用户名: 密码: 验证码:
小球藻与优势共栖异养细菌间的相互作用及其对细菌群体感应信号分子的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋微藻与异养细菌长期共存于海洋生态系统中,具有错综复杂的关系,既存在互利共生,又有相互拮抗。细菌生长过程中自身不断产生且分泌群体感应信号分子,并通过感知群体感应信号分子的浓度来检测周围细菌的数量,当环境中的信号分子的浓度达到一定阈值时,就会启动某些相关基因的表达,促使细菌完成一种群体行为来有效地适应环境压力、协调与宿主的关系等。
     本研究以小球藻为研究材料,采用实验生态学方法系统地研究小球藻与优势共栖异养细菌间的相互作用及对优势共栖异养细菌群体感应信号分子的响应。研究结论将进一步明确海洋微藻与共栖异养细菌的相互作用规律,进而为揭示赤潮的爆发机理及解决经济微藻的种质退化等实际问题提供科学的方法,最终为恢复海洋生态系统的合理结构及改善养殖池塘的生态环境提供科学的理论依据。研究结果如下:
     1采用稀释平板涂布法自菌藻共培养体系中分离纯化出7株小球藻共栖异养细菌,并将其分别命名为Z-TG01、Z-TG02、Z-TG03、Z-TG04、Z-TG05、Z-TG06和Z-TG07,其中Z-TG01、Z-TG02和Z-TG03为优势菌株,优势度分别为48.8%、14.0%和18.6%;随后经梅里埃VITEK2COMPACT全自动细菌鉴定仪鉴定表明3株优势共栖细菌Z-TG01、 Z-TG02及Z-TG03分别为少动鞘氨醇单胞菌(Sphingomonas paucimobilis)、泛菌属(Pantoea spp.)及香味菌属(Myroides spp.);并以根癌农杆菌Agrobacterium tumefaciens KYC55为报告菌株,采用β-半乳糖苷酶法检测表明这3株优势共栖细菌均具有AHLs信号分子活性,且活性随细菌密度增加而升高。
     2以根癌农杆菌A. tumefaciens KYC55为报告菌株,采用β-半乳糖苷酶法检测表明整个指数期小球藻滤液在2h内均可显著或极显著抑制Z-TG01及Z-TG03菌株AHLs信号分子的活性(p<0.05或p<0.01),而指数中期小球藻滤液在2h内可显著或极显著抑制Z-TG02菌株AHLs信号分子的活性(p<0.05或p<0.01),原因可能是本研究所用的小球藻藻株可分泌AHLs信号分子的类似物或淬灭酶,抑制共栖细菌AHLs信号分子的活性,进而干扰群体感应介导的细菌毒素的释放,使小球藻本身处于适宜生长的环境。
     3在研究小球藻与优势共栖异养细菌间的相互作用规律及藻菌互作过程中优势共栖异养细菌群体感应信号分子活性的变化规律时发现:①当共培养体系中Z-TG01菌株处于一定密度时,小球藻与Z-TG01菌株相互促进生长,指数期的小球藻能够明显抑制Z-TG01菌株AHLs信号分的活性;②不同初始密度的Z-TG02菌株对小球藻的生长均具有一定的抑制作用,且与小球藻共培养期间Z-TG02菌株AHLs信号分子活性未受到明显抑制原因是小球藻的生长受到Z-TG02菌株抑制而使其分泌的AHLs信号分子的类似物或淬灭酶总量较少或小球藻分泌AHLs信号分子的类似物或淬灭酶在共培养体系中缺乏稳定性所致;③当共培养体系中Z-TG03菌株处于一定密度时,小球藻与Z-TG03菌株相互促进生长,指数期的小球藻能够明显抑制Z-TG03菌株AHLs信号分子的活性。
     4在研究群体感应信号分子对小球藻生长及抗氧化酶系统的影响时发现:①低浓度C6-HSL(50、100及200nmol/L)8h时即可显著提高小球藻的相对生长率(p<0.05),高浓度C6-HSL(≥400nmol/L)24h时即可显著降低小球藻的相对生长率(p<0.05),且表现出较强的浓度依赖性抑制作用,表明C6-HSL对小球藻生长的影响表现为低浓度促进而高浓度抑制的效应;②50nmol/L C6-HSL在4h时即可显著提高SOD、POD、CAT及GPX的活性(p<0.05),同时显著降低MDA的含量(p<0.05);与低浓度组相比,400nmol/L C6-HSL作用下,藻细胞抗氧化酶活性均经历先升高后降低的过程,24h时藻细胞MDA含量显著升高(p<0.05)。表明低浓度C6-HSL可以激活小球藻细胞的防御性反应,而高于400nmol/L的C6-HSL对小球藻抗氧化系统有一定的损伤作用。
     5采用iTRAQ技术从蛋白表达水平上研究小球藻对AHLs信号分子的应答机制。结果表明从400nmol/L的C6-HSL处理组(24h)与对照组小球藻中总共鉴定出281个蛋白质,发现差异表达的蛋白质为10个(差异倍数1.2倍以上,5个上调,5个下调)。小球藻光系统II的D1蛋白及热激蛋白90表达量显著下调,表明藻细胞的光合作用等生理功能已经受到不同程度的损伤;与此同时烯醇酶、景天庚酮糖-1,7-二磷酸酶、ATP合酶β亚基及液泡膜ATP酶A亚基的表达都明显上调(p <0.05),提示在C6-HSL损伤藻细胞光系统的同时,藻细胞加强厌氧性呼吸及ATP合成效率为修复受损的光系统、有毒物质的跨膜转运及藻细胞正常的生长提供能量。另外,硫酯生物合成酶的表达亦显著上调,说明藻细胞正积极修复C6-HSL胁迫下受损的细胞膜。
Marine microalgae and numerous heterotrophic bacteria in its phycosphereconstitute a specific microcosm and have complicated ecological interactions witheach other, either mutualism or mutual antagonism. Bacteria can synthesize andrelease quorum sensing signal molecules into surrounding environment, and detect thecell density by sensing the concentration of quorum sensing signal molecules.Bacteria can control gene expression collectively and synchronize group behaviour toadapt to stress the changing environment and coordinate the relationship with the hostwhen the signal molecule concentration reaching to a threshold value.
     In present study, a common diet microalgae-Chlorella vulgaris was selected toserve as experimental material, and the mutual ecological effects of C. vulgaris anddominant associated heterotrophic bacteria and the response of C. vulgaris to quorumsensing signal molecules were studied under controlled laboratory conditions. Theresults could further clearly defined the mutual action rule of marine microalgae andheterotrophic bacteria, and then supply scientific method to reveal the mechanism ofred tide and solve the problem of genetic degradation of marine economic microalgae,and finally provide scientific and theoretical base for recoving rational structure oceanecological system and improving ecological condition of aquaculture pond. Resultsshowed:
     Seven associated heterotrophic bacteria, named Z-TG01, Z-TG02, Z-TG03,Z-TG04, Z-TG05, Z-TG06and Z-TG07, were isolated and purified from theco-cultural system using the method of plate coating, and Z-TG01, Z-TG02andZ-TG03were dominant associated heterotrophic bacteria, which the dominance indexbeing48.8%,14.0%and18.6%respectively. Using GN cards, three dominantassociated heterotrophic bacteria were identified Sphingomonas paucimobilis, Pantoea spp. and Myroides spp. respectively by the VITEK2Compact AutomaticBacteria Identification System (BioMérieux, France). Using Agrobacteriumtumefaciens KYC55, we found3dominant associated heterotrophic bacteria haveAHLs bioactivity, and increased gradually in the growth process of dominantassociated heterotrophic bacteria by measuring the activities of β-D-galactosidase.
     The supernatant of C. vulgaris culture in the exponential phases inhibited AHLsbioactivity of Z-TG01and Z-TG03significantly (p<0.01or p<0.05), and thesupernatant of C. vulgaris culture in the exponential phases inhibited AHLsbioactivity of Z-TG02significantly (p<0.01or p<0.05). C. vulgaris, which we used inpresent study, might secret analogs or quorum-quenching enzymes to inhibit AHLsbioactivity to interfere the release of toxins mediated by quorum sensing, and makeitself growthed in a suitable environment.
     The mutual action rule of C. vulgaris and dominant associated heterotrophicbacteria and the change rule of AHLs bioactivity of coculture system were studied inpresent study. The results showed:①Bacteria Z-TG01within a certain cell densityand C. vulgaris could promote mutual growth in co-culture system, and C. vulgaris ofthe exponential phases could obviously inhibited AHLs bioactivity of Z-TG01;②Bacteria Z-TG02of different cell density could inhibited the growth of C. vulgaris invarying degrees, and the AHLs bioactivity were not obviously inhibited, and the lowdensity of C. vulgaris or the instability of AHLs in the co-culture system of C.vulgaris and bacteria Z-TG02;③Bacteria Z-TG03within a certain cell density and C.vulgaris could promote mutual growth in co-culture system, and C. vulgaris of theexponential phases could obviously inhibited AHLs bioactivity of Z-TG03.
     Effects of AHLs (N-hexanoyl-DL-homoserine lactone, C6-HSL) on growth andantioxidant defense system of Chlorella vulgaris were studied in present study. Theresults showed that that low concentrations of C6-HSL (50,100and200nM) couldincrease the relative growth rate of C. vulgaris obviously at8h (p<0.05), higherconcentrations of C6-HSL (≥400nM) could decrease the relative growth rate of C.vulgaris obviously (p<0.05), and exhibited high concentration-dependent inhibition effects.50nM C6-HSL activated defense response of C. vulgaris in a short time (4h),increased activities of SOD, POD, CAT and GPX of C. vulgaris obviously (p<0.05),and decreased MDA content significantly (p<0.05). Compared to low concentrations,high concentration of C6-HSL (400nM) increased MDA content of C. vulgarissignificantly (p<0.05). The antioxidative enzymes of C. vulgaris increased to a peakthen decreased, and the MDA content of C. vulgaris increased significantly0to24hexposure to400nM C6-HSL (p<0.05).
     The mechanisms of C. vulgaris responding to AHLs were studied by iTRAQ(isobaric tags for relative and absolute quantification) at the protein expression level.The results showed that281proteins were identified,10proteins were differentiallyexpressed in C. vulgaris treated by400nmol/L C6-HSL,5were induced and5wererepressed. The exprsssion of photosystem II reaction center protein D1and heat shockprotein90was repressed, indicating the algal photosystem and other physiologicalfunctions had damaged in varying degrees. Meanwhile, the exprsssion of enolase,sedoheptulose-bisphosphatase, ATP synthase beta subunit and vacuolar ATP synthase,subunit A were significantly induced, indicating enhance anaerobic respiration andefficiency of ATP synthesis of the algal cell to provide energy for respairing thedamaged photosystem, the transmembrane transport of toxin, and normal growth.Moreover, the exprsssion of sulfolipid biosynthesis protein was significantly induced,indicating the algal cells were actively respairing the damaged cytomembrane.
引文
Adlercreutz P., Holst Olle., Mattiasson B. Oxygen supply to immobilized cells: Studies onanimmobilized algae--bacteria preparation with in situ oxygen generation. Enzyme andMicrobial Technology,1982,4(6):395-400.
    Amara N., Krom B. P., Kaufmann G. F., et al. Macromolecular inhibition of quorum sensing:enzymes, antibodies, and beyond. Chemical Reviews,2011,111:195-208.
    Azam F. Microbial control of oceanic carbon flux: the plot thickens. Science,1998,280(5364):694-696.
    Bell W. H., Lang J. M. Selective stimulation of marine bacteria by algal extracellular products.Limnology and Oceanography,1974,19(5):833-839.
    Byers J.T., Lucas C., Salmond G.P., et al. Nonenzymatic turnover of an Erwinia carotovoraquorum-sensing signaling molecule. Journal of Bacteriology,2002,184(4):1163-1171.
    Borchardt S. A., Allain E. J., Michels J. J., et al. Reaction of acylated homoserine lactone bacterialsignaling molecules with oxidized halogen antimicrobials. Applied and EnvironmentalMicrobiology,2001,67:3174–3179
    Caiola M. G., Pellegrini S. Lysis of Microcystis aeruginosa by Bdellovibrio-like bacteria. Journalof Phycology,1984,20(4):471-475.
    Chen C. N., Chen C. J., Liao C. T., et al. A probable aculeacin A acylase from the Ralstoniasolanacearum GMI1000is N-acyl-homoserine lactone acylase with quorum-quenchingactivity. BMC Microbiology,2009,9:89.
    Chowdhary P. K., Keshavan N., Nguyen H. Q., et al. Bacillus megaterium YP102A1oxidation ofacyl homoserine lactones and acyl homoserines. Biochemistry,2007,46:14429-14437
    de Kievit T. R., lglewski B. H. Bacterial quorum sensing in pathogenic relationships. Infection andImmunity,2000,68(9):4839-4849.
    Dela Pena M. R. Cell growth and nutritive value of the tropical benthic diatom, Amphora sp., atvarying levels of nutrients and light intensity, and different culture locations. Journal ofApplied Phycology,2007,19(6):647-655.
    Ding Y., Miao J. L., Wang Q. F., et al. Purification and characterization of a psychrophilicglutathione reductase from Antarctic ice microalgae Chlamydomonas sp. Strain ICE-L. PolarBiology,2007,31(1):23-30.
    Dong Y. H., Gusti A. R., Zhang Q., et al. Identification of quorum-quenching N-acyl homoserinelactonases from Bacillus species. Applied and Environmental Microbiology,2002,68(4):1754-1759.
    Dong Y. H., Xu J. L., Li X. C., et al. AiiA, a novel enzyme inactivates acyl homoserine lactonequorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings ofthe National Academy of Sciences USA,2000,97:3526-3531.
    Dong Y. H., Wang L. H., Xu J. L., et al. Quenching quorum-sensing dependent bacterial infectionby an N-acyl homoserine lactonase. Nature,2001,411:813-817.
    Draft M. J., Mccord S. B., Sterwart W. D. P. Ecological studies on algal lysing bacteria infreshwater. Freshwater Biology,1975,5(1):577-596.
    Draganov D. I., Stetson P. L., Watson C. E., et al.2000. Rabbit serum paraoxonase3(PON3) is ahigh density lipoprotein-associated lactonase and protects low density lipoprotein againstoxidation. The Journal of Biological Chemistry,275:33435-33442.
    Draganov D. I., Teiber J. F., Speelman A., et al. Human paraoxonases (PON1, PON2, and PON3)are lactonases with overlapping and distinct substrate specificities. The Journal of LipidResearch,2005,46:1239-1247.
    Eberl L., Winson M.K., Sternberg C., et al. Involvement of N-acyl-L-homoserine lactoneautoinducers in controlling the multicellular behaviour of Serratia liqnefaciens. MolecularMicrobiology,1996,20(1):127-136.
    Engebrecht J., Nealson K., Silverman M. Bacterial bioluminescence: isolation and genetic analysisof functions from Vibrio fischeri. Cell,1983,32(3):773-781.
    Fergola P., Cerasuolo M., Pollio A., et al. Allelopathy and competition between Chlorella vulgarisand Pseudokirchneriella subcapitata: Experiments and mathematical model. EcologicalModelling,2007,208(2-4):205-214.
    Fukami, K., Yuzawa, A., Nishijima, T., et al. Isolation and Properties of a bacterium inhibiting thegrowth of Gymnodinium nagasakiense. Nippon Suisan Gakkaishi,1992,58(6):1073-1077
    Fuqua W. C., Winans S. C., Greenberg E. P. Quorum sensing in bacteria: the LuxR-LuxI family ofcell density!responsive transcriptional regulators. Journal of Bacteriology,1994,176(2):269-275.
    Gao M., Teplitski M., Robinson J. B., et al. Production of substances by Medicago truncatula thataffect bacterial quorum sensing. Molecular Plant-Microbe Interactions,2003,16(9):827-834.
    Givskov M, Nys R, Manefield M, et al. Eukaryotic interference with homoserineLactone-mediated prokaryotic signalling. Journal of Bacteriology,1996,178(22):6618-6622.
    G tz C, Fekete A, Gebefuegi I, et al. Uptake, degradation and chiral discrimination ofN-acyl-D/L-homose rine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizuserosus) plants. Analytical and Bioanalytical Chemistry,2007,389(1):447-457.
    Hayase N., Sogabe T., Itou R., et al. Polymer film produced by a marine bacterium. Journal ofBioscience and Bioengineering,2003,95(1):72-76.
    Hentzer M.,Wu H., Andersen J. B. Attenuation of Pseudomonas aeruginosa virulence by quorumsensing inhibitors. The EMBO Journal,2003,22(15):3803-3815.
    Hodson S., Croft M., Deery E., et al. Algae acquire Vitamin B12through a symbiotic relationshipwith bacteria. Comparative Biochemistry and Physiology-Part A: Molecular&IntegrativePhysiology.2007,146(S4):222-571.
    Huang J. J., Han J. I., Zhang L. H., et al. Utilization of acyl-homoserine lactone quorum signalsfor growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Applied andEnvironmental Microbiology,2003,69:5941-5949.
    Ietswaart T., Schneider P. J., Prins R. A. Utilization of organic nitrogen sources by twophytoplankton species and a bacterial isolate in pure and mixed cultures. Applied andEnvironmental Microbiology,1994,60(5):1554-1560.
    Imai I., Ishida Y., Hata Y. Killing of marine phytoplankton by a gliding bacterium Cytophaga sp.,isolation from the coastal sea of Japan. Marine Biology,1993,116:527-532.
    Imamura N., Motoike I., Shimada N., et al. An efficient screening approach for anti-Microcystiscompounds based on knowledge of aquatic microbial ecosystem. Journal of Antibiotics,2001,54(6):582-587.
    Jeong H., Yim J. H., Lee C., et al. Genomic blueprint of Hahella chejuensis, a marine microbeproducing an algicidal agent. Nucleic Acids Research,2005,33(22):7066-7073.
    Joint I. R. Environmental role of nitrogen-fixing blue-green algae and asymbiotic bacteria. TheScience of the Total Environment,1979,13(1):93-241.
    Joseph C. M., Phillips D. A. Metabolites from soil bacteria affect plant water relations. PlantPhysiology Biochemistry,2003,41(2):189-192.
    Jung S. W., Kim B. H., Katano T., et al. Pseudomonas fluorescens HYK0210-SK09offersspecies-specific biological control of winter algal blooms caused by freshwater diatomStephanodiscus hantzschii. Journal of Applied Microbiology,2008,105:186-195.
    Kang Y. H., Kim J. D., Kim B. H. Isolation and characterization of a bioagent antagonistic todiatom, Stephanodiscus hantzschii. Journal of Applied Microbiology,2005,98:1030-1038.
    Kirchner M., Sahling G., Uhling G., et al. Does the red-tide-forming dinoflagellate Notilucascintillans feed on bacteria? Sarsia,1996,81:45-46.
    Klein I., von Rad U., Durner J. Homoserine lactones, do plants really listen to bacterial talk? PlantSignaling and Behavior,2009,4(1):50-51.
    Latifi A., Foglino M., Tanaka K., et al. A hierarchical quorum-sensing cascade in Pseudomonasaeruginosa links the transcriptional activators LasR and Rh1R (VsmR) to expression of thestationary phase sigma factor RpoS. Molecular Microbiology,1996, S21(6):1137-1146.
    Lee S., Kato J., Takiguchi N., et al. Involvement of an extracellular protease in algicidal activity ofthe marine bacterium Pseudoal teromonas sp. strain A28[J]. Appl Environ Microbiol,2000,66(1):4334-4339.
    Lin Y. H., Xu J. L., Hu J., et al. Acyl-homoserine lactone acylase from Ralstonia train XJ12Brepresents a novel and potent class of quorum-quenching enzymes. Molecular Microbiology,2003,47:849-860.
    L vdal T., Eichner C., Grossart H. P., et al. Competition for inorganic and organic forms ofnitrogen and phosphorous between phytoplankton and bacteria during an Emiliania huxleyispring bloom (PeECE II). Biogeosci Discuss,2007,4:3343-3375.
    Marketon M. M., Gronquist M. R., Eberhard A, et al. Characterization of the sinorhizobiummeliloti sinR/sinI locus and the production of novel N-Acyl homoserine lactones. Journal ofBacteriology,2002,184:5686-5695.
    Manefield M., Rasmussen T. B., Henzter M., et al. Halogenated furanones inhibit quorum sensingthrough accelerated LuxR turnover. Microbiology,2002,148:1119-1127.
    Manefield M., Welch M., Givskov M.. Halogenated furanones from the red alga, Delisea pulchra,inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in thephytopathogen Erwinia carotovora. FEMS Microbiology Letters,2001,205(1):131-138.
    Mathesius U., Mulders S., Gao M., et al. Extensive and specific responses of a eukaryote tobacterial quorum-sensing signals. Proceedings of the National Academy of Sciences USA,2003,100:1444-1449.
    Mayali X., Doucette G. J. Microbial community interactions and population dynamics of analgicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae,2002,1:277-293.
    McClean K. H., Winson M. K., Fish L., et al. Quorum sensing and Chromobacterium violaceum:Exploitation of violacein production and inhibition for the detection of N-acylhomoserinelactones. Microbiology,1997,143:3703-3711.
    Mitsutani A., Takesue K., Kirita M., et al. Lysis of Skeletonema costatum by Cytophaga sp.isolated from the coastal water of the Ariake sea. Nippon Suisan Gakkaishi,1992,58(2):2158-2167.
    Miller M., Bassler B. Quorum sensing in bacteria. Annual Review of Microbiology,2001,55:165-199.
    Nakashima T., Miyazaki Y., Matsuyama Y., et al. Producing mechanism of an algicidal compoundagainst red tide phytoplankton in a marine bacterium γ-proteobacterium. AppliedMicrobiology and Biotechnology,2006,73:684-690.
    Nealson K. H.,Platt T.,Hastings J. W. Cellular control of the synthesis and activity of the bacterialluminescent system. Journal of Bacteriology,1970,104:313-322.
    Nys R., Wright A. D., Konig G. M., et al. New halogenated furanones from the marine algaDelisea pulchra (cf. fimbriata). Tetrahedron,1993,49:11213-11220.
    Ortíz-Castro R., Contreras-Cornejo H. A., Macías-Rodríguez L., et al. The role of microbialsignals in plant growth and development. Plant Signaling and Behavior,2009,4(8):701-712.
    Park S. Y., Kang H. O., Jang H. S., et al. Identification of extracellular N-acylhomoserine lactoneacylase from a Streptomyces sp. and its application to quorum quenching. Applied andEnvironmental Microbiology,2005,71:2632-2641.
    Park S. Y., Lee S. J., Oh T. K., et al. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp.,and predicted homologues in other bacteria. Microbiology,2003,149:1541-1550.
    Parsek M. R., Val D. L., Hanzelka B. L., et al. Acyl homoserine-lactone quorum-sensing signalgeneration. Proceedings of the National Academy of Sciences USA,1999,96:4360-4365.
    Piper K. R., Beck von Bodman S., Farrand S. K. Conjugation factor of Agrobacterium tumefaciensregulates Ti plasmid transfer by antoinduction. Nature,1993,362(6419):448-450.
    Pirhonen M., Flego D., Heikinheimo R., et al. A small diffusible signal molecule is responsible forthe global control of virulence and exoenzyme production in the plant pathogen Erwiniacarotovora. The EMBO journal,1993,12(6):2467-2476.
    Pratt R., Daniels T. C., Eiler J. B., et al. Chlorellin, an antibacterial substance from Chlorella.Science,1944,99:351-352.
    Reading N.C., Sperandio V. Quorum sensing: the many languages of bacteria. FEMSMicrobiology Letters,2006,254(1):1-11
    Riaz K., Elmerich C., Moreira D, et al. A metagenomic analysis of soil bacteria extends thediversity of quorum-quenching lactonases. Environmental Microbiology,2008,10:560–570.
    Rice E. L. Allelopathy (2rd edition). Academic Press.1984,1-50.
    Riquelm C. E., Fukami K., Ishida Y. Effects of bacteria on the growth of a marine diatom,Asterionella gracialis. Bulletin of Japanese Society of Microbial Ecology,1988,3:29-34.
    Rodrigo L., Gil F., Hernandez A. F., et al.2003. Identification of paraoxonase3in rat livermicrosomes: purification and biochemical properties. Biochemical Journal,376:261-268.
    Romero M., Diggle S. P., Heeb S., et al. Quorum quenching activity in Anabaena sp. PCC7120:Identification of AiiC, a novel AHL-acylase. FEMS Microbiology Letters,2008,280:73-80.
    Rudner D. Z., LeDeaux J. R., Ireton K., et al.1991. The spo0K locus of Bacillus subtilis ishomologous to the oligopeptide permease locus and is required for sporulation andcompetence. Journal of Bacteriology,173:1388-1398.
    Schenk S. T., Stein E., Kogel K. H., et al. Arabidopsis growth and defense are modulated bybacterial quorum sensing molecules. Plant Signaling and Behavior,2012,7(2):178-181.
    Schikora A., Schenk S.T., Stein E, et al. N-acyl-homoserine lactone confers resistance towardbiotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. plant physiology,2011,157:1407-1418.
    Schipper C, Hornung C, Bijtenhoorn P, et al. Metagenome-derived clones encoding two novellactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa.Applied and Environmental Microbiology,2009,75:224-233.
    Schuhegger R., Ihring A., Gantner S., et al. Induction of systemic resistance in tomato byN-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environment,2006,29:909-918.
    Schuster M., Lostroh C. P., Ogi T., et al. Identification, timing and signal specificity ofPseudomonas aeruginosa quorum-controlled genes: a transeriptome analysis. Journal ofBacteriology,2003,185(7):2066-2079.
    Shilo M. Lysis of blue-green algae by myxobacter. Journal of Bacteriology,1970,104(1):453-461.
    Smith V. J., Desbois A. P., Dyrynda E. A. Conventional and unconventional antimicrobials fromfish, marine invertebrates and micro-algae. Marine Drugs,2010,8:1213-1262.
    Takaya A., Tabuchi F., Tsuchiya H., et al. Negative regulation of quorum-sensing systems inPseudomonas aeruginosa by ATP-dependent Lon protease. Journal of Bacteriology,2008,190:4181-4188.
    Tateda K. Quorum-sensing systems in bacteria. Nippon Rinsho,2003,61(S3):272-279.
    Teplitski M., Chen H. C., Rajamani S., et al. Chlamydomonas reinhardtii secretes compounds thatmimic bacterial signals and interfere with quorum sensing regulation in bacterial. PlantPhysiology,2004,134:137-146.
    Teplitski M., Robinson J. B., Bauer W. D. Plants secrete substances that mimic bacterial N-acylhomoserine lactone signal activities and affect population density-dependent behaviors inassociated bacteria. Molecular Plant Microbe Interactions,2000,13(6):637-648.
    Thomson N. R., Crow M. A., McGowan S.J., et al. Biosynthesis of carbapenem antibiotic andprodigiosin pigment in Serratia is under quorum sensing control. Molecular Microbiology,2000,36(3)539-556.
    Uroz S., D’Angelo-Picard C., Carlier A., et al. Novel bacteria degrading N-acylhomoserinelactones and their use as quenchers of quorum-sensing-regulated functions ofplant-pathogenic bacteria. Microbiology,2003,149:1981-1989.
    Uroz S., Dessaux Y., Oger P.. Quorum sensing and quorum quenching: The yin and yang ofbacterial communication. Chembiochem,2009,10:205-216.
    Uroz S., Heinonsalo J. Degradation of N-acyl homoserine lactone quorum sensing signalmolecules by forest root-associated fungi. FEMS Microbiology Ecology,2008,65:271-278.
    Uroz S., Oger P. M., Chapelle E., et al. A Rhodococcus qsdA-encoded enzyme defines a novelclass of large-spectrum quorum-quenching lactonases. Applied and EnvironmentalMicrobiology,2008,74:1357-1366.
    Von Rad U., Klein I., Dobrev P. I., et al. Response of Arabidopsis thaliana toN-hexanoyl-DL-homoserine lactone, a bacterial quorum sensing molecule produced in therhizospher. Planta,2008,229:73-85.
    Wade D. S., Calfee M., Rocha E. R., et al. Regulation of Pseudomonas quinolone signal synthesisin Pseudomonas aeruginosa. Journal of Bacteriology,2005,187(13):4372-4380.
    Wei H. L., Zhang L. Q. Quorum-sensing system influences root colonization and biologicalcontrol ability in Pseudomonas fluorescens2P24. Antonie Van Leeuwenhoek,2006,89:267-280.
    Wu H., Song Z., Hentzer M. et al. Synthetic furanones inhibit quorum-sensing and enhancebacterial clearance in Pseudomonas aeruginosa lung infection in mice. Journal ofAntimicrobial Chemotherapy,2004,53(6):1054-1061.
    Xu F, Byun T, Deussen H J, et al. Degradation of N-acylhomoserine lactones, the bacterialquorum-sensing molecules, by acylase. Journal of Biotechnology,2003,101:89-96.
    Yamamoto Y., Suzuli K. Ultrastructural studies on lysis of blue-green algae by a bacterium.Faculty of Agriculture,1977,23(3):285-295.
    Yang F., Wang L. H., Wang J., et al. Quorum quenching enzyme activity is widely conserved inthe sera of mammalian species. FEBS Letters,2005,579:713-3717.
    Zhang L., Murphy P. J., Kerr A., et al. Agrobacterium conjugation and gene regulation byN-acyl-L-homoserine lactones. Nature,1993,362(6419):446-448.
    Zhang H. B., Wang L. H., Zhang L.H. Genetic control of quorum-sensing signal turnover inAgrobacterium tumefaciens. Proceedings of the National Academy of Sciences of the UnitedStates of America,2002,99(7):4638-4843.
    邓建明,陶勇,李大平,等.溶藻细菌及其分子生物学研究进展.应用与环境生物学报,2009,15(6):895-900.
    李勤生,黎尚豪.溶解固氮蓝藻的细菌.水生生物学集刊,1981,7(3):377-384.
    徐金森,郑天凌,陈霞,等.塔马亚历山大藻与细菌的共培养及其微生态效应.应用与环境生物学报,2002,8(2):111-114.
    王新,周艳艳,郑天凌.海洋细菌生态学的若干前沿课题及其研究新进展.微生物学报,2010,50(3):291-297.
    张哲,张霞,边子睿,等.3-羰基辛酰基高丝氨酸内酯诱导拟南芥根细胞Ca2+内流.植物生理学报,2011,47(9):872-878.
    郑天凌.微型藻类在海水环境自净中的作用.环境科学学报,1990,10(2):195-200.
    郑天凌,徐美珠,俞志明,等.菌-藻相互作用下胞外酶活性变化研究.海洋科学,2002,26(12):41-44.
    赵以军,刘永定.有害藻类及其微生物防治的基础——藻菌关系的研究动态.水生生物学报,1996,20(2):173-181.
    周丽娟,陈小兰,王波,等.外源AHLs信号物质对蓝藻生长代谢的影响.云南大学学报(自然科学版),2007,29(3):303-307.
    Azam F. Microbial control of oceanic carbon flux: the plot thickens. Science,1998,280(5364):694-696.
    Bharat M. D., Dorota M. D., Simon M. D., et al. Myroides odoratum Cellulitis and Bacteremia: ACase Report. Infectious Diseases in Clinical Practice,2004,12(6):343-344.
    Brandbury J. F. Guide to plant pathogenic bacteria. UK: CA-BI,1986.
    Delétoile, A., Decré, D., Courant, S., et al. Phylogeny and identification of pantoea species andtyping of Pantoea agglomerans strains by multilocus gene sequencing. Journal of clinicalmicrobiology,2009,47(2):300–310.
    Fuqua W. C., Winans S. C. A LuxR-LuxI type regulatory system activates Agrobacterium Tiplasmid conjugal transfer in the presence of a plant tumor metabolite. Journal of Bacteriology,1994,176:2796-2806.
    Guillard R. R., Hallegraeff G. M. Manual on harmful marine microalgae. In Paris: UNESCO'sWorkshops;1995:45-62.
    Jeong H., Yim J. H., Lee C., et al. Genomic blueprint of Hahella chejuensis, a marine microbeproducing an algicidal agent. Nucleic Acids Research,2005,33(22):7066-7073.
    Kirchman, D. L. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMSMicrobiology Ecology,2002,39:91-100.
    Klingmuller W. Nitrogen-fixing enterobacter: a cornerstone in nif-gene group development.Naturwissenschaften,1990,78(1):16-20.
    Marketon M. M., Gronquist M. R., Eberhard A., et al. Characterization of the Sinorhizobiummeliloti sinR/sinI locus and the production of novel N-Acyl homoserine lactones. Journal ofBacteriology,2002,184:5686-5695.
    Miller M., Bassler B. Quorum sensing in bacteria. Annual Review of Microbiology,2001,55:165-199.
    Morales-Valenzuela G, Silva-Rojas H V, Ochoa-Mart D. First report of Pantoea agglomeranscausing leaf blight and vascular wilt in maize and sorghum in Mexico. Plant Disease,2007,91(10):1365-1366.
    Potrikus C. J., Breznak J. A. Nitrogen-fixing Enterobacter agglomerans isolated fromguts ofwood-eating termites. Applied and Environmental Microbiology,1977,33(2):392-399.
    Romeiro R. S., Macagnan D., Mendonca H. L., et al. Bacterial spot of Chinese taro (Alocasiacucullata) in Brazil induced by Pantoea agglomerans. Plant Pathology,2007,56(6):1038-1038.
    Schwarz J.I., Eckert W., Conrad R., et al. Community structure of Archaea and Bacteria inprofundal lake sediment Lake Kinneret (Israel). Systematic and Applied Microbiology,2007,30(3):239-254.
    Steinberg, D. K. Overview of the USJ GOFS bermuda atlantic series study (BATS): a decade-scalelook at ocean biology and biogeochemistry. Deep Time--Sea Research II2001,48,1405-1447.
    Vanbroekhoven K., Ryngaert A., Bastiaens L., et al. Streptomycin as a selective agent to facilitaterecovery and isolation of introduced and indigenous Sphingomonas from environmentalsamples. Environmnet Microbiology,2004,6(11):1123-1136.
    Wang J. L., Chen M. L., Lin C. Y. E., et al. Association between contaminated faucets andcolonization or infection by nonfermenting gram-negative bacteria in intensive care units inTaiwan. Journal of Clinical Microbiology,2009,47(10):3226-3230.
    Withers H., Swift S., Williams P. Quorum sensing as an integral component of gene regulatorynetworks in Gram!negative bacteria. Current Opinion in Microbiology,2001,4(2):186-193.
    Wolf A, Wiese J, Jost G, et al. Wide geographic distribution of bacteriophages that lyse the sameindigenous freshwater isolate (Sphingomonas sp. Strain B18). Applied and EnvironmentalMicrobiology,2003,69(4):2395-2398.
    Wolsing M, Priemé A. Observation of high seasonal variation in community structure ofdenitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure bydetermining T-RFLP of nir gene fragments. FEMS Microbiology Ecology.2004,48(2):261-271.
    Zhang Y., Jiang G. L., Liu Y., et al. Identification and AHLs detection of dominant bacterium ofsea cucumber (Apostichopus japonic) infected with the skin ulceration syndrom.Microbiology,2009,36(11):1664-1669.
    Zhu J., Chai Y. R., Zhong Z. T., et al. Agrobacterium bioassay strain for ultrasensitive detection ofN-Acylhomoserine Lactone-type quorum-sensing molecules: detection of autoinducers inMesorhizobium huakuii. Applied and environmental microbiology,2003,69(11):6949-6953.
    曹慧英,李洪杰,朱振东,等.玉米细菌干茎腐病菌成团泛菌的种子传播.植物保护学报,2011,38(1):31-36.
    黄备,闵怀,唐静亮,等.浙江沿海海洋微生物群落的研究.2009,25(2):44-47.
    连玉武,王艳丽,郑天凌,等.赤潮科学中藻菌关系研究的若干进展.海洋科学,1999(1):35-38.
    林伟.海洋微藻与细菌相互关系的研究.青岛:中科院海洋所博士论文;2005.
    王新,周艳艳,郑天凌.海洋细菌生态学的若干前沿课题及其研究新进展.微生物学报,2010,50(3):291-297.
    谢关林,徐传雨,任小平.稻谷病原细菌Pantoea agglomerans的特征化研究.浙江大学学报:农业与生命科学版,2001,27(3):317-320.
    周文礼.小球藻(Chlorella vulgaris)与共栖异养细菌相互作用及其对UV-B辐射增强的响应.青岛:中国海洋大学博士学位论文;2008.
    Guillard R. R., Hallegraeff G. M. Manual on harmful marine microalgae. In Paris: UNESCO'sWorkshops;1995:45-62.
    Kaufmann G. F., Sartorio R., Lee S. H., et al. Revisiting quorum sensing: Discovery of additionalchemical and biological functions for3-oxo-N-acylhomoserine lactones. Proceedings of theNational Academy of Sciences of the United States of America,2005,102(2):309–314.
    Natrah F.M.I., Kenmegne M.M., Wiyoto W., et al. Effects of micro-algae commonly used inaquaculture on acyl-homoserine lactone quorum sensing. Aquaculture,2011a,317:53-57.
    Natrah F.M.I., Defoirdt T., Sorgeloos P., et al. Disruption of bacterial cell-to-cell communicationby marine organisms and its relevance to aquaculture. Marine Biotechnology,2011b,13:109-126.
    Nys R., Wright A. D., Konig G. M., et al. New halogenated furanones from the marine algaDelisea pulchra (cf. fimbriata). Tetrahedron,1993,49:11213-11220.
    Sambrook J. Fritsch E. F., Maniatis T. Molecular Cloning2. New York: Cold Spring HarborLaboratory Press America,1992:911-913.
    Teplitski M., Chen H. C., Rajamani S., et al. Chlamydomonas reinhardtii secretes compounds thatmimic bacterial signals and interfere with quorum sensing regulation in bacterial. PlantPhysiology,2004,134:137-146.
    程古月,郝海红,戴梦红,等.病原菌的群体感应及其抑制剂的研究进展.2012,57(21):1964-1977.
    林伟.海洋微藻与细菌相互关系的研究.青岛:中科院海洋所博士论文;2005.
    周文礼.小球藻(Chlorella vulgaris)与共栖异养细菌相互作用及其对UV-B辐射增强的响应.青岛:中国海洋大学博士学位论文;2008.
    Adhikari T. B., Joseph C. M., Yang G., et al. Evaluation of bacteria isolated from rice for plantgrowth promotion and biological control of seedling disease of rice. Canadian Journal ofMicrobiology,2001,47(10):916-924.
    Berg G., Ballin G. Bacterial antagonists to Verticillium dahliae Kleb. Phytopathology,1994,141:99-110.
    Brandbury J. F. Guide to plant pathogenic bacteria. UK: CA-BI,1986
    Dakhama A. Isolation and identification of antialgal substances produced by Pseudomonasaeruginosa. Journal of Applied Phycology,1993,5:297-306.
    David H. G., Lyndon E. L., Andrew P. N., et al. Phylogenetic and functional diversity of thecultivable bacterial community associated with the paralytic shellfish poisoningdinoflagellate gymnodinium catenatum. Microbiology Ecology,2004,47(3):345-357.
    Dela Pena M. R. Cell growth and nutritive value of the tropical benthic diatom, Amphora sp., atvarying levels of nutrients and light intensity, and different culture locations. Journal ofApplied Phycology,2007,19(6):647-655.
    Ding Y., Miao J. L., Wang Q. F., et al. Purification and characterization of a psychrophilicglutathione reductase from Antarctic ice microalgae Chlamydomonas sp. Strain ICE-L. PolarBiology,2007,31(1):23-30.
    Fukami K. Isolation and properties of a bacterium inhibiting the growth of Gymnodinium akiense.Nippon Suisan Gakkaishi,1992,58(6):1073-1077.
    Joseph C. M., Phillips D. A. Metabolites from soil bacteria affect plant water relations. PlantPhysiology Biochemistry,2003,41(2):189-192.
    Lithgow J. K., Wilkinson A., Hardman A., et al. The regulatory locus cinRI in Rhizobiumleguminosarum controls a network of quorum-sensing loci. Molecular Microbiology,2000,37:81-97.
    Lorenzen C. J. Determination of chlorophyll and pheo-pigments: spectrophotometric equations.Limnology and Oceanography,1967,12:343-346.
    Lovejoy C., Legendre L., Therriault J. C., et al. Growth and distribution of marine bacteria inrelation to nanoplankton community structure. Deep Sea Research Part II: Topical Studies inOceanography,2000,47(3-4):461-487.
    Martina K., Gregory J. D., Masaaki K., et al. Phylogenetic analysis of selected toxic and non-toxicbacterial strains isolated from the toxic dinoflagellate alexandrium tamarense.Microbiology Ecology,1997,24(3):251-257.
    Morales-Valenzuela G., Silva-Rojas H. V., Ochoa-Mart D. First report of Pantoea agglomeranscausing leaf blight and vascular wilt in maize and sorghum in Mexico. Plant Disease,2007,91(10):1365-1366.
    Romeiro R. S., Macagnan D., Mendonca H. L., et al. Bacterial spot of Chinese taro (Alocasiacucullata) in Brazil induced by Pantoea agglomerans. Plant Pathology,2007,56(6):1038-1038.
    Whitely M., Greenberg E. P. Promoter specificity elements in Pseudomonas aeruginosaquorum-sensing-controlled genes. Journal of Bacteriology,2001,183(19):5529-5534.
    曹慧英,李洪杰,朱振东,等.玉米细菌干茎腐病菌成团泛菌的种子传播.植物保护学报,2011,38(1):31-36.
    黄备,闵怀,唐静亮,等.浙江沿海海洋微生物群落的研究.2009,25(2):44-47.
    孙建光,张燕春,徐晶,等.玉米根际高效固氮菌Sphingomonas sp. GD542的分离鉴定及接
    种效果初步研究.中国生态农业学报,2010,18(1):89-93.
    周文礼.小球藻(Chlorella vulgaris)与共栖异养细菌相互作用及其对UV-B辐射增强的响应.
    青岛:中国海洋大学博士学位论文;2008.
    Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein dye binding. Analytical Biochemistry,1976,72:248-254.
    Joseph C. M., Phillips D. A. Metabolites from soil bacteria affect plant water relations. PlantPhysiology Biochemistry,2003,41(2):189-192.
    Liu X. L., Zhang S. Z., Shan X. Q., et al. Combined toxicity of cadmium and arsenate to wheatseedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenateco-contamination. Ecotoxicology and Environmental Safety,2007,68(2):305-313.
    Mathesius U., Mulders S., Gao M. S., et al. Extensive and specific responses of a eukaryote tobacterial quorum-sensing signals. Proceedings of the National Academy of Sciences USA,2003,100:1444-1449.
    Schyhegger R., Ihring A., Gantner S., et al. Induction of systemic resistance in tomato byN-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environment,2006,29:909-918.
    Sharma P., Dubery R. S. Involvement of oxidative stress and role of antioxidative defense systemin growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Reports,2007,26(11):2027-2038.
    Von Rad U., Klein I., Dobrev P. I., et al. Response of Arabidopsis thaliana toN-hexanoyl-DL-homoserine lactone, a bacterial quorum sensing molecule produced in therhizospher. Planta,2008,229:73-85.
    蔡恒江,唐学玺,张培玉,等.3种海洋赤潮微藻抗氧化酶活性对UV-B辐射增强的响应.中国海洋大学学报(自然科学版),2006,36(1):81-84.
    焉翠蔚,肖宜华,朱岩松,等.多效唑对2种海洋微藻生长和抗氧化酶活性的影响.中国海洋大学学报,2008,38(2):291-296.
    赵芊,宋水山. N-酰基高丝氨酸内酯调控植物生长发育的研究进展.植物生理学通讯,2010,46(10):980-984.
    周丽娟,陈小兰,王波,等.外源AHLs信号物质对蓝藻生长代谢的影响.云南大学学报(自然科学版),2007,29(3):303-307.
    Anja S., Marco B., Rdiger H. Overexpression of the potential herbicide targetsedoheptulose-1,7-bisphosphatase from Spinacia oleracea in transgenic tobacco. MolecularBreeding,2002,9:53-61.
    Belle A., Tanay A., Bitincka L., et al. Quantification of protein half-lives in the budding yeastproteome. Proceedings of the National Academy of Sciences of the United States of America,2006,103:13004-13009.
    Brewer J. M., Lebioda L. Current perspectives on the mechanism of catalysis by the enzymeenolase. In: Bush CA ed. Advances in Biophysical Chemistry. Greenwich, Conn: JAI Press,1997,6:111-141.
    Forgac M. Structure and properties of the Vacuolar (H+)-ATPases. The Journal of BiologicalChemistry,1999,274:12951-12954.
    Greenberg B. M., Gaba V., Canaani O., et al. Separate photo sensitizers mediate degradation of the322kDa photosystem II reaction center protein in the visible and UV spectral regions.Proceedings of the National Academy of Sciences of the United States of America,1989,86:6617-6620.
    Gygi S. P., Rochon Y., Franza B. R., et al. Correlation between protein and mRNA abundance inyeast. Molecular and Cellular Biology,1999,19:1720-1730.
    Mathesius U., Mulders S., Gao M., et al. Extensive and specific responses of a eukaryote tobacterial quorum-sensing signals. Proceedings of the National Academy of Sciences USA,2003,100:1444-1449.
    Miyagawa Y., Tamoi M., Shigeoka S. Overexpression of a cyanobacterial fructose-1,6-sedoheptulose-1,7-bisphosphatase into tobacco enhances photosynthesis and growth.Nature Biotech,2001,19:965-969.
    Ogura T., Wilkinson A. J. AAA+superfamily ATPases: common structure-diverse function. GenesCells,2001,6:575-597.
    Ong S. E, Mann M. Mass spectrometry-based proteomics turns quantitative. Nature ChemicalBiology,2005,1(5):252-262.
    Ort D. R., Yocum C. F.1996. Electron transfer transduction in photosynthesis: an overview. In:Ort DR, Yocum CF (eds). Vol4Oxygenic Photosynthesis: the Light Reactions. Dordrecht:Kluwer Academic,1-9.
    Ratajczak R. Structure, function and regulation of the plant vacuolar(H+)-translocating ATPase.Biochimica et Biophysica Acta,2000,1465:17-36.
    Ross P. L., Huang Y. N., Marchese J. N., et al. Multiplexed protein quantitation in Saccharomycescerevisiae using amine-reactive isobaric tagging reagents. Molecular and Cellular Proteomics,2004,3(12):1154-1169.
    Sangster T. A., Queitsch C. The HSP90chaperone complex, an emerging force in plantdevelopment and phenotypic plasticity. Current Opinion in Plant Biology,2005,8:86-92.
    Schyhegger R., Ihring A., Gantner S., et al. Induction of systemic resistance in tomato byN-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environment,2006,29:909-918.
    Sze H., Ward J. M., Lai S. Vacuolar H+-translocating ATPase from plants: structure, function, andisoforms. Journal of Bioenergetics and Biomembranes,1992,24:371-381.
    Tamoi M., Nagaoka M., Miyagawa Y., et al. Contribution offructose-1,6-bisphosphatase andsedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvincycle in transgenic plants. Plant and Cell Physiology,2006,47:380-390.
    Von Rad U., Klein I., Dobrev P. I., et al. Response of Arabidopsis thaliana toN-hexanoyl-DL-homoserine lactone, a bacterial quorum sensing molecule produced in therhizospher. Planta,2008,229:73-85.
    Washburn M. P., Koller A., Oshiro G., et al. Protein pathway and complex clustering of correlatedmRNA and protein expression analyses in Saccharomyces cerevisiae. Proceedings of theNational Academy of Sciences of the United States of America,2003,100:3107-3112.
    Zhao Q., Zhao Y. J., Zhao B. C., et al. Cloning and functional analysis of wheat V-H+-ATPasesubunit genes. Plant Molecular Biology,2009,69:33-46.
    白林含.盐藻渗透调节与超微结构改变的研究及烯醇酶基因的克隆、分析和转基因烟草的鉴定.成都:四川大学博士毕业论文,2003.姜闯道,高辉远,邹琦. D1蛋白周转及其对能量耗散的调节.植物生理学通讯,2002,38(3):207-212.
    颜海波.江篱属海藻在N营养盐和重金属Pb, Cd胁迫下的生理生化响应及蛋白质组学研究.汕头:汕头大学理学院硕士毕业论文,2010.
    王亦学,孙毅,田颖川,等.一个陆地棉类烯醇酶基因的克隆及其表达分析.棉花学报,2009,21(4):275-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700