C-N(-La)共渗层原子间作用第一原理计算与N扩散分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渗碳、渗氮和氮碳共渗是常见的铁基合金表面强化工艺。引入碳(氮)原子后,材料表面的机械性能显著提高。在以上化学热处理过程中,添加稀土元素,能够减少处理时间,增加改性层厚度,改善表面层组织结构和性能。本文针对C N(La)共渗层中溶质原子的行为及其相互作用的研究较少并且不够深入的问题,采用第一性原理计算和分子动力学方法,展开了相关的基础理论研究,包括:无其它合金元素存在时,纯铁渗碳(氮)后,渗层中碳(氮)原子的行为;有合金元素存在时,钢渗碳(氮)后,渗层中碳(氮)原子与合金元素以及空位之间的相互作用;引入稀土元素(以镧原子为例)后,镧与其它溶质原子之间的相互作用;拟合第一性原理数据,构建铁氮势函数,对氮原子扩散进行分子动力学模拟。
     174PH钢500°C等离子体氮碳共渗4h后,无稀土添加的共渗层厚度为58.6μm,添加稀土后的共渗层厚度为66.3μm,共渗层增厚13.1%。共渗层300nm深度处镧原子3d电子的高分辨X射线光电子谱显示镧原子以原子态的形式存在。
     在体心立方结构铁中,碳(氮)原子优先占据八面体间隙位置,与最近邻铁原子成较弱的共价键,铁碳共价键强于铁氮共价键,近邻铁原子的态密度出现杂化峰,碳(氮)原子得电子,近邻铁原子失电子。两个间隙原子(C C、C N和N N)之间相互排斥,随着距离的增大排斥力减小。两个碳原子之间的排斥力最小,两个氮原子之间的排斥力最大,碳氮原子之间的排斥力介于中间。碳(氮)原子和空位之间相互吸引,碳(氮)原子优先占据与空位位置最近邻的八面体间隙位置。一个空位最多吸引三个碳原子,或两个氮原子,或一个碳原子和一个氮原子。碳(氮)原子与110方向自间隙原子相互排斥。
     外来间隙原子(碳和氮)与外来置换原子(铝、硅、钛、钒、铬、锰、钴、镍、铜、铌和钼)之间相互排斥,排斥力随着距离的增加而减小,并逐渐趋向于零。置换原子与空位之间、以及间隙原子、置换原子和空位三者之间相互吸引。在空位附近,有利于碳(氮)原子和合金元素的聚集,进而形成碳(氮)化物,为合金碳(氮)化物形成的空位机制。
     当体心立方结构铁中只有一个置换式合金元素时,镧原子与其它置换原子之间存在巨大地差异,镧原子的置换能和弛豫和均为很大的正值。与碳(氮)原子之间的排斥力,镧原子显著大于其它置换原子。镧原子与铜原子之间相互吸引,与钴和镍原子之间的作用力接近零,与铝、硅、钛、钒、铬、锰、铌和钼原子之间相互排斥。与镧原子近邻时,所有其它置换原子的态密度曲线上出现杂化峰,是与镧原子的5p电子相互作用的结果。引入镧原子,且与碳(氮)原子第一和第二时,铁碳(氮)键集居数增加,共价键强度增加。
     采用嵌入原子方法构建了铁氮多体势。势函数的参数是通过拟合第一性原理数据来确定的,这些数据包括能量(溶解能和相互作用能)、氮原子和其它点缺陷之间的构形,以及氮原子附近铁原子的弛豫等。这一势函数成功地再现了氮原子在体心立方结构铁中的物理性质以及铁氮化合物γ′Fe4N和ε Fe2N的物理性质。应用Fe N势函数预测了氮原子在面心立方结构铁中的物理性质:八面体间隙位置为氮原子的稳定位置;氮原子和空位第一近邻时,相互吸引,能够形成稳定的构形;氮原子和自间隙原子之间同样能够形成稳定的构形;两个氮原子之间相互排斥;两个氮原子和一个空位之间相互吸引。
     基于铁氮多体势,采用分子动力学方法模拟了氮原子在体心立方结构铁中的扩散,能够更加直观地看到氮原子在不同的八面体间隙位置上振动和迁移。拟合Arrhenius方程,得到了氮原子的扩散常数和扩散激活能,与实验结果基本一致。
Carburizing, nitriding and nitrocarburizing are important methods tostrengthen the surface of iron based alloys. The introduction of C and N atomsenhances mechanical properties of the modified layers. Rare earth (RE) additionduring the processes of these thermochemical treatments reduces the processingduration, increases the thickness of the modified layer, and improves the surfacemechanical properties and microstructures. In the present work, first principlescalculations and molecular dynamics simulations are carried out to study thephysical fundamentals of rare earth thermochemical treatments. Our investigationsinclude four aspects as follows. The first is the behaviors of C (or N) atoms in Fewithout considerations of other alloying elements. The second is the interactions ofC (or N) atoms with other alloying elements and vacancy in nitrocarburized layersof steels. The third is the interactions of La with other solute atoms in rare earthnitrocarburized layers. The fourth is Fe N potential and the molecular dynamicssimulations of N diffusion.
     A modified layer with the thickness of58.6μm on174PH steel is obtained byplasma nitrocarburizing at500°C for4h. After the addition of rare earth elements,the thickness becomes66.3μm, and increases13.1%. High-resolution XPSspectrum of La3d at the depth of300nm indicates that lanthanum atoms exist inLa0+state.
     A C (or N) atom prefers to occupy an octahedral interstitial site in bcc Fe.Weak covalent bonds are formed between C (or N) atom and its neighbor Fe atoms.The strength of Fe C is higher than that of Fe N. There are some hybridizations inthe DoSs (Density of States) of the Fe atoms neighboring to C (or N) atoms. C (orN) atoms gain electrons, its neighbor Fe atoms lose electrons. Two foreigninterstitial atoms (FIAs, i.e. C or N) repel each other. As the distance between twoFIAs increases, the repulsion tends to decrease. C C interactions are the leastrepulsive, N N interactions are the most repulsive, and C N interactions just liebetween of them. During the processes of thermochemical treatments, the drivingforce of C (or N) atoms diffusion originates from the repulsions between two FIAs.A C (or N) atom and a vacancy attract each other. A C (or N) atom prefers tooccupy the first nearest neighbor octahedral interstitial sites of a vacancy. Avacancy can attract only three C atoms, or two N atoms, or a C atom and a N atom.A C (or N) atom and110self interstitial atoms (SIAs) repel each other.
     A FIA and a foreign substitutional atom (FSA, i.e. Al, Si, Ti, V, Cr, Mn, Co, Ni,Cu, Nb and Mo) repel each other. As the FIA FSA distance increases, the repulsion decreases and tends to zero. After the introduction of a vacancy, attractiveinteractions are formed between a FSA and a vacancy, and between a FIA, a FSAand a vacancy. C (or N) atoms and FSAs prefer to accumulate around vacancies,and form clusters. These clusters will grow up and form FSA carbides and nitrides.This is the vacancy induced formation mechanism of carbides and nitrides.
     When a single FSA stays in bcc Fe, the difference between La and other FSAsis great. Big positive values are obtained for the substitution energy of a La atom inbcc Fe and the sum of the Fe atoms' relaxations around La atom. The repulsion ofLa atoms with C (or N) atoms is obviously greater than other FSAs. The interactionis attractive for La Cu, close to zero for La Co/Ni, and repulsive for La FSA (theFSA is Al, Si, Ti, V, Cr, Mn, Nb or Mo), respectively. The DoSs of all FSAsneighboring to La present a hybridization because of the interaction of La atomwith another FSA. The bond populations of C (or N) atoms (first or second nearestneighboring to La) and its neighbor Fe atoms increase, which enhances the strengthof the covalent bonds.
     Based on embedded atom method, a many-body potential for N in Fe isdeveloped. The potential parameters are determined by fitting to first principlesdata, which includes energetics (solvation and interaction energies), configurationsof a N atom with other point defects, and relaxations of Fe atoms close to N atom.This potential successfully reproduces the physical properties of N atoms in bcc Fe,γ′Fe4N and ε Fe_2N. The physical properties of N atoms in fcc Fe are predictedbased on our developed Fe N potential as follows. Octahedral sites are also thepreferred position of N atoms. When a N atom and a vacancy are the first nearestneighbors, they are attractive and form a stable configuration. A N atom with SIAs,and a vacancy with two N atoms also attract each other. Two N atoms lie as faraway from one another as possible.
     Based on the Fe N potential, the diffusion of N atoms in bcc Fe is simulatedby molecular dynamic methods. The vibrations and migrations of a N atom ondifferent octahedral interstitial sites are vividly observed. By fitting to theArrhenius equation, the N atoms diffusion constant and activation energy areobtained and in agreement with experimental data.
引文
[1] Y. Mishin, M. Asta, J. Li. Atomistic modeling of interfaces and their impacton microstructure and properties. Acta Materialia.2010,58(4):1117-1151.
    [2] M. Berga, C. V. Budtz-J rgensena, H. Reitzb, K. O. Schweitza, J.Chevalliera, P. Kringh ja, J. B ttiger. On plasma nitriding of steels. Surfaceand Coatings Technology.2000,124(1):25–31.
    [3] B. Edenhofer, W. Gr fen, J. Müller-Ziller. Plasma-carburising—a surfaceheat treatment process for the new century. Surface and Coatings Technology.2001,142–144:225-234.
    [4] C. Li, Q. He, W. Tang, F. Lu. Carburising of steel AISI1010by using acathode arc plasma process. Surface and Coatings Technology.2004,187(1):1-5.
    [5] Z. Q. Liu, Z. K. Hei, D. X. Li. Microstructural investigation of four kinds ofγ′–Fe4N nitrides in ion-nitrided pure iron. Journal of Materials Research.2002,17(10):2621-2627.
    [6] K. Marchev, C. V. Cooper, B. C. Giessen. Observation of a compound layerwith very low friction coefficient in ion-nitrided martensitic410stainlesssteel. Surface and Coatings Technology.1998,99(3):229-233.
    [7] P. Corengia, G. Ybarra, C. Moina, A. Cabo, E. Broitman. Microstructure andcorrosion behaviour of DC-pulsed plasma nitrided AISI410martensiticstainless steel. Surface and Coatings Technology.2004,187(1):63-69.
    [8] P. Corengia, F. Walther, G. Ybarra, S. Sommadossi, R. Corbari, E. Broitman.Friction and rolling–sliding wear of DC-pulsed plasma nitrided AISI410martensitic stainless steel. Wear.2006,260(4–5):479-485.
    [9] C. X. Li, T. Bell. Corrosion properties of plasma nitrided AISI410martensitic stainless steel in3.5%NaCl and1%HCl aqueous solutions.Corrosion Science.2006,48(8):2036-2049.
    [10] C. X. Li, T. Bell. A comparative study of low temperature plasma nitriding,carburising and nitrocarburising of AISI410martensitic stainless steel.Materials Science and Technology.2007,23(3):355-361.
    [11] I. Alphonsa, A. Chainani, P. M. Raole, B. Ganguli, P. I. John. A study ofmartensitic stainless steel AISI420modified using plasma nitriding. Surfaceand Coatings Technology.2002,150(2–3):263-268.
    [12] S. K. Kim, J. S. Yoo, J. M. Priest, M. P. Fewell. Characteristics of martensiticstainless steel nitrided in a low-pressure RF plasma. Surface and CoatingsTechnology.2003,163–164:380-385.
    [13] C. E. Pinedo, W. A. Monteiro. On the kinetics of plasma nitriding amartensitic stainless steel type AISI420. Surface and Coatings Technology.2004,179(2–3):119-123.
    [14] Y. T. Xi, D. X. Liu, D. Han. Improvement of corrosion and wear resistancesof AISI420martensitic stainless steel using plasma nitriding at lowtemperature. Surface and Coatings Technology.2008,202(12):2577-2583.
    [15] C. J. Scheuer, R. P. Cardoso, R. Pereira, M. Mafra, S. F. Brunatto. Lowtemperature plasma carburizing of martensitic stainless steel. MaterialsScience and Engineering: A.2012,539:369-372.
    [16] C. J. Scheuer, R. P. Cardoso, F. I. Zanetti, T. Amaral, S. F. Brunatto. Low-temperature plasma carburizing of AISI420martensitic stainless steel:Influence of gas mixture and gas flow rate. Surface and Coatings Technology.2012,206(24):5085-5090.
    [17] C. J. Scheuer, R. P. Cardoso, M. Mafra, S. F. Brunatto. AISI420martensiticstainless steel low-temperature plasma assisted carburizing kinetics. Surfaceand Coatings Technology.2013,214:30-37.
    [18] M. Esfandiari, H. Dong. The corrosion and corrosion–wear behaviour ofplasma nitrided17-4PH precipitation hardening stainless steel. Surface andCoatings Technology.2007,202(3):466-478.
    [19] H. Dong, M. Esfandiari, X. Y. Li. On the microstructure and phaseidentification of plasma nitrided17-4PH precipitation hardening stainlesssteel. Surface and Coatings Technology.2008,202(13):2969-2975.
    [20] G. J. Li, J. Wang, C. Li, Q. Peng, J. Gao, B. L. Shen. Microstructure and dry-sliding wear properties of DC plasma nitrided17-4PH stainless steel.Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms.2008,266(9):1964-1970.
    [21] J. Yang, Y. Liu, Z. Ye, D. Yang, S. He. Microstructural and tribologicalcharacterization of plasma-and gas-nitrided2Cr13steel in vacuum.Materials&Design.2011,32(2):808-814.
    [22] S. A. Abdul Azis, I. Jauhari, N. W. Ahamad. Improving surface propertiesand wear behaviors of duplex stainless steel via pressure carburizing. Surfaceand Coatings Technology.2012,210:142-150.
    [23]韦永德,刘志如,王春义,范爱龄,程建民.用化学法对20钢、纯铁表面扩渗稀土元素的研究.金属学报.1983,19(5): B197-B200.
    [24] G. Li, H. Jin. The influence of additive rare earths on ion carburization.Surface and Coatings Technology.1993,59(1–3):117-120.
    [25] F. Y. Zhu, C. H. Cai, Q. C. Meng, M. F. Yan, Z. R. Liu, J. D. Chen.Observation and Analysis of the Microstructure in Carburized Surface Layerof Steel20Cr2Ni4A Treated with Conventional and Rare Earth CarburizingProcesses. Journal of Rare Earths.1996,14(2):156-157.
    [26] Y. Zexi, Y. Zongsen. Accelerating effect of rare earth in steel on its surface-carburizing process. Journal of Rare Earths.1999,17(1):51-52.
    [27] T. Bell, Y. Sun, Z. R. Liu, M. F. Yan. Rare-earth surface energineering.Heat Treatment of Metals.2000,27(1):1-8.
    [28] M. F. Yan, C. H. Cai, Z. R. Liu. Replacement of conventionally complexprocessing for low alloy steel20Cr2Ni4A by rare earth carburising at lowertemperature. Materials Science and Technology.2001,17(8):1021-1024.
    [29] M. F. Yan, W. Pan, T. Bell, Z. Liu. The effect of rare earth catalyst oncarburizing kinetics in a sealed quench furnace with endothermic atmosphere.Applied Surface Science.2001,173:91-94.
    [30] M. F. Yan. Study on absorption and transport of carbon in steel during gascarburizing with rare-earth addition. Materials Chemistry and Physics.2001,70(2):242-244.
    [31] M. F. Yan, Z. R. Liu, T. Bell. Effect of rare earths on diffusion coefficientand transfer coefficient of carbon during carburizing. Journal of Rare Earths.2001,19(2):122-124.
    [32] M. F. Yan, Z. R. Liu. Study on microstructure and microhardness in surfacelayer of20CrMnTi steel carburised at880°C with and without RE. MaterialsChemistry and Physics.2001,72(1):97-100.
    [33] D. Wang, J. Li, M. Zhong. Microstructure and property of20CrMo steel withthe process of rare earth element carburization. Advanced Materials Research.2011,317-319:479-483.
    [34] J. Peng, H. Dong, T. Bell, F. Chen, Z. Mo, C. Wang, Q. Peng. Effect of rareearth elements on plasma nitriding of38CrMoAl steel. Surface Engineering.1996,12(2):147-151.
    [35] D. Cleugh, C. Blawert, J. Steinbach, H. Ferkel, B. L. Mordike, T. Bell.Effects of rare earth additions on nitriding of EN40B by plasma immersionion implantation. Surface and Coatings Technology.2001,142–144:392-396.
    [36] J. Zhang, Y. Sun. Plasma nitriding of722M24steel with pure lanthanum,cerium and neodymium as sputter sources. Journal of Rare Earths.2001,19(2):110-116.
    [37] X. H. Cheng, C. Y. Xie. Effect of rare earth elements on the erosionresistance of nitrided40Cr steel. Wear.2003,254(5–6):415-420.
    [38] J. Zhang. Examination of plasma nitriding microstructure with addition ofrare earths. Journal of Rare Earths.2004,22(2):272-276.
    [39] J. Huang, D. Xiong, X. Fan. Effect of rare earth addition in plasma nitridingon microstructure of chromium electro-plating. Advanced Materials Research.2010,97-101:1514-1517.
    [40] L. N. Tang, M. F. Yan. Effects of rare earths addition on the microstructure,wear and corrosion resistances of plasma nitrided30CrMnSiA steel. Surface&Coatings Technology.2012,206(8-9):2363-2370.
    [41] Q. Shangguan, X. Cheng. Effect of rare earth elements on erosion resistanceof nitrocarburized layers of38CrMoAl steel. Journal of Rare Earths.2004,22(3):406-409.
    [42] K. Wang, J. Liu, L. Fan. Effect of rare earth elements on nitrocarburizingkinetics of35CrMo steel. Journal of Rare Earths.2006,24(SUPPL.3):297-299.
    [43] R. L. Liu, M. F. Yan, D. L. Wu. Effect of rare earths on mechanicalproperties of plasma nitrocarburized surface layer of17-4PH steel. Journal ofRare Earths.2009,27(6):1056-1061.
    [44] R. L. Liu, M. F. Yan, Y. Q. Wu, C. Z. Zhao. Microstructure and properties of17-4PH steel plasma nitrocarburized with a carrier gas containing rare earthelements. Materials Characterization.2010,61(1):19-24.
    [45] R. L. Liu, M. F. Yan, D. L. Wu. Microstructure and mechanical properties of17-4PH steel plasma nitrocarburized with and without rare earths addition.Journal of Materials Processing Technology.2010,210(5):784-790.
    [46] Y. Q. Wu, M. F. Yan. Effects of lanthanum and cerium on low temperatureplasma nitrocarburizing of nanocrystallized3J33steel. Journal of RareEarths.2011,29(4):383-387.
    [47] R. L. Liu, Y. J. Qiao, M. F. Yan, Y. D. Fu. Effects of Rare Earth Elements onthe Characteristics of Low Temperature Plasma Nitrocarburized MartensiticStainless Steel. Journal of Materials Science&Technology.2012,28(11):1046-1052.
    [48] X. Feng, J. H. Sui, W. Cai, X. J. Mi. Characterisation of rare earth assistedplasma carbonitrided TiNi alloys. Surface Engineering.2012,28(8):636-638.
    [49] N. I. Medvedeva, L. E. Kar’kina, A. L. Ivanovski. Effect of chromium onthe electronic structure of the cementite Fe3C. Physics of the Solid State.2006,48(1):15-19.
    [50] I. R. Shein, N. I. Medvedeva, A. L. Ivanovskii. Electronic structure andmagnetic properties of Fe3C with3d and4d impurities. physica status solidi(b).2007,244(6):1971-1981.
    [51] C. T. Zhou, B. Xiao, J. Feng, J. D. Xing, X. J. Xie, Y. H. Chen, R. Zhou.First principles study on the elastic properties and electronic structures of (Fe,Cr)3C. Computational Materials Science.2009,45(4):986-992.
    [52] J. H. Jang, I. G. Kim, H. K. D. H. Bhadeshia. Substitutional solution ofsilicon in cementite: A first-principles study. Computational MaterialsScience.2009,44(4):1319-1326.
    [53] J. H. Jang, I. G. Kim, H. K. D. H. Bhadeshia. First-principles calculationsand the thermodynamics of cementite. Materials Science Forum.2010,638-642:3319-3324.
    [54] C. K. Ande, M. H. F. Sluiter. First-principles prediction of partitioning ofalloying elements between cementite and ferrite. Acta Materialia.2010,58(19):6276-6281.
    [55] C. X. Wang, Z. Q. Lv, W. T. Fu, Y. Li, S. H. Sun, B. Wang. Electronicproperties, magnetic properties and phase stability of alloyed cementite(Fe,M)3C (M=Co,Ni) from density-functional theory calculations. Solid StateSciences.2011,13(8):1658-1663.
    [56] Z. Q. Lv, W. T. Fu, S. H. Sun, Z. H. Wang, W. Fan, M. G. Qv. Structural,electronic and magnetic properties of cementite-type Fe3X (X=B, C, N) byfirst-principles calculations. Solid State Sciences.2010,12(3):404-408.
    [57] S. G. Josh, U. Jamal, R. C. Thomas, K. B. Nelli, K. W. Angela. First-principle study of structure and stability of nickel carbides. Journal ofPhysics: Condensed Matter.2010,22(44):445503.
    [58] C. M. Fang, M. A. van Huis, H. W. Zandbergen. Structure and stability ofFe2C phases from density-functional theory calculations. Scripta Materialia.2010,63(4):418-421.
    [59] H. Li, L. Zhang, Q. Zeng, K. Guan, K. Li, H. Ren, S. Liu, L. Cheng.Structural, elastic and electronic properties of transition metal carbides TMC(TM=Ti, Zr, Hf and Ta) from first-principles calculations. Solid StateCommunications.2011,151(8):602-606.
    [60] Y. Li, Y. Gao, B. Xiao, T. Min, Y. Yang, S. Ma, D. Yi. The electronic,mechanical properties and theoretical hardness of chromium carbides byfirst-principles calculations. Journal of Alloys and Compounds.2011,509(17):5242-5249.
    [61] A. M. Hao, T. J. Zhou, Y. Zhu, X. Y. Zhang, R. P. Liu. First-principlesinvestigation of the electronic, elastic and thermodynamic properties of VCunder high pressure. Chinese Physics B.2011,20(4):047103.
    [62] W. Feng, S. Cui, H. Hu, G. Zhang, Z. Lv. Electronic structure and elasticconstants of TiCxN1x, ZrxNb1xC and HfCxN1x alloys: A first-principles study. Physica B: Condensed Matter.2011,406(19):3631-3635.
    [63] C. M. Fang, M. A. van Huis, H. W. Zandbergen. Stability and structures ofthe ε-phases of iron nitrides and iron carbides from first principles. ScriptaMaterialia.2011,64(3):296-299.
    [64] C. M. Fang, M. A. van Huis, J. Jansen, H. W. Zandbergen. Role of carbonand nitrogen in Fe2C and Fe2N from first-principles calculations. PhysicalReview B.2011,84(9):094102.
    [65] B. Xiao, J. Feng, C. T. Zhou, Y. H. Jiang, R. Zhou. Mechanical propertiesand chemical bonding characteristics of Cr7C3type multicomponent carbides.Journal of Applied Physics.2011,109(2):023507-9.
    [66] C. Ande, M. F. Sluiter. First-Principles Calculations on Stabilization of IronCarbides (Fe3C, Fe5C2, and η-Fe2C) in Steels by Common Alloying Elements.Metallurgical and Materials Transactions A.2012,43(11):4436-4444.
    [67] J. H. Jang, C. H. Lee, Y. U. Heo, D. W. Suh. Stability of (Ti, M)C (M=Nb, V,Mo and W) carbide in steels using first-principles calculations. ActaMaterialia.2012,60(1):208-217.
    [68] W. H. Zhang, Z. Q. Lv, Z. P. Shi, S. H. Sun, Z. H. Wang, W. T. Fu. Electronic,magnetic and elastic properties of ε-phases Fe3X (X=B, C, N) from density-functional theory calculations. Journal of Magnetism and Magnetic Materials.2012,324(14):2271-2276.
    [69] Y. J. Shi, Y. L. Du, G. Chen. First-principles study on the elastic andelectronic properties of hexagonal ε-Fe3N. Computational Materials Science.2013,67:341-345.
    [70] B. Wang, Y. Liu, Y. Liu, J. W. Ye. Mechanical properties and electronicstructure of TiC, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, TiC0.75N0.25and TiN.Physica B: Condensed Matter.2012,407(13):2542-2548.
    [71] V. Krasnenko, M. G. Brik. First-principles calculations of hydrostaticpressure effects on the structural, elastic and thermodynamic properties ofcubic monocarbides XC (X=Ti, V, Cr, Nb, Mo, Hf). Solid State Sciences.2012,14(10):1431-1444.
    [72] J. Kim, S. Kang. Elastic and thermo-physical properties of TiC, TiN, andtheir intermediate composition alloys using ab initio calculations. Journal ofAlloys and Compounds.2012,528:20-27.
    [73] P. Mohn, S. F. Matar. The γ-Fe4N system revisited: an ab initio calculationstudy of the magnetic interactions. Journal of Magnetism and MagneticMaterials.1999,191(1-2):234–240.
    [74] D. Music, J. M. Schneider. Elastic properties of MFe3N (M=Ni, Pd, Pt)studied by ab initio calculations. Applied Physics Letters.2006,88(3):031914.
    [75] L. Chen. Electronic structure and magnetism of Fe4-xMnxN compounds.Journal of Applied Physics.2006,100(11):113717-5.
    [76] Z. Wu, J. Meng. Elastic and electronic properties of CoFe3N, RhFe3N, andIrFe3N from first principles. Applied Physics Letters.2007,90(24):241901.
    [77] E. Zhao, H. Xiang, J. Meng, Z. Wu. First-principles investigation on theelastic, magnetic and electronic properties of MFe3N (M=Fe, Ru, Os).Chemical Physics Letters.2007,449(1-3):96-100.
    [78] T. Gressmann, M. Wohlschl gel, S. Shang, U. Welzel, A. Leineweber, E. J.Mittemeijer, Z. K. Liu. Elastic anisotropy of γ′-Fe4N and elastic graininteraction in γ′-Fe4N1ylayers on α-Fe: First-principles calculations anddiffraction stress measurements. Acta Materialia.2007,55(17):5833-5843.
    [79] M. F. Yan, Y. Q. Wu, R. L. Liu. Plasticity and ab initio characterizations onFe4N produced on the surface of nanocrystallized18Ni-maraging steelplasma nitrided at lower temperature. Applied Surface Science.2009,255(21):8902-8906.
    [80] J. Yang, H. Sun, C. Chen. Anomalous strength anisotropy of γ-Fe4Nidentified by first-principles calculations. Applied Physics Letters.2009,94(15):151914.
    [81] B. Xiao, J. D. Xing, J. Feng, C. T. Zhou, Y. F. Li, W. Su, X. J. Xie, Y. H.Cheng. A comparative study of Cr7C3, Fe3C and Fe2B in cast iron both fromab initio calculations and experiments. Journal of Physics D: Applied Physics.2009,42(11):115415.
    [82] X. G. Ma, J. J. Jiang, P. Liang, J. Wang, Q. Ma, Q. K. Zhang. Structuralstability and magnetism of γ′-Fe4N and CoFe3N compounds. Journal ofAlloys and Compounds.2009,480(2):475-480.
    [83] Y. Q. Wu, M. F. Yan. Electronic structure and properties of (Fe1xNix)4N(0≤x≤1.0). Physica B: Condensed Matter.2010,405(12):2700-2705.
    [84] A. V. Gil Rebaza, J. Desimoni, S. Kurian, S. Bhattacharyya, N. S. Gajbhiye,E. L. Peltzer y Blancá. Ab Initio Study of the Structural, Electronic,Magnetic, and Hyperfine Properties of GaxFe4–xN (0.00≤x≤1.00) Nitrides.The Journal of Physical Chemistry C.2011,115(46):23081-23089.
    [85] T. Takahashi, J. Burghaus, D. Music, R. Dronskowski, J. M. Schneider.Elastic properties of γ′-Fe4N probed by nanoindentation and ab initiocalculation. Acta Materialia.2012,60(5):2054-2060.
    [86] Z. Pan, H. Sun, C. Chen. Colossal Shear-Strength Enhancement of Low-Density Cubic BC2N by Nanoindentation. Physical Review Letters.2007,98(13):135505.
    [87] Z. Pan, H. Sun, Y. Zhang, C. Chen. Harder than Diamond: SuperiorIndentation Strength of Wurtzite BN and Lonsdaleite. Physical ReviewLetters.2009,102(5):055503.
    [88] C. Jiang, Z. Lin, Y. Zhao. First principles prediction of vanadium andniobium nitrides with M2N3stoichiometry. Scripta Materialia.2010,63(5):532-535.
    [89] A. J. Wang, S. L. Shang, Y. Du, Y. Kong, L. J. Zhang, L. Chen, D. D. Zhao, Z.K. Liu. Structural and elastic properties of cubic and hexagonal TiN and AlNfrom first-principles calculations. Computational Materials Science.2010,48(3):705-709.
    [90] X. Hao, Y. Xu, Z. Li, L. Wang, F. Gao, D. Xiao. Elastic properties of novelrhenium nitrides from first principles. physica status solidi (b).2011,248(9):2107-2111.
    [91] D. Holec, M. Friák, J. Neugebauer, P. H. Mayrhofer. Trends in the elasticresponse of binary early transition metal nitrides. Physical Review B.2012,85(6):064101.
    [92] Y. Chen, Q. Song, H. Yan, T. Wei, X. Yang. Volume dependence of electronicstructure and magnetic properties of Fe16N2. Physica B: Condensed Matter.2012,407(3):519-522.
    [93] M. G. Brik, C. G. Ma. First-principles studies of the electronic and elasticproperties of metal nitrides XN (X=Sc, Ti, V, Cr, Zr, Nb). ComputationalMaterials Science.2012,51(1):380-388.
    [94] B. D. Fulcher, X. Y. Cui, B. Delley, C. Stampfl. Hardness analysis of cubicmetal mononitrides from first principles. Physical Review B.2012,85(18):184106.
    [95] C. E. Ekuma, D. Bagayoko, M. Jarrell, J. Moreno. Electronic, structural, andelastic properties of metal nitrides XN (X=Sc, Y): A first principle study.AIP Advances.2012,2(3):032163-11.
    [96] C. Zang, H. Sun, J. S. Tse, C. Chen. Indentation strength ofultraincompressible rhenium boride, carbide, and nitride from first-principlescalculations. Physical Review B.2012,86(1):014108.
    [97] C. Zang, H. Sun, C. Chen. Unexpectedly low indentation strength of WB3and MoB3from first principles. Physical Review B.2012,86(18):180101.
    [98] R. F. Zhang, D. Legut, Z. J. Lin, Y. S. Zhao, H. K. Mao, S. Veprek. Stabilityand Strength of Transition-Metal Tetraborides and Triborides. PhysicalReview Letters.2012,108(25):255502.
    [99] X. P. Du, Y. X. Wang, V. C. Lo. Investigation of tetragonal ReN2and WN2with high shear moduli from first-principles calculations. Physics Letters A.2010,374(25):2569-2574.
    [100] X. P. Du, V. C. Lo, Y. X. Wang. The effect of structure and phasetransformation on the mechanical properties of Re2N and the stability ofMn2N. Journal of Computational Chemistry.2012,33(1):18-24.
    [101] Y. Li, Y. Gao, B. Xiao, T. Min, Z. Fan, S. Ma, D. Yi. Theoretical study on theelectronic properties and stabilities of low-index surfaces of WC polymorphs.Computational Materials Science.2011,50(3):939-948.
    [102] Y. Li, Y. Gao, B. Xiao, T. Min, S. Ma, D. Yi. Theoretical calculations on theadhesion, stability, electronic structure, and bonding of Fe/WC interface.Applied Surface Science.2011,257(13):5671-5678.
    [103] Y. P. Xie, S. J. Zhao. First principles study of Al and Ni segregation to the α-Fe/Cu (100) coherent interface and their effects on the interfacial cohesion.Computational Materials Science.2012,63:329-335.
    [104] K. Bi, J. Liu, Q. Dai. First-principles study of boron, carbon and nitrogenadsorption on WC(100) surface. Applied Surface Science.2012,258(10):4581-4587.
    [105] T. Hoshino, W. Schweika, R. Zeller, P. H. Dederichs. Impurity-impurityinteractions in Cu, Ni, Ag, and Pd. Physical Review B.1993,47(9):5106-5117.
    [106] T. Hoshino, R. Zeller, P. H. Dederichs. Local-density-functional calculationsfor defect interactions in Al. Physical Review B.1996,53(14):8971-8974.
    [107] P. A. Korzhavyi, I. A. Abriikosov, B. Johansson. Theoretical Investigation ofThe Defect Interactions in Dilute Copper Alloys Intended for Nuclear WasteContainers. MRS Proceedings.1999,556:895.
    [108] V. S. Stepanyuk, W. Hergert, P. Rennert. Co adatoms on Au(100): energeticsof site exchange. Computational Materials Science.2000,17(2–4):309-311.
    [109] V. S. Stepanyuk, W. Hergert. Energetics of surface alloying:3d adatoms onthe Au(100) surface. Physical Review B.2000,62(11):7542-7544.
    [110] M. Asato, T. Mizuno, T. Hoshino, H. Sawada. Full-Potential KKRCalculations for Point Defect Energies in Metals, based on the Generalized-Gradient Approximation: II. Impurity-Impurity Interaction Energies andPhase Diagrams. MATERIALS TRANSACTIONS.2001,42(11):2216-2224.
    [111] C. Domain, C. S. Becquart. Ab initio calculations of defects in Fe and diluteFe-Cu alloys. Physical Review B.2001,65(2):024103.
    [112] C. S. Becquart, C. Domain. Ab initio contribution to the study of complexesformed during dilute FeCu alloys radiation. Nuclear Instruments andMethods in Physics Research Section B: Beam Interactions with Materialsand Atoms.2003,202:44-50.
    [113] V. S. Stepanyuk, A. N. Baranov, W. Hergert, P. Bruno. Ab initio study ofinteraction between magnetic adatoms on metal surfaces. Physical Review B.2003,68(20):205422.
    [114] Y. Tateyama, T. Ohno. Stability and clusterization of hydrogen-vacancycomplexes in α-Fe: An ab initio study. Physical Review B.2003,67(17):174105.
    [115] J. D. Kamminga, T. P. C. Klaver, K. Nakata, B. J. Thijsse, G. C. A. M.Janssen. The interaction of N with atomically dispersed Ti, V, Cr, Mo, and Niin ferritic steel. Journal of Computer-Aided Materials Design.2003,10(1):1-11.
    [116] D. E. Jiang, E. A. Carter. Carbon dissolution and diffusion in ferrite andaustenite from first principles. Physical Review B.2003,67(21):214103.
    [117] C. C. Fu, F. Willaime, P. Ordejón. Stability and mobility of mono-and di-interstitials in α-Fe. Physical Review Letters.2004,92(17):175503.
    [118] C. Domain, C. S. Becquart, J. Foct. Ab initio study of foreign interstitialatom (C, N) interactions with intrinsic point defects in α-Fe. PhysicalReview B.2004,69(14):144112.
    [119] C. S. Becquart, C. Domain, J. Foct. Ab initio calculations of some atomicand point defect interactions involving C and N in Fe. PhilosophicalMagazine.2005,85(4-7):533-540.
    [120] D. E. Jiang, E. A. Carter. Diffusion of interstitial hydrogen into and throughbcc Fe from first principles. Physical Review B.2004,70(6):064102.
    [121] H. L. Meyerheim, V. Stepanyuk, A. L. Klavsyuk, E. Soyka, J. Kirschner.Structure and atomic interactions at the Co∕Pd(001) interface: Surface x-raydiffraction and atomic-scale simulations. Physical Review B.2005,72(11):113403.
    [122] C. Domain, C. S. Becquart. Diffusion of phosphorus in α-Fe: An ab initiostudy. Physical Review B.2005,71(21):214109.
    [123] C. C. Fu, F. Willaime. Ab initio study of helium in α-Fe: Dissolution,migration, and clustering with vacancies. Physical Review B.2005,72(6):064117.
    [124] H. Sawada, K. Kawakami, M. Sugiyama. Interaction between Substitutionaland Interstitial Elements in alpha iron Studied by First-principles Calculation.MATERIALS TRANSACTIONS.2005,46(6):1140-1147.
    [125] D. E. Jiang, E. A. Carter. Carbon atom adsorption on and diffusion intoFe(110) and Fe(100) from first principles. Physical Review B.2005,71(4):045402.
    [126] E. Vincent, C. S. Becquart, C. Domain. Ab initio calculations of vacancyinteractions with solute atoms in bcc Fe. Nuclear Instruments and Methods inPhysics Research Section B: Beam Interactions with Materials and Atoms.2005,228(1–4):137-141.
    [127] E. Vincent, C. S. Becquart, C. Domain. Solute interaction with point defectsin α Fe during thermal ageing: A combined ab initio and atomic kineticMonte Carlo approach. Journal of Nuclear Materials.2006,351(1–3):88-99.
    [128] D. Nguyen-Manh, A. P. Horsfield, S. L. Dudarev. Self-interstitial atomdefects in bcc transition metals: Group-specific trends. Physical Review B.2006,73(2):020101.
    [129] E. Vincent, C. S. Becquart, C. Domain. Ab initio calculations of self-interstitial interaction and migration with solute atoms in bcc Fe. Journal ofNuclear Materials.2006,359(3):227-237.
    [130] C. S. Becquart, C. Domain. Migration Energy of He in W Revisited byAb Initio Calculations. Physical Review Letters.2006,97(19):196402.
    [131] C. S. Becquart, C. Domain. Ab initio calculations about intrinsic pointdefects and He in W. Nuclear Instruments and Methods in Physics ResearchSection B: Beam Interactions with Materials and Atoms.2007,255(1):23-26.
    [132] P. M. Derlet, D. Nguyen-Manh, S. L. Dudarev. Multiscale modeling ofcrowdion and vacancy defects in body-centered-cubic transition metals.Physical Review B.2007,76(5):054107.
    [133] P. Olsson, C. Domain, J. Wallenius. Ab initio study of Cr interactions withpoint defects in bcc Fe. Physical Review B.2007,75(1):014110.
    [134] P. Olsson. Ab initio study of interstitial migration in Fe–Cr alloys. Journal ofNuclear Materials.2009,386–388:86-89.
    [135] E. Meslin, C. C. Fu, A. Barbu, F. Gao, F. Willaime. Theoretical study ofatomic transport via interstitials in dilute Fe-P alloys. Physical Review B.2007,75(9):094303.
    [136] C. C. Fu, E. Meslin, A. Barbu, F. Willaime, V. Oison. Effect of C on vacancymigration in α-iron. Solid State Phenomena.2008,139:157-164.
    [137] T. Seletskaia, Y. Osetsky, R. E. Stoller, G. M. Stocks. First-principles theoryof the energetics of He defects in bcc transition metals. Physical Review B.2008,78(13):134103.
    [138] N. Sandberg, K. O. E. Henriksson, J. Wallenius. Carbon impurity dissolutionand migration in bcc Fe-Cr: First-principles calculations. Physical Review B.2008,78(9):094110.
    [139] S. Lu, Q. M. Hu, R. Yang, B. Johansson, L. Vitos. Rare earth elements in α-Ti: A first-principles investigation. Computational Materials Science.2009,46(4):1187-1191.
    [140] T. Ohnuma, N. Soneda, M. Iwasawa. First-principles calculations ofvacancy–solute element interactions in body-centered cubic iron. ActaMaterialia.2009,57(20):5947-5955.
    [141] D. Nguyen-Manh. Ab-initio modelling of point defect-impurity interaction intungsten and other BCC transition metals. Advanced Materials Research.2009,59:253-256.
    [142] C. J. Ortiz, M. J. Caturla, C. C. Fu, F. Willaime. Influence of carbon on thekinetics of He migration and clustering in α-Fe from first principles. PhysicalReview B.2009,80(13):134109.
    [143] X. T. Zu, L. Yang, F. Gao, S. M. Peng, H. L. Heinisch, X. G. Long, R. J.Kurtz. Properties of helium defects in bcc and fcc metals investigated withdensity functional theory. Physical Review B.2009,80(5):054104.
    [144] A. V. Ruban, V. I. Baykov, B. Johansson, V. V. Dmitriev, M. S. Blanter.Oxygen and nitrogen interstitial ordering in hcp Ti, Zr, and Hf: An ab initiostudy. Physical Review B.2010,82(13):134110.
    [145] Y. L. Liu, H. B. Zhou, S. Jin, Y. Zhang, G. H. Lu. Effects of H on ElectronicStructure and Ideal Tensile Strength of W: A First-Principles Calculation.Chinese Physics Letters.2010,27(12):127101.
    [146] D. Shin, C. Wolverton. First-principles study of solute–vacancy binding inmagnesium. Acta Materialia.2010,58(2):531-540.
    [147] K. Heinola, T. Ahlgren. Diffusion of hydrogen in bcc tungsten studied withfirst principle calculations. Journal of Applied Physics.2010,107(11):113531-8.
    [148] K. Heinola, T. Ahlgren, K. Nordlund, J. Keinonen. Hydrogen interaction withpoint defects in tungsten. Physical Review B.2010,82(9):094102.
    [149] P. Olsson, T. P. C. Klaver, C. Domain. Ab initio study of solute transition-metal interactions with point defects in bcc Fe. Physical Review B.2010,81(5):054102.
    [150] H. Amara, C. C. Fu, F. Soisson, P. Maugis. Aluminum and vacancies in α-iron: Dissolution, diffusion, and clustering. Physical Review B.2010,81(17):174101.
    [151] D. Simonovic, C. K. Ande, A. I. Duff, F. Syahputra, M. H. F. Sluiter.Diffusion of carbon in bcc Fe in the presence of Si. Physical Review B.2010,81(5):054116.
    [152] S. Choudhury, L. Barnard, J. D. Tucker, T. R. Allen, B. D. Wirth, M. Asta, D.Morgan. Ab-initio based modeling of diffusion in dilute bcc Fe–Ni and Fe–Cr alloys and implications for radiation induced segregation. Journal ofNuclear Materials.2011,411(1-3):1-14.
    [153] O. I. Gorbatov, P. A. Korzhavyi, A. V. Ruban, B. Johansson, Y. N.Gornostyrev. Vacancy–solute interactions in ferromagnetic and paramagneticbcc iron: Ab initio calculations. Journal of Nuclear Materials.2011,419(1–3):248-255.
    [154] J. E. Saal, C. Wolverton. Solute–vacancy binding of the rare earths inmagnesium from first principles. Acta Materialia.2012,60(13–14):5151-5159.
    [155] L. Huber, I. Elfimov, J. Rottler, M. Militzer. Ab initio calculations of rare-earth diffusion in magnesium. Physical Review B.2012,85(14):144301.
    [156] Y. L. Liu, S. Jin, Y. Zhang. Interaction between impurity nitrogen andtungsten: a first-principles investigation. Chinese Physics B.2012,21(1):016105.
    [157] V. V. Dmitriev, M. S. Blanter, A. V. Ruban, B. Johansson. Ab initio basedinvestigation of interstitial interactions and Snoek relaxation in Nb–O.Journal of Physics and Chemistry of Solids.2012,73(2):182-187.
    [158] V. Dmitriev, M. Blanter, A. Ruban. Interaction of interstitial nitrogen atomsin Nb: Ab initio calculations. Bulletin of the Russian Academy of Sciences:Physics.2012,76(1):1-6.
    [159] V. I. Bogdanov, V. A. Popov, V. K. Portnoi, A. V. Ruban. Chemical anddeformational interactions in solid solution of carbon in nickel. The Physicsof Metals and Metallography.2012,113(9):831-835.
    [160] C. S. Becquart, C. Domain. Solute–point defect interactions in bcc systems:Focus on first principles modelling in W and RPV steels. Current Opinion inSolid State and Materials Science.2012,16(3):115-125.
    [161] M. W. Finnis, J. E. Sinclair. A simple empirical N-body potential fortransition metals. Philosophical Magazine A.1984,50(1):45-55.
    [162] M. S. Daw, M. I. Baskes. Embedded-atom method: Derivation andapplication to impurities, surfaces, and other defects in metals. PhysicalReview B.1984,29(12):6443-6453.
    [163] G. J. Ackland, M. W. Finnis, V. Vitek. Validity of the second moment tight-binding model. Journal of Physics F: Metal Physics.1988,18(8): L153.
    [164] Y. Mishin. Atomistic modeling of the γ and γ′-phases of the Ni–Al system.Acta Materialia.2004,52(6):1451-1467.
    [165] P. L. Williams, Y. Mishin, J. C. Hamilton. An embedded-atom potential forthe Cu–Ag system. Modelling and Simulation in Materials Science andEngineering.2006,14(5):817.
    [166] F. Ercolessi, J. B. Adams. Interatomic Potentials from First-PrinciplesCalculations: The Force-Matching Method. Europhysics Letters.1994,26(8):583.
    [167] Y. Mishin, D. Farkas, M. J. Mehl, D. A. Papaconstantopoulos. Interatomicpotentials for monoatomic metals from experimental data and ab initiocalculations. Physical Review B.1999,59(5):3393-3407.
    [168] M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, M. Asta.Development of new interatomic potentials appropriate for crystalline andliquid iron. Philosophical Magazine.2003,83(35):3977-3994.
    [169] G. P. P. Pun, Y. Mishin. Embedded-atom potential for hcp and fcc cobalt.Physical Review B.2012,86(13):134116.
    [170] S. M. Foiles, M. I. Baskes, M. S. Daw. Embedded-atom-method functions forthe fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B.1986,33(12):7983-7991.
    [171] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, J. D. Kress.Structural stability and lattice defects in copper: Ab initio, tight-binding, andembedded-atom calculations. Physical Review B.2001,63(22):224106.
    [172] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos. Embedded-atom potentialfor B2-NiAl. Physical Review B.2002,65(22):224114.
    [173] J. P. Du, C. Y. Wang, T. Yu. Construction and application of multi-elementEAM potential (Ni–Al–Re) in γ/γ′Ni-based single crystal superalloys.Modelling and Simulation in Materials Science and Engineering.2013,21(1):015007.
    [174] M. I. Baskes. Determination of modified embedded atom method parametersfor nickel. Materials Chemistry and Physics.1997,50(2):152-158.
    [175] B. J. Lee, J. H. Shim, M. I. Baskes. Semiempirical atomic potentials for thefcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and secondnearest-neighbor modified embedded atom method. Physical Review B.2003,68(14):144112.
    [176] M. I. Baskes, S. G. Srinivasan, S. M. Valone, R. G. Hoagland. Multistatemodified embedded atom method. Physical Review B.2007,75(9):094113.
    [177] M. I. Baskes, R. A. Johnson. Modified embedded atom potentials for HCPmetals. Modelling and Simulation in Materials Science and Engineering.1994,2(1):147.
    [178] Y. M. Kim, B. J. Lee, M. I. Baskes. Modified embedded-atom methodinteratomic potentials for Ti and Zr. Physical Review B.2006,74(1):014101.
    [179] M. I. Baskes. Modified embedded-atom potentials for cubic materials andimpurities. Physical Review B.1992,46(5):2727-2742.
    [180] B. J. Lee, M. I. Baskes, H. Kim, Y. Koo Cho. Second nearest-neighbormodified embedded atom method potentials for bcc transition metals.Physical Review B.2001,64(18):184102.
    [181] M. I. Baskes. Atomistic potentials for the molybdenum–silicon system.Materials Science and Engineering: A.1999,261(1–2):165-168.
    [182] D. Chen, M. Yan, Y. F. Liu. A modified embedded-atom potential for L10γ-TiAl. Scripta Materialia.1999,40(8):913-920.
    [183] S. Y. Hu, M. I. Baskes, M. Stan, L. Q. Chen. Atomistic calculations ofinterfacial energies, nucleus shape and size of θ′precipitates in Al–Cu alloys.Acta Materialia.2006,54(18):4699-4707.
    [184] B. Jelinek, J. Houze, S. Kim, M. F. Horstemeyer, M. I. Baskes, S. G. Kim.Modified embedded-atom method interatomic potentials for the Mg-Al alloysystem. Physical Review B.2007,75(5):054106.
    [185] I. Sa, B. J. Lee. Modified embedded-atom method interatomic potentials forthe Fe–Nb and Fe–Ti binary systems. Scripta Materialia.2008,59(6):595-598.
    [186] B. J. Lee, J. W. Lee. A modified embedded atom method interatomicpotential for carbon. Calphad.2005,29(1):7-16.
    [187] M. I. Baskes. Application of the Embedded-Atom Method to CovalentMaterials: A Semiempirical Potential for Silicon. Physical Review Letters.1987,59(23):2666-2669.
    [188] M. I. Baskes, J. S. Nelson, A. F. Wright. Semiempirical modified embedded-atom potentials for silicon and germanium. Physical Review B.1989,40(9):6085-6100.
    [189] B. J. Lee, J. W. Jang. A modified embedded-atom method interatomicpotential for the Fe–H system. Acta Materialia.2007,55(20):6779-6788.
    [190] Y. M. Kim, B. J. Lee. Modified embedded-atom method interatomicpotentials for the Ti–C and Ti–N binary systems. Acta Materialia.2008,56(14):3481-3489.
    [191] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos. Phase stability in the Fe–Ni system: Investigation by first-principles calculations and atomisticsimulations. Acta Materialia.2005,53(15):4029-4041.
    [192] Y. Mishin, A. Y. Lozovoi. Angular-dependent interatomic potential fortantalum. Acta Materialia.2006,54(19):5013-5026.
    [193] A. Hashibon, A. Y. Lozovoi, Y. Mishin, C. Els sser, P. Gumbsch. Interatomicpotential for the Cu-Ta system and its application to surface wetting anddewetting. Physical Review B.2008,77(9):094131.
    [194] B. Jelinek, S. Groh, M. F. Horstemeyer, J. Houze, S. G. Kim, G. J. Wagner, A.Moitra, M. I. Baskes. Modified embedded atom method potential for Al, Si,Mg, Cu, and Fe alloys. Physical Review B.2012,85(24):245102.
    [195] R. A. Johnson, G. J. Dienes, A. C. Damask. Calculations of the energy andmigration characteristics of carbon and nitrogen in α-iron and vanadium.Acta Metallurgica.1964,12(11):1215-1224.
    [196] B. J. Lee. A modified embedded-atom method interatomic potential for theFe–C system. Acta Materialia.2006,54(3):701-711.
    [197] K. Tapasa, A. V. Barashev, D. J. Bacon, Y. N. Osetsky. Computer simulationof carbon diffusion and vacancy–carbon interaction in α-iron. ActaMaterialia.2007,55(1):1-11.
    [198] T. T. Lau, C. J. F rst, X. Lin, J. D. Gale, S. Yip, K. J. Van Vliet. Many-BodyPotential for Point Defect Clusters in Fe-C Alloys. Physical Review Letters.2007,98(21):215501.
    [199] D. J. Hepburn, G. J. Ackland. Metallic-covalent interatomic potential forcarbon in iron. Physical Review B.2008,78(16):165115.
    [200] M. Grujicic, X. W. Zhou. Analysis of Fe-Ni-Cr-N austenite using theEmbedded-Atom Method. Calphad.1993,17(4):383-413.
    [201] B. J. Lee, T. H. Lee, S. J. Kim. A modified embedded-atom methodinteratomic potential for the Fe–N system: A comparative study with the Fe–C system. Acta Materialia.2006,54(17):4597-4607.
    [202]刘瑞良.17-4PH不锈钢等离子体稀土氮碳共渗层组织结构与性能表征.哈尔滨工业大学博士论文.2010.
    [203] P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Physical Review.1964,136(3B): B864-B871.
    [204] W. Kohn, L. J. Sham. Self-Consistent Equations Including Exchange andCorrelation Effects. Physical Review.1965,140(4A): A1133-A1138.
    [205] M. D. Segall, J. D. L. Philip, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J.Clark, M. C. Payne. First-principles simulation: ideas, illustrations and theCASTEP code. Journal of Physics: Condensed Matter.2002,14(11):2717.
    [206] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K.Refson, M. C. Payne. First principles methods using CASTEP. Zeitschrift fürKristallographie.2005,220:567-570.
    [207] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalizedeigenvalue formalism. Physical Review B.1990,41(11):7892-7895.
    [208] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient ApproximationMade Simple. Physical Review Letters.1996,77(18):3865-3868.
    [209] T. H. Fischer, J. Almlof. General methods for geometry and wave functionoptimization. The Journal of Physical Chemistry.1992,96(24):9768-9774.
    [210] M. D. Segall. Population analysis in plane wave electronic structurecalculations. Molecular Physics.1996,89(2):571-577.
    [211] M. D. Segall, R. Shah, C. J. Pickard, M. C. Payne. Population analysis ofplane-wave electronic structure calculations of bulk materials. PhysicalReview B.1996,54(23):16317-16320.
    [212] D. Sanchez-Portal, E. Artacho, J. M. Soler. Projection of plane-wavecalculations into atomic orbitals. Solid State Communications.1995,95(10):685-690.
    [213] R. S. Mulliken. Electronic Population Analysis on LCAO-MO MolecularWave Functions. I. The Journal of Chemical Physics.1955,23(10):1833.
    [214] E. Clementi, D. L. Raimondi, W. P. Reinhardt. Atomic Screening Constantsfrom SCF Functions. II. Atoms with37to86Electrons. The Journal ofChemical Physics.1967,47(4):1300-1307.
    [215] N. Chechenin, A. Chezan, C. Craus, D. Boerma, L. Niesen, P. Bronsveld, J.De Hosson. Precipitate formation in low-temperature nitrided cold-rolledFe94Ni4Ti2and Fe93Ni4Cr3films. Metallurgical and Materials Transactions A.2002,33(10):3075-3087.
    [216] T. Nishizawa. Thermodynamics of iron-based alloys. Bulletin of the JapanInstitute of Metals.1973,12(6):401-417.
    [217]由园,闫牧夫,陈义强.低体积分数相析出过程的相场模拟.金属学报.2008,44(10):1171-1174.
    [218] W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals andAlloys, Pergamon Press, London,1958.
    [219] F. Yin, X. Su, Z. Li, M. Huang, Y. Shi. A thermodynamic assessment of theLa–Al system. Journal of Alloys and Compounds.2000,302(1–2):169-172.
    [220] H. Okamoto. La-Si (Lanthanum-Silicon). Journal of Phase Equilibria andDiffusion.2007,28(6):585-585.
    [221] A. Palenzona, S. Cirafici. The La-Mn (Lanthanum-Manganese) system.Journal of Phase Equilibria.1990,11(5):491-493.
    [222] J. F. Herbst, L. G. Hector Jr. La(TM)5hydrides (TM=Fe, Co, Ni):Theoretical perspectives. Journal of Alloys and Compounds.2007,446–447:188-194.
    [223] H. Okamoto. La-Ni (Lanthanum-Nickel). Journal of Phase Equilibria.1991,12(5):615-616.
    [224] H. Okamoto. Cu-La (Copper-Lanthanum). Journal of Phase Equilibria andDiffusion.2001,22(5):594-595.
    [225] Z. Du, Y. Xu, W. Zhang. Thermodynamic assessment of the Cu–La system.Journal of Alloys and Compounds.1999,289(1–2):88-95.
    [226] Y. Q. Wu, M. F. Yan. Electronic structure and properties of LaNi5compoundfrom first principles. Rare Metals.2010,29(4):351-354.
    [227] G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han, A. V. Barashev.Development of an interatomic potential for phosphorus impurities in-iron.Journal of Physics: Condensed Matter.2004,16(27): S2629-S2642.
    [228] J. P. Biersack, J. F. Ziegler. Refined universal potentials in atomic collisions.Nuclear Instruments and Methods in Physics Research.1982,194(1–3):93-100.
    [229] H. Wriedt, N. Gokcen, R. Nafziger. The Fe-N (Iron-Nitrogen) system.Journal of Phase Equilibria.1987,8(4):355-377.
    [230] K. Frisk. A thermodynamic evaluation of the Cr-N, Fe-N, Mo-N and Cr-Mo-N systems. Calphad.1991,15(1):79-106.