underlying membrane currents in a rabbit atrial cell. Am J Physiol,1996.271(4 Pt 2):p. H1666-96.
    76. Courtemanche, M., R.J. Ramirez, and S. Nattel, Ionic mechanisms underlying human atrial action potential properties:insights from a mathematical model. Am J Physiol,1998.275(1 Pt 2):p. H301-21.
    77. Nygren, A., C. Fiset, L. Firek, et al., Mathematical model of an adult human atrial cell:the role of K+ currents in repolarization. Circ Res,1998.82(1):p.63-81.
    78. Ramirez, R.J., S. Nattel, and M. Courtemanche, Mathematical analysis of canine atrial action potentials: rate, regional factors, and electrical remodeling. Am J Physiol Heart Circ Physiol,2000.279(4):p. H1767-85.
    79. Kneller, J., R.J. Ramirez, D. Chartier, et al., Time-dependent transients in an ionically based mathematical model of the canine atrial action potential. Am J Physiol Heart Circ Physiol,2002.282(4):p. H1437-51.
    80. Li, D., L. Zhang, J. Kneller, et al., Potential ionic mechanism for repolarization differences between canine right and left atrium. Circ Res,2001.88(11):p.1168-75.
    81. Ehrlich, J.R., T.J. Cha, L. Zhang, et al., Cellular electrophysiology of canine pulmonary vein cardiomyocytes:action potential and ionic current properties. J Physiol,2003.551 (Pt 3):p.801-13.
    82. Feng, J., L. Yue, Z. Wang, et al., Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ Res,1998.83(5):p.541-51.
    83. Dun, W., T. Yagi, M.R. Rosen, et al., Calcium and potassium currents in cells from adult and aged canine right atria. Cardiovasc Res,2003.58(3):p.526-34.
    84. Xia, L., Y. Zhang, H. Zhang, et al., Simulation of Brugada syndrome using cellular and three-dimensional whole-heart modeling approaches. Physiol Meas,2006.27(11):p.1125-42.
    85. Wang, Z., J. Feng, H. Shi, et al., Potential molecular basis of different physiological properties of the transient outward K+current in rabbit and human atrial myocytes. Circ Res,1999.84(5):p.551-61.
    86. Li, D., P. Melnyk, J. Feng, et al., Effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation,2000.101(22):p.2631-8.
    87. Ehrlich, J.R., T.J. Cha, L. Zhang, et al., Characterization of a hyperpolarization-activated time-dependent potassium current in canine cardiomyocytes from pulmonary vein myocardial sleeves and left atrium,J Physiol,2004.557(Pt 2):p.583-97.
    88. Cha, T.J., J.R. Ehrlich, L. Zhang, et al., Atrial tachycardia remodeling of pulmonary vein cardiomyocytes: comparison with left atrium and potential relation to arrhythmogenesis. Circulation,2005.111(6):p. 728-35.
    89. Cha, T.J., J.R. Ehrlich, L. Zhang, et al., Atrial ionic remodeling induced by atrial tachycardia in the presence of congestive heart failure. Circulation,2004.110(12):p.1520-6.
    90. Yue, L., J. Feng, R. Gaspo, et al., Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res,1997.81(4):p.512-25.
    91. Zobel, C., H.C. Cho, T.T. Nguyen, et al., Molecular dissection of the inward rectifier potassium current (IK1) in rabbit cardiomyocytes:evidence for heteromeric co-assembly of Kir2.1 and Kir2.2. J Physiol, 2003.550(Pt2):p.365-72.
    92. Wang, Z., B. Fermini, and S. Nattel, Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+current similar to Kvl.5 cloned channel currents. Circ Res,1993.73(6):p.1061-76.
    93. L, B.T. and Fayere, Note on independent pulsations of the pulmonary veins and vena cava. Proc. Roy. Soc. London 1876.25:p.174-176.
    94. Cheung, D.W., Pulmonary vein as an ectopic focus in digitalis-induced arrhythmia. Nature,1981. 294(5841):p.582-4.
    95. Spach, M.S., R.C. Barr, and P.H. Jewett, Spread of excitation from the atrium into thoracic veins in human beings and dogs. Am J Cardiol,1972.30(8):p.844-54.
    96. Chen, S.A., M.H. Hsieh, C.T. Tai, et al., Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins:electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation,1999.100(18):p.1879-86.
    97. Karma, A., Electrical alternans and spiral wave breakup in cardiac tissue. Chaos,1994.4(3):p.461-472.
    98. Qu, Z., J.N. Weiss, and A. Garfinkel, Cardiac electrical restitution properties and stability of reentrant spiral waves:a simulation study. Am J Physiol,1999.276(1 Pt 2):p. H269-83.
    99. Garfinkel, A., Y.H. Kim, O. Voroshilovsky, et al.. Preventing ventricular fibrillation by flattening cardiac restitution. Proc Natl Acad Sci U S A,2000.97(11):p.6061-6.
    100. Fareh, S., C. Villemaire, and S. Nattel, Importance of refractoriness heterogeneity in the enhanced vulnerability to atrial fibrillation induction caused by tachycardia-induced atrial electrical remodeling. Circulation,1998.98(20):p.2202-9.
    101. Grandi, E., S.V. Pandit, N. Voigt, et al., Human atrial action potential and Ca2+ model:sinus rhythm and chronic atrial fibrillation. Circ Res,2011.109(9):p.1055-66.
    102. Grandi, E., F.S. Pasqualini, and D.M. Bers, A novel computational model of the human ventricular action potential and Ca transient. J Mol Cell Cardiol,2010.48(1):p.112-21.
    103. Hatem, S.N., A. Coulombe, and E. Balse, Specificities of atrial electrophysiology:Clues to a better understanding of cardiac function and the mechanisms of arrhythmias, J Mol Cell Cardiol,2010.48(1):p. 90-5.
    104. Shannon, T.R., F. Wang, J. Puglisi, et al., A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys J,2004.87(5):p.3351-71.
    105. Soeller, C. and M.B. Cannell, Numerical simulation of local calcium movements during L-type calcium channel gating in the cardiac diad. Biophys J,1997.73(1):p.97-111.
    106. Voigt, N., A. Trausch, M. Knaut, et al., Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol,2010.3(5):p. 472-80.
    107. Nagatomo, T., Z. Fan, B. Ye, et al., Temperature dependence of early and late currents in human cardiac wild-type and long Q-T DeltaKPO Na+channels. Am J Physiol,1998.275(6 Pt 2):p. H2016-24.
    108. Sakakibara, Y., J.A. Wasserstrom, T. Furukawa, et al., Characterization of the sodium current in single human atrial myocytes. Circ Res,1992.71(3):p.535-46.
    109. Virag, L., N. lost, M. Opincariu, et al., The slow component of the delayed rectifier potassium current in undiseased human ventricular myocytes. Cardiovasc Res,2001.49(4):p.790-7.
    110. Li, G.R., J. Feng, L. Yue, et al., Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res,1996.78(4):p.689-96.
    111. Jost N, V.A., Sziits V,Kovacs PP, Seprenyi G, Biliczki P, et al, Molecular basis of repolarization reserve differences between dogs and man. Circulation,2008.118(8).
    112. lost, N., L. Virag, M. Opincariu, et al., Delayed rectifier potassium current in undiseased human ventricular myocytes. Cardiovasc Res,1998.40(3):p.508-15.
    113. Maleckar, M.M., J.L. Greenstein, W.R. Giles, et al., K+current changes account for the rate dependence of the action potential in the human atrial myocyte. Am J Physiol Heart Circ Physiol,2009.297(4):p. H1398-410.
    114. Fedida, D., B. Wible, Z. Wang, et al., Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ Res,1993.73(1):p.210-6.
    115. Feng, J., D. Xu, Z. Wang, et al., Ultrarapid delayed rectifier current inactivation in human atrial myocytes: properties and consequences. Am J Physiol,1998.275(5 Pt2):p. H1717-25.
    116. Schram, G., M. Pourrier, P. Melnyk, et al., Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res,2002.90(9):p.939-50.
    117. Magyar, J., N. lost, A. Kortvely, et al., Effects of endothelin-1 on calcium and potassium currents in undiseased hitman ventricular myocytes. Pflugers Arch,2000.441(1):p.144-9.
    118. Nabauer, M., D.J. Beuckelmann, P. Uberfuhr, et al., Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation,1996.93(1):p.168-77.
    119. Amos, G.J., E. Wettwer, F. Metzger, et al., Differences between outward currents of human atrial and subepicardial ventricular myocytes. J Physiol,1996.491 (Pt 1):p.31-50.
    120. Wettwer, E., G.J. Amos, H. Posival, et al., Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res,1994.75(3):p.473-82.
    121. Li, G.R. and S. Nattel, Properties of human atrial ICa at physiological temperatures and relevance to action potential. Am J Physiol,1997.272(1 Pt2):p. H227-35.
    122. Li, G.R., B. Yang, J. Feng, et al., Transmembrane ICa contributes to rate-dependent changes of action potentials in human ventricular myocytes. Am J Physiol,1999.276(1 Pt 2):p. H98-H106.
    123. Pelzmann, B., P. Schaffer, E. Bernhart, et al., L-type calcium current in human ventricular myocytes at a physiological temperature from children with tetralogy of Fallot. Cardiovasc Res,1998.38(2):p.424-32.
    124. Wang, J., R.H. Schwinger, K. Frank, et al., Regional expression of sodium pump subunits isoforms and Na+-Ca++ exchanger in the human heart. J Clin Invest,1996.98(7):p.1650-8.
    125. Workman, A.J., K.A. Kane, and A.C. Rankin, Characterisation of the Na, K pump current in atrial cells from patients with and without chronic atrial fibrillation. Cardiovasc Res,2003.59(3):p.593-602.
    126. Xu, Y, D. Tuteja, Z. Zhang, et al., Molecular identification and functional roles of a Ca(2+)-activated K+ channel in human and mouse hearts. J Biol Chem,2003.278(49):p.49085-94.
    127. Nagy, N., V. Szuts, Z. Horvath, et al.. Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization? J Mol Cell Cardiol,2009.47(5):p.656-63.
    128. Fabiato, A., Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol, 1983.245(1):p. C1-14.
    129. Tanaami, T., H. Ishida, H. Seguchi, et al., Difference in propagation of Ca2+ release in atrial and ventricular myocytes. Jpn J Physiol,2005.55(2):p.81-91.
    130. Walden, A.P., K.M Dibb, and A.W. Trafford, Differences in intracellular calcium homeostasis between atrial and ventricular myocytes. J Mol Cell Cardiol,2009.46(4):p.463-73.
    131. Cheng, H., M.B. Cannell, and W.J. Lederer, Propagation of excitation-contraction coupling into ventricular myocytes. Pflugers Arch,1994.428(3-4):p.415-7.
    132. Brette, F. and C. Orchard, T-tubule function in mammalian cardiac myocytes. Circ Res,2003.92(11):p. 1182-92.
    133. Hatem, S.N., A. Benardeau, C. Rucker-Martin, et al., Different compartments of sarcoplasmic reticulum participate in the excitation-contraction coupling process in human atrial myocytes. Circ Res.1997.80(3): p.345-53.
    134. Huser, J., S.L. Lipsius, and L.A. Blatter, Calcium gradients during excitation-contraction coupling in cat atrial myocytes. J Physiol,1996.494 (Pt 3):p.641-51.
    135. Fink, M., S.A. Niederer, E.M. Cherry, et al.. Cardiac cell modelling:observations from the heart of the cardiac physiome project. Prog Biophys Mol Biol,2011.104(1-3):p.2-21.
    136. Koivumaki, J.T., T. Korhonen, and P. Tavi, Impact of sarcoplasmic reticulum calcium release on calcium dynamics and action potential morphology in human atrial myocytes:a computational study. PLoS Comput Biol,2011.7(1):p. e1001067.
    137. Michailova, A., F. DelPrincipe, M. Egger, et al., Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum. Biophys J,2002.83(6):p.3134-51.
    138. Kockskamper, J., K.A. Sheehan, D.J. Bare, et al., Activation and propagation of Ca(2+) release during excitation-contraction coupling in atrial myocytes. Biophys J,2001.81(5):p.2590-605.
    139. Mackenzie, L., H.L. Roderick, M.J. Berridge, et al., The spatial pattern of atrial cardiomyocyte calcium signalling modulates contraction. J Cell Sci,2004.117(Pt 26):p.6327-37.
    140. Frank, M., I. Albrecht, W.W. Sleator, et al., Stereological measurements of atrial ultrastructures in the guinea-pig. Experientia,1975.31(5):p.578-80.
    141. Coutu, P., D. Chattier, and S. Nattel, Comparison of Ca2+-handling properties of canine pulmonary vein and left atrial cardiomyocytes. Am J Physiol Heart Circ Physiol,2006.291(5):p. H2290-300.
    142. Kockskamper, J., A.V. Zima, and L.A. Blatter, Modulation of sarcoplasmic reticulum Ca2+release by glycolysis in cat atrial myocytes. J Physiol,2005.564(Pt 3):p.697-714.
    143. Maier, L.S., P. Barckhausen, J. Weisser, et al., Ca(2+) handling in isolated human atrial myocardium. Am J Physiol Heart Circ Physiol,2000.279(3):p. H952-8.
    144. Piacentino, V.,3rd, C.R. Weber, X. Chen, et al., Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res,2003.92(6):p.651-8.
    145. Bootman, M.D., D.R. Higazi, S. Coombes, et al., Calcium signalling during excitation-contraction coupling in mammalian atrial myocytes. J Cell Sci,2006.119(Pt 19):p.3915-25.
    146. Workman, A.J., K.A. Kane, and A.C. Rankin. The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res.2001. 52(2):p.226-35.
    147. Roithinger, F.X., J. Cheng, A. SippensGroenewegen, et al., Use of electroanatomic mapping to delineate transseptal atrial conduction in humans. Circulation,1999.100(17):p.1791-7.
    148. Chauvin, M., D.C. Shah, M. Haissaguerre, et al., The anatomic basis of connections between the coronary sinus musculature and the left atrium in humans. Circulation,2000.101(6):p.647-652.
    149. Lemery, R., L. Soucie, B. Martin, et al., Human study of biatrial electrical coupling:determinants of endocardia! septal activation and conduction over interatrial connections. Circulation,2004.110(15):p. 2083-9.
    150. Seemann, G., C. Hoper, F.B. Sachse, et al., Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philos Transact A Math Phys Eng Sci,2006.364(1843):p. 1465-81.
    151. Chen, J., R. Mandapati, O. Berenfeld, et al., High-frequency periodic sources underlie ventricular fibrillation in the isolated rabbit heart. Circ Res,2000.86(1):p.86-93.
    152. Gray, R.A., A.M. Pertsov, and J. Jalife, Spatial and temporal organization during cardiac fibrillation. Nature,1998.392(6671):p.75-8.
    153. Pertsov, A.M., J.M. Davidenko, R. Salomonsz, et al., Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ Res,1993.72(3):p.631-50.
    154. Winfree, A.T., Electrical instability in cardiac muscle:phase singularities and rotors. J Theor Biol,1989. 138(3):p.353-405.
    155. Davidenko, J.M., A.M. Pertsov, R. Salomonsz, et al., Spatiotemporal irregularities of spiral wave activity in isolated ventricular muscle. J Electrocardiol,1992.24 Suppl:p.113-22.
    156. Zou, R., J. Kneller, L.J. Leon, et al., Development of a computer algorithm for the detection of phase singularities and initial application to analyze simulations of atrial fibrillation. Chaos,2002.12(3):p. 764-778.
    157. Fenton, F. and A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos,1998.8(1):p.20-47.
    158. Chen, J., R. Mandapati, O. Berenfeld, et al., Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart. Cardiovasc Res,2000.48(2):p.220-32.
    159. Clayton, R.H. and A.V. Holden, Filament behavior in a computational model of ventricular fibrillation in the canine heart. IEEE Trans Biomed Eng,2004.51(1):p.28-34.
    160. Rogers, J.M., Combined phase singularity and wavefront analysis for optical maps of ventricular fibrillation. IEEE Trans Biomed Eng,2004.51(1):p.56-65.
    161. Garfinkel, A., P.S. Chen, D.O. Walter, et al.. Ouasiperiodicity and chaos in cardiac fibrillation. J Clin Invest,1997.99(2):p.305-14.
    162. Witkowski, F.X., K.M. Kavanagh, P.A. Penkoske, et al., Evidence for determinism in ventricular fibrillation. Phys Rev Lett,1995.75(6):p.1230-1233.
    163. Winfree, A.T., Varieties of spiral wave behavior:An experimentalist's approach to the theory of excitable media. Chaos,1991.1(3):p.303-334.
    164. Skanes, A.C., R. Mandapati, O. Berenfeld, et al., Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart. Circulation,1998.98(12):p.1236-48.
    165. Mandapati, R., A. Skanes, J. Chen, et al., Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation,2000.101(2):p.194-9.
    166. Mansour, M, R. Mandapati, O. Berenfeld, et al., Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart. Circulation,2001.103(21):p.2631-6.
    167. Morillo, C.A., G.J. Klein, D.L. Jones, et al., Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation,1995. 91(5):p.1588-95.
    168. Kneller, J., R. Zou, E.J. Vigmond. et al., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties. Circ Res,2002.90(9):p. E73-87.
    169. Ebihara. L. and E.A. Johnson, Fast sodium current in cardiac muscle. A quantitative description. Biophys J,1980.32(2):p.779-90.
    170. Aliev, R.R. and A.V. Panfilov, A simple two-variable model of cardiac excitation. Chaos, Solitons & amp; Fractals,1996.7(3):p.293-301.
    171. Bar, M. and M. Eiswirth, Turbulence due to spiral breakup in a continuous excitable medium. Physical Review E,1993.48(3):p. R1635-R1637.
    172. Fitzhugh, R., Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J, 1961.1(6):p.445-66.
    173. Drouhard, J.P. and F.A. Roberge, Revised formulation of the Hodgkin-Huxley representation of the sodium current in cardiac cells. Comput Biomed Res,1987.20(4):p.333-50.
    174. Takens, F., Detecting strange attractors in turbulence Dynamical Systems and Turbulence, Warwick 1980, D. Rand and L.-S. Young, Editors.1981, Springer Berlin/Heidelberg, p.366-381.
    175. Bray, M.A., S.F. Lin, R.R. Aliev, et al., Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue. J Cardiovasc Electrophysiol,2001.12(6):p.716-22.
    176. Fraser, A.M. and H.L. Swinney, Independent coordinates for strange attractors from mutual information. Phys Rev A,3986.33(2):p.1134-1140.
    177. Goryachev, A. and R. Kapral, Spiral waves in chaotic systems. Phys Rev Lett,1996.76(10):p.1619-1622.
    178. Mermin, N.D., The topological theory of defects in ordered media. Reviews of Modern Physics,1979. 51(3):p.591-648.
    179. Hyman, J.M. and M. Shashkov, Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Computers & amp:Mathematics with Applications,1997.33(4):p.81-104.
    180. Iyer, A.N. and R.A. Gray, An experimentalist's approach to accurate localization of phase singularities during reentry. Ann Biomed Eng,2001.29(1):p.47-59.
    181. Sarnie, F.H., R. Mandapati, R.A. Gray, et al., A mechanism of transition from ventricular fibrillation to tachycardia:effect of calcium channel blockade on the dynamics of rotating waves. Circ Res,2000.86(6): p.684-91.
    182. Jalife, J., Spatial and temporal organization in ventricular fibrillation. Trends Cardiovasc Med,1999.9(5): p.119-27.
    183. Efimov, I.R., V. Sidorov, Y. Cheng, et al., Evidence of three-dimensional scroll waves with ribbon-shaped fdament as a mechanism of ventricular tachycardia in the isolated rabbit heart. J Cardiovasc Electrophysiol,1999.10(11):p.1452-62.
    184. Karagueuzian, H.S. and P.S. Chen, Cellular mechanism of reentry induced by a strong electrical stimulus: implications for fibrillation and defibrillation. Cardiovasc Res,2001.50(2):p.251-62.
    185. Efimov, I.R., F. Aguel, Y. Cheng, et al., Virtual electrode polarization in the far field:implications for external defibrillation. Am J Physiol Heart Circ Physiol,2000.279(3):p. HI055-70.
    186. Efimov, I.R., Y. Cheng, D.R. Van Wagoner, et al., Virtual electrode-induced phase singularity:a basic mechanism of defibrillation failure. Circ Res,1998.82(8):p.918-25.
    187. Yamanouchi, Y, Y. Cheng, P.J. Tchou, et al., The mechanisms of the vulnerable window:the role of virtual electrodes and shock polarity. Can J Physiol Pharmacol.2001.79(1):p.25-33.
    188. Cheng, Y, V. Nikolski, and I.R. Efimov. Reversal of repolarization gradient does not reverse the chirality of shock-induced reentry in the rabbit heart. J Cardiovasc Electrophysiol,2000.11(9):p.998-1007.
    189. Efimov, I.R., Y. Cheng, Y. Yamanouchi, et al., Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation. J Cardiovasc Electrophysiol,2000.11(8):p. 861-8.
    190. Ruchat, P., L. Dang, N. Virag, et al., A biophysical model of atrial fibrillation to define the appropriate ablation pattern in modified maze. Eur J Cardiothorac Surg,2007.31(1):p.65-9.
    191. Cox, J.L., Atrial transport function after the maze procedure for atrial fibrillation:a 10-year clinical experience. Am Heart J,1998.136(6):p.934-6.
    192. Kottkamp, H., G. Hindricks, D. Hammel, et al., Intraoperative radiofrequency ablation of chronic atrial fibrillation:a left atrial curative approach by elimination of anatomic "anchor" reentrant circuits. J Cardiovasc Electrophysiol,1999.10(6):p.772-80.
    193. Pappone, C., G. Oreto, F. Lamberti, et al., Catheter ablation of paroxysmal atrial fibrillation using a 3D mapping system. Circulation,1999.100(11):p.1203-8.
    194. Chen, S.A. and C.T. Tai, Catheter ablation of paroxysmal atrial fibrillation. Cardiol Rev,2005.13(2):p. 87-94.
    195. Melo, J., P. Adragao, J. Neves, et al., Surgery for atrial fibrillation using radiofrequency catheter ablation: assessment of results at one year. Eur J Cardiothorac Surg,1999.15(6):p.851-4; discussion 855.
    196. Benussi, S., C. Pappone, S. Nascimbene, et al., A simple way to treat chronic atrial fibrillation during mitral valve surgery:the epicardial radiofrequency approach. Eur J Cardiothorac Surg,2000.17(5):p. 524-9.
    197. Pappone, C., G. Augello, and V. Santinelli, Atrial fibrillation ablation. Ital Heart J,2005.6(3):p.190-9.
    198. Cox, J.L., Surgical treatment of atrial fibrillation:a review. Europace,2004.5 Suppl 1:p. S20-9.
    199. Ernst, S., M. Schluter, F. Ouyang, et al., Modification of the substrate for maintenance of idiopathic human atrial fibrillation:efficacy of radiofrequency ablation using nonfluoroscopic catheter guidance. Circulation,1999.100(20):p.2085-92.
    200. Sueda, T., H. Nagata, K. Orihashi, et al., Efficacy of a simple left atrial procedure for chronic atrial fibrillation in mitral valve operations. Ann Thorac Surg,1997.63(4):p.1070-5.
    201. Earley, M.J. and R.J. Schilling, Catheter and surgical ablation of atrial fibrillation. Heart,2006.92(2):p. 266-74.
    202. Marine, J.E., J. Dong, and H. Calkins, Catheter ablation therapy for atrial fibrillation. Prog Cardiovasc Dis,2005.48(3):p.178-92.
    203. Sermesant, M., H. Delingette, and N. Ayache, An electromechanical model of the heart for image analysis and simulation. IEEE Trans Med Imaging,2006.25(5):p.612-25.
    204. Reumann, M., J. Bohnert, G. Seemann, et al., Preventive ablation strategies in a biophysical model of atrial fibrillation based on realistic anatomical data. IEEE Trans Biomed Eng,2008.55(2 Pt 1):p. 399-406.
    205. Ellis, W.S., A. SippensGroenewegen, D.M. Auslander, et al., The role of the crista terminalis in atrial flutter and fibrillation:a computer modeling study. Ann Biomed Eng,2000.28(7):p.742-54.
    206. Nakagawa, H., R. Lazzara, T. Khastgir, et al., Role of the tricuspid annulus and the eustachian valve/ridge on atrial flutter. Relevance to catheter ablation of the septal isthmus and a new technique for rapid identification of ablation success. Circulation,1996.94(3):p.407-24.
    207. Deng, D., Y. Gong, G. Shou, et al.. Simulation of biatrial conduction via different pathways during si-nus rhythm with a detailed human atrial model. Journal of Zhejiang University SCIENCE B,2012.
    208. Deng, D. and L. Xia. Study the effect of tissue heterogeneity and anisotropy in atrial fibrillation based on a human atrial model, in Computers in Cardiology.2010.
    209. Gong, Y., F. Xie, K.M. Stein, et al., Mechanism underlying initiation of paroxysmal atrial flutter/atrial fibrillation by ectopic foci:a simulation study. Circulation,2007.115(16):p.2094-102.
    210. Ruchat, P., J. Schlaepfer, A. Delabays, et al., Left atrial radiofrequency compartmentalization for chronic atrial fibrillation during heart surgery. Thorac Cardiovasc Surg,2002.50(3):p.155-9.
    211. Ruchat, P., N. Virag, L. Dang, et al., A biophysical model of atrial fibrillation ablation:what can a surgeon learn from a computer model? Europace,2007.9 Suppl 6:p. vi71-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700