超积累东南景天转录组学分析与ZIP家族基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉是一种生物毒性极强的金属元素。环境中,尤其是土壤中的镉极易被植物吸收,进而通过食物链逐级富集,严重危及人体健康。超积累生态型(Hyperaccumulating Ecotype, HE)东南景天是一种原生于我国的镉超积累植物,它能够在地上部累积超过5,000:mg/kg的镉而不表现出明显的毒害症状,是一种较为理想的生物修复材料。对东南景天镉超积累机制,尤其是分子机制的深入研究有助于揭示植物体金属稳态调节网络,挖掘镉超积累关键基因,为创新植物修复材料提供基因素材。过往在东南景天上开展的研究多集中在生理层面,由于缺乏基因组序列信息,对这些生理过程背后所蕴含生化机制的研究进展相对滞后,成为东南景天超积累机制研究中的短板。鉴于此,本研究综合利用二代测序技术Roche454平台和Illumina/Solexa平台测定并构建了HE东南景天地上部转录组序列信息;并以此为基础,研究HE东南景天地上部转录组对镉胁迫的响应;从中选取代表性的基因,利用实时荧光定量PCR (q-RT-PCR)技术,分别对比研究超积累与非超积累生态型(Non-Hyperaccumulating Ecotype, NHE)东南景天中所选基因在正常生长及镉处理条件下的响应差异,以期揭示东南景天地上部镉超积累的分子机制。
     此外,本研究还从转录组序列数据库中选取ZIP家族基因为例,综合利用cDNA末端快速扩增技术(Rapid Amplification of cDNA Ends, RACE)、q-RT-PCR、酵母功能互补实验及生物信息学分析方法克隆得到3个ZIP基因,并初步研究了其基因特性与功能。具体研究结果如下:
     1.利用Roche454和Illumina/Solexa平台测定并构建了HE东南景天地上部转录组序列信息。在Roche454平台上共获得135,894条平均长度为286bp的高质量测序读长:在Illumina/Solexa测序平台上获得4,750余万条,总计9.4Gb的序列信息。以Roche454测序结果作为拼装骨架,结合Illumina/Solexa平台的海量数据构建HE东南景天地上部转录组序列信息,共拼装得到57,162条长于200bp的Contigs。利用蛋白数据库,对其中的编码基因进行功能注释。根据GO分析,这些基因主要涉及代谢、生物大分子代谢、生物合成等生理过程,参与结合、催化、蛋白结合等分子功能。代谢通路分析表明,所拼装得到的Contigs主要涉及生物体内37条代谢通路,其中与信号转导相关的高达6,695条,占总数的11.7%。另有671条Contigs参与编码转录调控因子,包括锌指蛋白(16.3%)、MYB(16.2%)、 bHLH(12.5%)和bZIP(8.3%)家族等;
     2.对所构建的HE东南景天地上部转录组序列进行生物信息学分析,结果表明,HE东南景天与已完成全基因组测序的物种序列相似度较低,与模式植物拟南芥的相似度不足40%,亲缘关系较远。利用生物信息学软件,在HE东南景天的转录组中找到6,176条较理想的简单重复序列(Simple Sequence Repeat, SSR),为构建东南景天分子标记提供了丰富素材。对景天酸代谢关键基因磷酸烯醇丙酮酸羧化酶(Phosphoenolpyruvate Carboxylase, PEPC)的分析表明,HE东南景天兼有C3和景天酸代谢(Crassulacean Acid Metabolism, CAM)型PEPC特征;
     3.对比加镉处理与对照条件下HE东南景天地上部转录组的表达变化差异,发现有110条Contigs表达显著上调,另有123条Contigs表达被抑制。利用q-RT-PCR对代表性基因的表达水平进行验证,与Solexa测序结果一致,表明Solexa法测得的基因表达数据具有较高的可靠性。在基因表达水平发生显著变化的Contigs中,大多为功能未知基因,尤其是表达受抑的Contigs中,近一半功能未知。将其余基因进行富集分析,按照GO分类,主要涉及细胞外空间,氨基酸及其衍生物代谢,催化活性与大分子代谢;按照代谢通路分类,则主要与次生代谢物合成,能量代谢,代谢病及位于膜上的转运系统等相关。以富集分析结果为依据,并结合基因功能注释,可知镉诱导下表达显著上调的Contigs主要参与了植物体细胞壁合成、沉积与修饰,金属螯合物合成、金属离子及其配合物转运,抗氧化及基因的转录调节四大类生理过程;
     4.以HE与NHE东南景天为试验材料,利用q-RT-PCR法对比研究镉超积累/耐性相关基因在两种生态型东南景天地上部的表达差异。参照镉诱导条件下HE东南景天地上部转录组响应情况及相关文献,选取了与细胞壁合成、修饰,抗氧化,金属转运,金属螯合物合成等相关的18个基因,以HE东南景天地上部序列信息为依据设计引物,用PCR法在非超积累植物上进行扩增,结果表明,所设计引物均能在两种生态型东南景天上特异扩增。以植物体内过氧化物酶基因的表达水平为依据,确定5μM镉处理下,NHE东南景天地上部中镉的胁迫水平与HE东南景天在100μM镉处理下的胁迫水平相当。对比研究两种生态型东南景天在相似镉胁迫条件下的基因表达差异,结果显示,漆酶,肉桂酸羟化酶及Nramp2基因在HE中的表达水平要高于NHE,而Nramp3, HMA4和YSL3则是在NHE中显著诱导。纤维素合成酶与S-腺苷甲硫氨酸合成酶基因在HE中表达上调,而在NHE中表达被抑制。进一步对比研究正常生长状况下两种生态型东南景天地上部的基因表达,结果显示大多数与金属转运、细胞壁合成及修饰相关的基因在正常生长条件下,其在HE内的表达水平要组成性地高于NHE东南景天;
     5.以HE东南景天转录组序列为依据,根据功能注释,从中选择表达丰度较高的ZIP家族基因片断Sa_contig615、contig3033和Sa_contig22157,利用RACE方法克隆全长,发现Sa_contig3033的全长序列与AtZIP1序列相似度较高,故命名为SaZIP1;相似地,将Sa_contig615和Sa_contig22157全长序列分别命名为SaZIP4与SaZIP11。拓扑结构预测表明,这三个基因均具有ZIP基因典型的8个跨膜域。酵母功能互补实验表明,SaZIP4和SaZIP11在酵母中具有极强的吸收锌的能力和部分吸收铁的能力,而SaZIP1则不具有上述能力。此外,利用q-RT-PCR,研究上述基因对锌镉处理的响应,结果显示,锌处理抑制了SaZIP4和SaZIP1在地上部中的表达,以及SaZIP1在根中的表达;而镉处理则会诱导SaZIP1和SaZIP11在地上部和根中的表达。
The non-essential heavy metal cadmium (Cd) is very toxic. It readily enters the plant tissue, and thus enters human body through food chain. The major concern of Cd pollution is its potential threats to human health with the risks of causing many cancers including the lung, bladder, renal, prostate, and breast cancer. Sedum alfredii Hance is a Cd hyperaccumulator native in China. Investigations into its physiological and biochemical mechanisms of Cd hyperaccumulation would offer valuable insight into heavy metal homeostasis. Besides, genes identified responsible for Cd hyperaccumulation would aid the creation of genetic modified plant materials for phytoremediation. In the past, main efforts were devoted to the physiological mechanisms of hyperaccumulation of S. alfredii. Lacking of genome sequences has greatly hindered the progress toward molecular mechanisms of hyperaccumulation of S. alfredii. In the present research, we employed the RNA-seq (Roche454and Illumina/Solexa) platforms to explore the transcriptome of S. alfredii Hance and to investigate its transcriptional changes in response to high Cd accumulation in shoots. The gene expression in shoots of two contrasting ecotypes of S. alfredii was also examined by quantitative-Real-Time-Polymerase Chain Reaction (q-RT-PCR).
     Zrt-Irt like Protein (ZIP) family genes were reported mediating the transmembrane uptake of divalent heavy metals. Based on the RNA-seq results, three ZIP family genes in S. alfredii were cloned. The expression pattern of these ZIP genes was analysed by q-RT-PCR.Yeast complementary test was carried out to examine the potential function of above genes in Fe/Zn uptake. The results were as follows:
     1. The transcriptome of S. alfredii was investigated with Roche454and Illumina/Solexa platforms. Pooling of sequencing runs on Roche454resulted in135,894qualified reads with an average length of286bases; More than47.5million qualified reads were generated on the Illumina/Solexa platforms, which was equal to9.4gigabases (Gb). The454reads were firstly used to generate the transcriptome assembly, and then Illumina reads were mapped to it and assembled. The final assembly with all the contigs obtained generated the transcriptome of S. alfredii shoots with57,162contigs longer than200bp. Based on GO term, these contigs involved metabolic process, macromolecule metabolic process, and binding, catalytic activities. Pathway enrichment of the transcriptome showerd that these contigs involved37different pathways. Among them,6,695contigs were related to signal transduction mechanisms, accounting for11.7%of the total. Besides,671contigs encoding putative transcription factors wer identied, including zinc finger proteins (16.3%), MYB (16.2%), bHLH (12.5%) and bZIP (8.3%);
     2. Compared to the protein databases from six fully sequenced species, including Arabidopsis thaliana, Vitis vinifera, Medicago truncatula, Zea mays, Oryza sativa, Chlamydomonas reinhardtii, S. alfredii Hance showed a similarity less than40%. Among the57,162contigs in S. alfredii transcriptome,6,176perfect SSRs were found, which would be useful co-dominant, locus specific markers fro DNA fingerprinting, genome mapplying, phylogenetic analysis, etc. Sedum alfredii belongs to Crassulaceae family. Twenty contigs encoding PEPC homologs were found in the transcriptome of Sedum alfredii. Analysis revealed that S. alfredii had both C3and CAM types of PEPCs.
     3. Long exposure of S. alfredii to Cd was employed in the present work to investigate the molecular mechanisms of Cd hyper-tolerance. Compared with control, totally110contigs were up-regulated and123contigs were down-regulated by Cd treatment. To evaluate the validity of Solexa data,15inducible genes were selected, and there expression level was examined by q-RT-PCR. The expression pattern was generally agreed with Solexa sequencing. Among all the significantly regulated contigs, nearly one half of them encoded unknown proteins. Based on GO term, Cd induced contigs were mostly related to extracullar, amino acid and derivative metabolism, catalytic activity and macromolecule metabolism. Based on KEGG orthologies, these genes were related to biosynthesis of other secondary metabolites, energy metabolism, metabolic diseases and membrane transport. In general, the up-regulated contigs could be grouped into five categories, namely, cell wall deposition and modification, metal transport, metal ligand synthesis and metal-ligand transport, reactive oxygen species detoxification, and transcriptional gene regulation.
     4. By q-RT-PCR, gene expression in the shoots of two contrasting ecotypes of S. alfredii was compared. Several genes were selected based on the current RNA-seq results and also previously reported metal tolerance determinants, including cell wall modification, deposition, antioxidants, metal transport and ligand biosynthesis. All primers were designed based on the transcriptome of S. alfredii, PCR results showed that these primers were applicable for both ecotypes of S. alfredii. Based on the induction fold of peroxiredoxin gene,5μM Cd treatment on non-hyperaccumulating ecotype (NHE) of S.. alfredii produced compatible Cd stress as100μM Cd on hyperaccumulating ecotype (HE). Among all the examined contigs, lacccase, cinnamate5-hydroxylase and Nramp2were more highly induced in HE than that in NHE; cellulose synthase, SAM synthase were up-regulated in HE while down-regulated in NHE. In contrast, Nramp3, HMA4and YSL3were more highly induced in NHE than that in HE. Under normal growth condition, the expression level, of genes related to heavy metal transport, cell wall synthase and modification were mostly constitutively higher in HE than those in NHE.
     5. Based on the transcriptome sequences of hyperaccumulating ecotype of S. alfredii, three contigs encoding ZIP family genes were selected with relatively high expression level. The full length of these contigs were cloned. Blast analysis showed that, Sa_Contig615was most similar to AtZIP4and thus named as SaZIP4. Sa_Contig3033and Sa_Contig22157were accordingly named as SaZIP1and SaZIPll, respectively. Phobius prediction of transmembrane topology revealed8transcmembrane domains in these genes. Among these genes, SaZIP4and SaZIPll fully restored Zinc (Zn) uptake ability and partial iron (Fe) uptake ability in according Zn or Fe uptake deficient strains. The expression of SaZIP4in shoot and SaZIPl in both shoot and root was depreesed with application of Zn. While, application of Cd induced the expression of SaZIPl and SaZIPll in both shoots and roots. These results indicated positive roles of these genes in the transportation of Zn/Cd within S. alfredii.
引文
Alloway BJ.1990. Heavy metals in soils. Blackie Academic and Professional, Glasgow, UK.
    Assuncao AGL, Martins PD, Folter SD et al.2004. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant cell Environ, 24(2):217-226.
    Baker AJM, McGrath SP, Sidoli CMD et al.1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal accumulating plants. Res Conserv Recycl,11:41-49.
    Becher M, Talke IN, Krall L et al.2004. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J,37:251-268.
    Bernard C, Roosens N, Czernic P et al.2004. A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett,569:140-148.
    Boominathan R, Doran PM.2003. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J Biotech,101: 131-146.
    Cai X, Davis EJ, Ballif J et al.2006. Mutant identification and characterization of the laccase gene family in Arabidopsis. J Exp Bot,57:2563-2569.
    Chen YX, He YF, Yang Y et al.2003. Effect of cadmium on nodulation and N2-fixation of soybean in contaminated soils. Chemosphere,50:781-787.
    Coaio C, DeSantis L, Frey B et al.2005. Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot,56:765-775.
    Connolly EL, Fett JP, Guerinot ML.2002. Expression of the Irtl metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell,14:1347-1357.
    Core LJ, Waterfall JJ, Lis JT.2008. Nascent RNA sequencing reveals widespread pausing and divergent initation at human promoters. Science,322:1845-1848.
    Corgrove DJ.2005. Growth of the plant cell wall. Nat Rev Mol Cell Biol,6:850-861.
    Courbot M, Willems G, Motte P et al.2007. A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol.144:1052-1065.
    Davin LB, Jourdes M, Patten AM et al.2008. Dissection of lignin macromolecular configuration and assembly:comparison to related biochemical processes in allyl/propenyl phenol and lignin biosynthesis. Nat Prod Rep,25:1015-1090.
    Deinlein U, Weber M, Schmidt H et al.2012. Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell,24(2):708-723.
    Desbrosses-Fonrouge AG, Voigt K, Schroder A et al.2005. Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett,579:4165-4174.
    Drager DB, Desbrosses-Fonrouge AG, Krach C et al.2004. Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J,39:425-439.
    Eide D, Broderius M, Fett J et al.1996. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. PNAS,93(16):5624-5628.
    Filatov V, Dowdle J, Smirnoff N et al.2007. A quantitative trait loci analysis of zinc hypraccumulation in Arabidopsis halleri. New Phytol,174:580-590.
    Filatov V, Dowdle J, Smironoff N et al.2006. Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation. Mol Ecol,15:3045-3059.
    Glick BR.2010. Using soil bacteria to facilitate phytoremediation. Biotech Adv,28:367-374.
    Gorodkin J, Cirera S, Hedegaard J et al.2007. Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1021891 expressed sequence tags. Genome Biol,8:R45.1-R45.16
    Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D.1998. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. PNAS,95: 7220-7224.
    Guerinot ML.2000. The ZIP family of metal transporters. Biochimica et Biophysica Acta,1465: 190-198.
    Guimaraes MD, Gustin JL, Salt DE.2009. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens. New Phytol,184:323-329.
    Gustin JL, Loureiro ME, Kim D et al.2009. MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J,57:1116-1127.
    Hahn DA, Ragland GJ, Shoemaker DD et al.2009. Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophage crassipalpis. BMC Genomics, 10:234-241.
    Hall JL, Williams LE.2003. Transition metal transporters in plants. J Exp Bot,54(393): 2601-2613.
    Hammond JP, Brown HC, White PJ et al.2006. A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol,170:239-260.
    Hanikenne M, Nouet C.2011. Metal hyperaccumulation and hypertolerance:a model for plant evolutionary genomics. Curr Opin Plant Biol,14:252-259.
    Hanikenne M, Talke IN, Haydon MJ et al.2008. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature,453:391-395.
    Harismendy O, Ng PC, Stransberg RL et al.2009. Evalution of next generation sequencing platforms for population targeted sequencing studies. Genome Biol,10:R32.
    Hong CL, Jia YB, Yang XE et al.2008. Assessing lead thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Bull Environ Contam Toxicol,80:356-361.
    Hopkins RM, Meloni BP, Groth DM et al.1997. Ribosomal RNA sequencing reveals differences between the genotypes of giardia isolated recovered from humans and dogs living in the same locality. J Parasitol,83,44-51.
    Hussain D, Haydon MJ, Wang Y et al.2004. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell,16:1327-1339.
    Ingolia NT, Ghaemmaghami S, Newman JRS et al.2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science,324:218-223.
    Ishimaru Y, Suzuki M, Kobayashi T et al.2005. OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot,56(422):3207-3214.
    Kall L, Krogh A, Sonnhammer ELL.2007. Advantages of combined transmembrane topology and signal peptide prediction-the phobius web server. Nucleic Acids Res,35, W429-W432.
    Kaneda M, Schuetz M, Lin BSP et al.2011. ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCs associated with auxin transport. J Exp Bot,62:2063-2077.
    Khan MS, Zaidi A, Wani PA et al.2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Envrion Chem Lett,7:1-19.
    Kobea Y, Uemura T, Sato MH et al.2004. Zinc transporter of Arabidopsis thaliana AtMTPl is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol,45: 1749-1758.
    Korenkov V, Hirschi K, Crutchfield JD et al.2007. Enhancing tonoplast Cd/H+antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd portioning in Nicotiana tabacum. Planta,226:1379-1387.
    Kramer U, Cotter-Howells JD, Charnock JM et al.1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature,379:635-638.
    Kramer U, Talke IN, Hanikenne M.2007. Transition metal transport. FEBS Lett,581:2263-2272.
    Kramer U.2010. Metal Hyperaccumulation in Plants. Annu Rev Plant Biol,61:517-534.
    Krammer U, Pickering IJ, Prince RC et al.2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol,122:1343-1354.
    Kupper H, Lombi E, Zhao FJ et al.2000. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta,212:75-84.
    Kupper H, Zhao FJ, McGrath SP.1999. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol,119:305-311.
    Lasat MM, Baker AJM, Kochian LV.1996. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol,112:1715-1722.
    Li HY, Wei DQ, Shen M et al.2012. Endophytes and their role in phytoremediation. Fungal Divers,54:11-18.
    Lin YF, Liang MH, Yang SY et al.2009. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol,182:392-404.
    Liu JX, Srivastava R, Che P et al.2007. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell,19:4111-4119.
    Lombi E, Zhao FJ, Dunham SJ et al.2000. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol,145:11-20.
    Lu LL, Tian SK, Yang XE et al.2008. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot,59:3203-3213.
    Lu LL, Tian SK, Yang XE et al.2009. Cadmium uptake and xylem loading are active processes in the hyper-accumulator Sedum alfredii. J Plant Physiol,166:579-587.
    Luo CW, Tsementzi D, Kyrpides N et al.2012. Direct comparisons of Illumina vs Roche 454 sequencing techonologies on the same microbial community DNA sample. PloS ONE,7: e30087.
    Ma Y, Prasad MNV, Rajkumar M et al.2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotech Adv,29:248-258.
    Maser P, Thomine S, Schroeder JI et al.2001. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol,126:1646-1667.
    McGrath SP, Zhao FJ.2003. Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotech,14(3):277-282.
    Milner MJ, Kochian LV.2008. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot-London,102:3-13.
    Morel M, Crouzet J, Gravot A et al.2009. AtHMA3, a P-1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol,149:894-904
    Mortazavi A, Williams BA, McCue K et al.,2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods,5(7):621-628.
    Muschitz A, Faugeron C, Morvan H.2009. Response of cultured tomato cells subjected to excess zinc:role of cell wall in zinc compartmentation. Acta Physiol Plant,31:1197-1204.
    Nagalakshmi U, Wang Z, Waern K et al.2008. The transcriptional landscape of the yeast genome difined by RNA sequencing. Science,320:1344-1349.
    Ni TH, Wei YZ.2003. Subcellular distribution of cadmium in mining ecotype Sedum alfredii, Acta Bot Sinica,45:925-928.
    Noctor G, Arisi ACM, Jouanin L et al.1998. Glutathione:biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot,49:623-647.
    Ozsolak F, Milos PM.2011. RNA sequencing:advances, challenges and opportunities. Nat Rev Genet,12:87-98.
    Palmgren MG, Clemens S, Williams LE et al.2008. Zinc biofortification of cereals:Problems and solutions. Trend Plant Sci,13:464-473.
    Pan Q, Shai O, Lee LJ et al.2008. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet,40:1413-1415.
    Papoyan A, Kochian LV.2004. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol,136:3814-3823.
    Pedas P, Ytting CK, Fuglsang AT et al.2008. Manganese Efficiency in Barley:Identification and Characterization of the Metal Ion Transporter HvIRTl. Plant Physiol,148:455-466.
    Pence NS, Larsen PB, Ebbs SD et al.2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. PNAS,97(9):4956-4960.
    Persans MW, Nieman K, Salt DE.2001. Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. PNAS,98(17):9995-10000.
    Pickreu JK, Marioni JC, Pai AA et al.2010. Understanding mechanisms underlysing human gene expression variation with RNA sequencing. Nature,464:768-772.
    Ramesh SA, Shin R, Eide DJ et al.2003. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol,133:126-134.
    Reeves RD, Kruckeberg AR, Adiguzel N et al.2001. Studies on the flora of serpentine and other metalliferous areas of western Turkey. South Afr J Sci,97:513-517.
    Rogers EE, Eide DJ, Guerinot ML.2000. Altered selectivity in an Arabidopsis metal transporter. PNAS,97:12356-12360.
    Roosens N, Willems G, Saumitou-Laprade P.2008. Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trend Plant Sci,13:208-215.
    Salt DE, Blaylock M, Kumar N et al.1995. Phytoremediation:A novel strategy for the removal of toxic metals from the environmental using plants. Nat Biotechnol,13:468-474.
    Sun Q, Ye ZH, Wang XR et al.2007. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol,164:1489-1498.
    Sun RL, Zhou QX, Jin CX.2006. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum as a newly found cadmium hyperaccumulator. Plant Soil,285:125-134.
    Talke IN, Hanikenne M, Kramer U.2006. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol,142:148-167.
    Tian SK, Lu LL, Yang XE et al.2009. Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytol,182:116-126.
    Tian SK, Lu LL, Yang XE et al.2010. Spatial imaging and speciation of lead in the accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation. Environ Sci Technol,44:5920-5926.
    Tian SK, Lu LL, Labavitch J et al.2011. Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol,157:1914-1925.
    Ueno D, Iwashita T, Zhao FJ et al.2008.Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell Physiol,49:540-548.
    Ueno D, Milner MJ, Yamaji N et al.2011. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J, 66:852-862.
    Valerio C, Claudia A, Italia DF et al.2010. Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol,10:1-20.
    van de Mortel JE, Almar VL, Schat H et al.2006. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol,142:1127-1147.
    Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, et al.1999. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol,119: 1047-1055.
    Vazquez MD, Poschenriader C, Barcelo J et al.1994. Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens j and c presl. Bot Acta,107: 243-250.
    Verbruggen N, Hermans C, Schat H.2009. Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol,12:364-372.
    Verbruggen N, Hermans C, Schat H.2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol,181:759-776.
    Vert G, Grotz N, Dedaldechamp F et al.2002. Irtl, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell,14:1223-1233.
    Vogeli U, Freeman JW, Chappell J.1990. Purification and characterization of an inducible sesquiterpene cyclase from elicitor-treated tobacco cell-suspension culture. Plant Physiol,93: 182-187.
    Vogt T.2010. Phenylpropanoid biosynthesis. Mol Plant,3:2-20.
    Vollenweider P, Cosio C, Gunthardt-Goerg MS et al.2006. Localization and effects of cadmium in leaves of a cadmium-tolerant willow(Salix viminalis L.) part Ⅱ:Micrbolocalization and cellular effects of cadmium. Environ Exp Bot,58:25-40.
    Wang ET, Sandberg R, Luo S et al. Alternative isoform regulation in human tissue transcriptomes. Nature,2008,456:470-476.
    Wang L, Feng Z, Wang X et al. DEGseq:an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics,2010,26(1):136-138.
    Wang Z, Gerstein M, Snyder M.2009. RNA-Seq:a revolutionary tool for transcriptomics. Nat Rev Genet,10:57-63.
    Weber M, Harada E, Vess C et al.2004. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J,37:269-281.
    Wilhelm BT, Landry JR. RNA-Seq quantitative measurement of expression through massively parallel RNA sequencing. Methods,2009,48:249-257.
    Willems G, Drager DB, Courbot M et al.2007. The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae):an analysis of quantitative trait loci. Genetics,176:659-674.
    Wintz H, Fox T, Wu YY et al.2003. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem,278: 47644-47653.
    Wu J, Zhang YL, Zhang HQ et al.2010. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol,10:234.
    Yang XE, Li TQ, Yang JC et al.2006a. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta, 224(1):185-195.
    Yang XE, Li TQ, Long XX et al.2006b. Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance. Plant Soil, 284(2):109-119.
    Yang XE, Long XX, Ni WZ et al.2002. Sedum alfredii H:A new Zn hyperaccumulating plant first found in China, Chinese Sci Bull,47(19):1634-1637.
    Zhang GJ, Guo GW, Hu XD et al.2010. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res,20(5):646-654.
    Zhang XC, Lin L, Chen MY et al.2012a. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metal by the hyperaccumulator Sedum alfredii Hance. J Haz Mater, 229-230:361-370.
    Zhang XC, Lin L, Zhu ZQ et al.2012b. Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Int J Phytoremed,15:51-64.
    Zhao FJ, Lombi E, Breedon T et al.2000. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ,23:507-514.
    Zhao FJ, Wang JR, Barker JHA et al.2003. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol,159:403-410.
    Zhao H, Eide D.1996a. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. PNAS,93(63):2454-2458.
    Zhao H, Eide D.1996b. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem,271:23203-23210.
    陈同斌,黄启飞,高定等.2003.中国城市污泥的重金属含量及其变化趋势.环境科学学报,23:561-569.
    何振立,周启星,谢正苗.1998.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社.129-160.
    蒋英子,陈龙,高伟等.2002.镉暴露大鼠血中白细胞介素-2和皮质醇水平及白细胞免疫功能的变化.环境与健康杂志,19,364-366.
    李玉浸.2001.《集约化农业的环境问题与对策》,中国农业科技出版社,北京:中国.
    龙新宪,杨肖娥,倪吾钟.2002.重金属污染土壤修复技术研究的现状与展望.应用生态学 报,13(6):757-762.
    魏复盛,陈静生,吴燕玉等.1991.环境科学,12,12-19.
    夏汉平.1997.土壤-植物系统中的镉研究进展.应用与环境生物学报,3,289-298.
    杨肖娥,余剑东,倪吾钟等.2002a.农业环境质量与农产品安全.中国农业科技导报,4(4):3-9.
    杨肖娥,龙新宪,倪吾钟.2002b.超积累植物吸收重金属的生理及分子机制.植物营养与肥料学报,8(1):8-15.
    杨晓玲,施苏华,唐恬.新一代测序技术的发展及应用前景.生物技术通报,2010,10:1-20.
    张义贤.1997.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报,17,199-204.