用户名: 密码: 验证码:
三种典型手性污染物对绿藻和拟南芥的毒性效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Toxicity of Three Typical Chiral Pollutants to Green Algae and Arabidopsis Thaliana
  • 作者:陈慧
  • 论文级别:博士
  • 学科专业名称:环境科学
  • 学位年度:2013
  • 导师:刘维屏 ; 文岳中
  • 学科代码:083001
  • 学位授予单位:浙江大学
  • 论文提交日期:2013-04-01
  • 答辩委员会主席:章永松
摘要
化学农药主要是人工合成的生物外源性物质,流失的农药不仅造成生态环境的严重威胁,甚至会进入人类食物链,构成对人类健康的严重威胁。现在施用的农药中有很大一部分是手性农药,手性农药的对映体中,往往只有一种对映体是具有除草或杀虫活性的,外消旋体的施用使得没有除草杀虫活性的对映体在环境中大量残留,手性化合物的化学行为往往相似但是生物行为却相差巨大,所以研究手性农药不同对映体的环境行为具有重要的环境意义。考虑到环境污染的复杂性,环境中其他污染物对手性农药环境行为可能存在一定的影响,尤其是环境中的非手性污染物,因此研究非手性污染物对手性污染物环境行为的影响也是非常必要的。随着科学研究的发展,一些新兴的手性物质不断出现,手性离子液体就是这样一类手性物质,对这类物质的毒性大小进行评估可以为它们的安全使用提供依据。本文的主要内容如下:
     (1)手性除草剂2,4-滴丙酸(DCPP)对斜生栅藻的毒性以及与重金属Cu对其对映体选择性的影响。DCPP能够刺激斜生栅藻细胞产生过量的ROS,进而激活抗氧化系统的活性,但是两者之间的平衡被打破使得细胞的叶绿素含量降低,亚细胞结构受损。DCPP的不同对映体处理后细胞内ROS的产生量表现出了对映体差异,ROS产生量多的R-对映体毒性也较大,亚细胞结构受损严重。DCPP和Cu的复合处理毒性要远大于单独处理的毒性,两者之间的作用方式会影响DCPP毒性的对映体选择性。因此在评估复合毒性时要充分考虑两者的相互作用方式。
     (2)手性除草剂咪唑乙烟酸(IM)对斜生栅藻的毒性以及与重金属的复合毒性。IM对斜生栅藻的毒性不具有对映体选择性,Cu和IM对斜生栅藻的复合毒性要远远小于Cu的单独毒性。原因可能是:首先IM和Cu能形成螯合物,该螯合物具有分解H202的作用,减少了H202对细胞的危害;其次,IM和Cu形成螯合物后减少了离子形态的Cu和斜生栅藻细胞壁的相互作用,进而减少了毒性;Cu单独处理时可以改变斜生栅藻细胞内微量元素Fe的分布,但是螯合物IM-Cu不会。
     (3)乳酸根手性离子液体对斜生栅藻的毒性。乳酸根手性离子液体对斜生栅藻的毒性具有对映体选择性,并且随着阳离子碳链长度的增加对映体选择性变得不明显。不同构型的手性离子液体可以选择性的改变斜生栅藻的细胞通透性,并且可以导致细胞内产生不同量的ROS,此外,不同构型的手性离子液体的聚集行为不同,以上这些可能是导致手性离子液体毒性具有对映体选择性的原因。随着阳离子碳链长度的增加,阴离子在毒性中所占的比重减小,所以对映体选择性变得不明显。但是乳酸根手性离子液体对裸藻的毒性不具有对映体选择性。斜生栅藻和裸藻细胞结构的差异以及营养方式的不同可能导致了两者对手性离子液体的敏感性不同。
     (4)手性除草剂DCPP对拟南芥的毒性。DCPP对拟南芥的毒性表现出了明显的对映体差异性,叶片的鲜重以及根的长度都存在对映体差异,其中R-DCPP的毒性最大,其次为Rac-DCPP, S-DCPP的毒性最小。DCPP作为一种植物激素类除草剂其R-对映体能够和植物生长素一样,过量时诱导细胞内产生ROS,抑制生长,造成植株死亡,S-对映体没有该作用。而且DCPP的不同对映体对抗氧化系统激活能力不同,对气孔细胞的调控节奏也不同。
     (5)手性除草剂M对拟南芥的毒性。IM对拟南芥的毒性表现出了明显的对映体差异性,而且不同的对映体可以引起拟南芥叶片内微量元素分布的不同,其中R-对映体会引起微量元素明显的聚集,但是S-对映体不会;但是M不同对映体不会引起根内微量元素分布的改变,这说明M对元素的吸收过程影响可能较小。Cu对拟南芥的毒性较小时仍旧可以改变叶片内微量元素的改变,当cu和IM同时处理拟南芥时毒性趋势以及微量元素的分布趋势和M单独处理时相似。
As a great agricultural country, pesticides has been used extensively in China, therefore the environmental pollution resulted from pesticides usage was significant. It is well known that as many as25%of all pesticide active ingredients are chiral, and this ratio is increasing as compounds with more complex structures are introduced into use. Enantiomers of a chiral chemical generally undergo the same physical and chemical processes and reactions in the environment, however, the enantiomers may behave differently in biologically mediated environmental processes and their biological effects (e.g., toxicity, mutagenicity, carcinogenicity, endocrine-disrupting activity) are typically enantioselective. Some studies also found that environmental factors can affect the chiral preference of pesticides.
     With the wide applications of chiral ionic liquids (CILs), the development of knowledge for the prospective design of inherently.safe CILs has become more urgent. However, enantioselective differences in CILs toxicities are poorly understood. The main conclusions of this work are drawn.
     (1) Individual and combined presence of dichlorprop (DCPP) and Cu provoked a boom in ROS, which in turn stimulated the response of antioxidant defences, impaired subcellular structure and physiological function, finally resulted in the increase of cell grow inhibition rate. In absence of Cu, the ROS contents of the herbicidally active (R)-enantiomer was higher than that of (S)-enantiomer, suggesting an (R)-enantiomer preferential production of ROS. When treated with DCPP and Cu simultaneously,(R)-DCPP preferential production of ROS was observed. However, when DCPP was interacted with Cu for24h before adding into the algae solution, this interaction reversed the enantioselective production of ROS. It was interestedly found that the enantioselective generation of ROS was compatible with response of antioxidant defences and the inhibition rate in Scenedesmus obliquus. This finding implied that ROS play a primary role in chemical contaminant toxicity to Scenedesmus obliquus and the interaction between contaminants can tune the enantioselectivity of chiral herbicide dichlorprop and should be considered in future risk assessment.
     (2) The effects of herbicide imazethapyr (IM) on the Cu(II) ecotoxicity to the aquatic unicellular alga Scenedesmus obliquus were investigated. It was found that the toxicity of Cu can be mediated by IM. In order to explore the mechanisms involved, complex formation, its catalytic activity, Cu species and the distribution of Cu and Fe in the algal cell were characterized. These results showed that Cu(II) and IM formed an octahedral complex with the mole ratio of IM:Cu=2:1. Such complex did have the role of catalytic the disproportionation of hydrogen peroxide. By the analysis of Cu K-edge XAFS spectroscopy, it indicated that when treated with Cu, the Cu was bound to polygalacturonic acid (on cell wall) and once inside the cell, they may complex with GSH (in cell). As far as the cell was treated by IM and Cu simultaneously (IM-Cu), the IM-Cu interaction may be the main form. Once Cu combined with IM, it will be difficult to interact with cell wall. In addition, using scanning transmission soft X-ray microscopy, it was interestingly found that Cu can induce the change of the distribution of essential trace element Fe while IM-Cu not. This finding implied importance of interactions between heavy metals and organic contaminants, which can mediate toxicity of heavy metals and should be considered in future risk assessment.
     (3) The investigation into the toxicities of lactate chiral ionic liquids toward two green algae, Scenedesmus·obliqnus and Euglena gracilis. For S. obliquus, there is a distinct difference between the toxicities of L-(+)-EMIM L and D-(-)-EMIM L; the EC50value of L-(+)-EMIM L was more than5000μM, while EC50value of D-(-)-EMIM L was2255.21μM. Thus, D-(-)-EMIM L is more toxic to S. obliqnus than L-(+)-EMIM L. This trend was maintained with L-(+)-BMIM L and D-(-)-BMIM L but was not observed with increases in carbon chain lengths. This finding may be due to the changes of the toxicity weights of the cations and anions, as the toxicity weights of the cations increase with increasing carbon chain lengths. The results of ROS showed that the D-(-)-lactate ionic liquids may produce more ROS than the L-(+)-lactate ionic liquids, besides, the L-(+)-EMIM L and D-(+)-EMIM L with the same concentration showed different degree of aggregation per unit area. The D-(+)-EMIM L showed stronger aggregation and the particle size was relatively bigger, and this may be the reasons of the enantioselective toxicity. However, the phenomenon described above was not observed for E. gracilis. E. gracilis is different from S. obliquus in subcellular structure, lacking cell walls. Moreover, the nutrient means of the two algae are also varied. These results indicate that we should be able to scale the effects of CILs across organisms more accurately and improve our ability to predict their effects in natural environments. In the meantime, to minimize the potential for environmental harm, the enantioselective toxicities of CILs with short alkyl chains should be taken into consideration.
     (4) Dramatic differences between the toxicity of the enantiomers of DCPP to Arabidopsis thaliana were observed:the enantiomer of R-DCPP shows a higher level of toxicity. The assessment of plant growth was carried out by measuring the fresh weight of leaves and the length of root after exposure to the DCPP enantiomers and the results showed that fresh weight of control treatment was16.9mg, R-DCPP treatment was6.32, S-DCPP14.36and Rac-DCPP8.35mg. The root length of control treatment was49.53mm and for R-DCPP, S-DCPP, Rac-DCPP was4.87,34.2and7.7, respectively. The enantiomers of DCPP also stimulated the response of antioxidant defences and the activity of SOD of R-DCPP treatment was higher than the S-DCPP treatment while the activity of CAT, POD was lower than the S-DCPP treatment and the GSH content was also lower and all the treatments were lower than the control treatment. These results indicate that the antioxidant system was damaged and may not scavenge the excess ROS.
     (5) The toxicity of IM to Arabidopsis thaliana also showed enantioselective differences. The fresh weight of leaves of control treatment was17.21, and for R-IM, S-IM, Rac-IM was5.25,15.36,7.36mg, respectively. The length root was51.42,4.21,43.2and7.62mm, respectively. The distribution of trace elements in leaves and roots were also determined when treated with IM. The results of leaves showed that the trace elements in control leaf were evenly distributed and the S-IM treated showed the same trend, while the R-IM and Rac-IM treated leaf was aggregated distributed and the expression of gene related to trace elements did not show significant enantioselective differences. However, the distribution of trace elements in root did not show difference.
引文
[1]Muller K A, Kohler H P E, chirality of pollutants-effects on metabolism and fate[J]. Applied Microbiology and Biotechnology.2004,64,300-316.
    [2]Williams A. Opportuninities for chiral agrochemicals [J]. Pesticide science,1996, 1(46):3-9.
    [3]周珊珊,手性有机磷农药的稳定性及立体选择性生物行为研究,[博士学位论文]杭州,浙江大学,2009,22-24.
    [4]叶璟,除草剂禾草灵对水稻与蓝藻的对映选择性毒理研究,[博士学位论文]杭州,浙江大学,2010,1-2.
    [5]文辉,手性芳氧丙酸类除草剂的合成技术研究,[硕士学位论文]北京,中国农业大学,2005,1-4.
    [6]唐梦龄,王丹,傅柳松,刘维屏,手性农药毒性机制的对映体选择性[J].农药学学报,2011,13(4):335-340.
    [7]章维华,杨春龙,王鸣华,等,不对称催化反应在手性农药不对称合成中的一些应用[J].有机化学,2003,23(8):741-749.
    [8]蒋木庚,杨红,陈如东,等.芳氧丙酸类除草剂光学异构的研究[J].南京农业大学学报.2000,23(2):97-100.
    [9]潘春秀,吴清洲,沈报春,等.芳氧苯氧丙酸类除草剂在两种手性柱上的对映体分离[J].分析化学研究报告,2006,34(2):159-164.
    [10]包文娟,吴永果,毛春晖,陈明,黄明智,芳氧苯氧羧酸类旋光性除草剂的研究进展[J].精细化工中间体,2007,37(4):11-13.
    [11]李红,2,4-滴丙酸甲酯的对映体选择性差异研究,[硕士学位论文]杭州,浙江大学,2007,1-10.
    [12]Li H, Yuan Y L, Shen C S, Wen Y Z, Liu H J. Enantioselectivity in toxicity and degradation of dichlorprop-methyl in algal cultures [J]. Journal of Environmental Science and Health Part B.2008,43(4):1-6.
    [13]Wu T, Li X, Huang H, Zhang S, Enantioselective oxidative damage of chiral pesticide dichlorprop to maize, Journal of Agricultural and Food Chemistry.2011, 59,4315-4320.
    [14]Desiderio C, Polcaro C.M, Padiglioni P, et al. Enantiomeric separation of acidic herbicides by capillary electrophoresis using vancomycin as chiral selector [J]. Journal of Chromatography A,1997,781:503-513.
    [15]Garrison A W, Schmitt P. Enantiomeric selectivity in the environmental degradation of dichlorprop as determined by high-performance capillary electrophoresis [J]. Environmental Science and Technology,1996,30:2449-2455.
    [16]Buser, H R, Muller M D. Occurrence and transformation reactions of chiral and achiral phenoxyalkanoic acid herbicides in lakes and rivers in Switzerland [J]. Environmental Science and Technology,1998,32:626-633.
    [17]Muller M D, Buser H R. Conversion reactions of various phe-noxyalkanoic acid herbicides in soil.1. Enantiomerization and enanti-oselective degradation of the chiral 2-phenoxypropionic acid herbi-cides [J]. Environmental Science and Technology,1997,31(7):1953-1959.
    [18]Buser H R, Muller M D. Conversion reactions of various phe-noxyalkanoic acid herbicides in soil.2. Elucidation of the enantiome-rization process of chiral phenoxy acids from incubation in a D2O/soil system [J]. Environmental Science and Technology,1997,31:1960-1967.
    [19]Muller M D, Buser H R. Environmental behavior of acetamide pesticide stereoisomers.2. Stereo- and enantioselective degradation in sewage sludge and soil [J]. Environmental Science and Technology,1995,29:2031-2037.
    [20]Buser H R, Muller M D. Poiger, T, et al. Environmental behavior of the chiral acetamide pesticide metalaxyl:enantioselective degradation and chiral stability in soil [J]. Environmental Science and Technology,2002,36:221-226.
    [21]Buser H R, Poiger T, Muller M D. Changed enantiomer com-position of metolachlor in surface water following the introduction of the enantiomerically enriched product to the market [J]. Environmental Science and Technology,2000, 34:2690-2696.
    [22]Buerge I J, Poiger T, Muller M D, et al. Enantioselective degradation of metalaxyl in soils:chiral preference changes with soil pH [J]. Environmental Science and Technology,2003,37:2668-2674.
    [23]Rugge K, Juhler R K, Broholm M M, et al. Degradation of the R-and S-enantiomers of the herbicide MCPP and dichlorprop in a continuous field-injection experiment [J]. Water research,2002,36:4160-4164.
    [24]Zipper C, Nickel K, Angst W, et al. Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop ((RS)-2-(4-chloro-2-methyl pheno xy)-propanoic acid in an enantiose-lective manner by Sphingomonas herbicidovorans sp. nov. [J]. Applied and Environmental Microbiology,1996,62: 4318-4322.
    [25]Zipper C, Suter M J-F, Haderlein S B, et al. Changes in the enantiomeric ratio of (R)-to (S)-mecoprop indicate in situ biodegradation of this chiral herbicide in a polluted aquifer[J]. Environmental Science and Technology,1998,32(14): 2070-2076.
    [26]Zipper C, Bunk M, Zehnder A J B, et al. Enantioselective uptake and degradation of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy) propanoic acid] by Sphingomonas herbicidovorans MH [J]. Journal of Bacteriology,1998,180: 3368-3374.
    [27]Tett V A, Willetts A J, Lappin-Scott H M. Enantioselective degradation of the herbicide mecoprop [2-(2-methyl-4-chlorophenoxy) propionic acid] by mixed and pure bacterial cultures [J]. FEMS Micro-biology Ecology,1994,14:191-200.
    [28]Tett V A, Willetts A J, Lappin-Scott H M. Biodegradation of the chlorophenoxy herbicide (R)-(+)-mecoprop by alcaligenes denitri-ficans[J]. Biodegradation, 1997,8:43-52.
    [29]马云,徐超,陈胜文,文岳中,刘维屏.淤泥优势菌对手性农药2,4-滴丙酸甲酯的对映体选择性降解[J].环境科学.2005,26(4):152-155.
    [30]Ludwig P, Gunkel W. Chromatographic separation of the enantiomers of marine pollutants. Part 5:Enantioselective degradation of phenoxycarboxylic acid herbicides by marine microorganisms [J]. Chemosphere,1992,24(10): 1423-1429.
    [31]Schneiderheinze J M, Armstrong D W, Berthod A. Plant and soil enantioselective biodegradation of racemic phenoxyalkanoic herbicides [J]. Chirality,1999,11(4): 330-337.
    [32]Wen Y, Yuan Y, Chen H, Xu D, Lin K, Liu W, Effect of chitosan on the enantioselective bioavailability of the herbicide dichlorprop to Chlorella pyrenoidosa [J]. Environmental Science and Technology,2010,44,4981-4987.
    [33]Lewis D L, Garrison A W, Wommack K E, et al. Influence of environmental changes on degradation of chiral pollutants in soils [J]. Nature,1999,401: 898-901.
    [34]Romero E, Matallo M B, Pena A, et al. Dissipation of racemic mecoprop and dichlorprop and their pure R-enantiomers in three calcareous soils with and without peat addition [J]. Environmental Pollution,2001,111:209-215.
    [35]Willams G M, Harrrison I, Carlick C A, et al. Changes in enantiomric fraction as evidence of natural attenuation of mecoprop in a limestone aquifer [J]. Journal of Contaminant Hydrology,2003,64:253-267.
    [36]方兆华,刘维屏,周珊珊,等.硅藻土吸附增强的对映体选择性酶促水解[J].土壤学报,2005,42(2):301-305.
    [37]Bewick D W. Stereochemistry of fluaifop-butyl transformation in soil [J]. Pesticide Science,1986,17:349-356.
    [38]Wink O, Luley U. Enantioselective transformation of the herbicides diclofop-methyl and fenoxaprop-ethyl in soil [J]. Pesticide Science,1988,22: 31-40.
    [39]Wang Xinquan, Jia Guifang, Qiu Jing, et al. Stereoselective degradation of fungicide benalaxyl in soils and cucumber plants [J]. Chirality,2006,19(4): 300-306.
    [40]Clark T, Wong W C W, Vogeler K. Comparative fate in soil of the enantiomers of triadimenol when applied individually to barley seed [J]. Pesticide Science,1991, 33:447-453.
    [41]刘长令,咪唑啉酮类除草剂的创制经纬[J].农药,2002,41(5):42.
    [42]张敏恒,咪唑啉酮类除草剂的结构一活性关系及合成进展[J].农药,1991,30(3):36-39.
    [43]孙勇,咪唑啉酮类化合物的研究进展[J].郧阳师范高等专科学校学报,2004,24(3):37-39.
    [44]苏少泉.抗咪唑啉酮类除草剂作物的发展与未来[J].现代农药,2006,5(1):1-4.
    [45]程志明,唑啉酮类除草剂的工业化合成方法[J].上海化工,2009,34(9):22-26.
    [46]Luciano S, Mamdouh M N A, Luca M. Consequences on nitrogen metabolosim in soybean (Glycine max L.) as a result of imazethapyr action on acetohydroxy acid synthase [J]. Journal of Agricultural and Food Chemistry,1995,43:809-814.
    [47]Luciano S, Luca M, Mamdouh M N A. Growth response and changes in starch formation as a result of Imazethapyr treatment of soybean (Glycine max L.) [J]. Journal of Agricultural and Food Chemistry,1994,44:1572-1577.
    [48]Shaner D L, Mallipudi M N. The Imidazolinone Herbicides [D]. Boca Raton, FL: CRC Press,1991:91-102.
    [49]Risley M A. Imazaquin herbicidal activity:efficiency, absorption, translocation and ethyl ene synthesis [D]. Fayetteville, USA:University of Arkansas,1986.
    [50]Shaner D L. Absorption and translocation of imazapyr in Imperata Cylindrica (L.) Raeuschel and effects on growth and water usage [J]. Tropical Pest Management, 1988,34:388-392.
    [51]赵爽,叶非.咪唑啉酮类除草剂的应用及降解[J].植物保护,2009,35(2):15-19
    [52]Losi-Guembarovski R, Santos F V, Frederico R Q et al. Assessment of the ability of imazaquin herbicide to induce chromosomal aberrations in vitro in cultured Chinese hamster ovary cells and micronuclei in vivo in mice [J]. Food and Chemical Toxicology,2004,42:1245-1249.
    [53]Fragiorge E J, Rezenda A A A, Graf U, et al. Comparative genotoxicity evaluation of imidazolinone herbicides in somatic cells of Drosophila melanogaster [J]. Food and Chemical Toxicology,2008,46:393-401.
    [54]陈旭艳,葛宝坤,常春艳.咪唑啉酮类除草剂环境行为研究进展[J].精细化工中间体,2010,4:1-6.
    [55]Stougaard R N, Shea P J, Martin A R. Effect of soil type and pH on adsorption, mobility, and efficacy of imazaquin and imazethapyr [J]. Weed Science,1990, 38:67-73.
    [56]Loux M M, Liebl R A, Slife F W. Adsorption of imazaquin and imazethapyr on soils, sediments, and selected absorbents [J]. Weed Science,1989,37:712-718.
    [57]Loux M M, Reese K D. Effect of soil type and pH on persistence and carryover of imidazolinone herbicides [J]. Weed Technology,1993,7:452-458.
    [58]Regitano J B, Bischoff M, Lee L S, et al. Retention of imazaquin in soil [J]. Environmental Toxicology and Chemistry,1997,16:397-404.
    [59]Rocha W S D, Regitano J B, Alleoni L R F, et al. Sorption of imazaquin in soils with positive balance of charges [J]. Chemosphere,2002,49:263-270.
    [60]Vasudevan D, Cooper E M.2,4-D sorption in iron oxide-rich soils:role of soils phosphate and exchangeable Al [J]. Environmental Science and Technology,2004, 38:163-170.
    [61]Luis A, Avila, Joseph H, et al. Imazethapyr aqueous photolysis, reaction quantum yield, and hydroxyl radical rate constant [J]. Journal of Agricultural and Food Chemistry,2006,54:2635-2639.
    [62]Ramezani M. Environmental fate of imidazolinone herbicides and their enantiomers in soil and water [D]. Adelaide, Australia:The University of Adelaide,2007.
    [63]Jessica L, Jarman W, Jones J, et al. Application of capillary electrophoresis to study the enantioselective transformation of five chiral pesticides in aerobic soil slurries [J]. Journal of Agricultural and Food Chemistry,2005,53:6175-6182.
    [64]Harir M A, Gaspar M, Frommberger, et al. Photolysis pathway of imazapin in aqueous solution:ultrahigh resolution mass spectrometry analysis of intermediates [J]. Journal of Agricultural and Food Chemistry,2007,55: 9936-9943.
    [65]Osajima A J, Hamilton M I, Takashima K. The photocatalytic degradation of imazapyr[J/OL], Monatshefte fur Chemie,2007.
    [66]lshiki R R, Ishiki HM, Takashima K. Photocatalytic degradation of imazethapyr herbicide at TiO2/H2O interface [J]. Chemosphere,2005,58(10):1461-1469.
    [67]徐淑霞,王学东,周红斌,等.咪唑烟酸在土壤表面光解动力学及深度的研究[J].农业环境科学学报,2004,5:944-948.
    [68]Aichele T A, Penner D. Adsorption, desorption, and degradation of imidazolinones in Soil [J]. Weed Technology,2005,19:154-155.
    [69]王学东,王慧利,樊德方.咪唑烟酸在土壤中的微生物降解及其代谢物分析[J].环境科学研究,2004,17(6):42-45,53.
    [70]崔兆杰,陈婷婷.土壤中咪唑啉酮类除草剂的分析及归趋研究[J].环境工程学报,2007(1):115-116.
    [71]杨雅立,王晓化,寇元,闵恩泽,不断壮大的离子液体家族[J].化学进展,2003,15(6):471-476.
    [72]柯明,周爱国,宋昭峥,蒋庆哲,离子液体的毒性[J].化学进展,2007,19(5):671-679.
    [73]陈志刚,宗敏华,顾振新,离子液体毒性、生物降解性及绿色离子液体的设计与合成[J].有机化学,2009,29(5):672-680.
    [74]Ranke J, Jastorff B, Multidimensional risk analysis of antifouling biocides [J]. Environmental Science and Pollution Research.2000,7,105-108.
    [75]Latala A, Stepnowski P, Nedzi M, Mrozik W, Marine toxicity assessment of imidazolium ionic liquids:Acute effects on the baltic algae Oocystis submarina and Cyclotella meneghiniana[J]. Aquatic Toxicology,2005,73,91-98.
    [76]Bernot R J, Brueske M A, Evans-White M A, Lambert G A, Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna[J]. Environmental Toxicology and Chemistry,2005,24,87-92.
    [77]Matsumoto M, Mochiduki K, Kondo K, Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria [J]. Journal of bioscience and bioengineering.2004,98,344.
    [78]Matsumoto M, Mochiduki K, Fukunishi K, Kondo K, Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus [J]. Separation and Purification Technology,2004,40,97.
    [79]Docherty K M, Kulpa-Jr C F, Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids [J]. Green Chemistry.2005,7,185.
    [80]Ganske F, Bornscheuer U T, Growth of Escherichia coli, Pichia pastoris and Bacillus cereus in the presence of the ionic liquids [BMIM][BF4] and [BMIM][PF6] and organic solvents [J]. Biotechnology Letters.2006,28,465.
    [81]Ranke J, Molter K, Stock F, Bottin-Weber U, et al. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays [J]. Ecotoxicology and Environment Safety,2004,58, 396.
    [82]Stepnowski P, Stladanowski A C, Ludwiczak A, Laczynska E, Evaluating the cytotoxicity of ionic liquids using human cell line HeLa [J]. Human & Experimental Toxicology.2004,23,513.
    [83]Dixon M, Webb E C, Thorne J R, Tipton K F, Enzymes,3rd ed., Longman, Harlow,UK,1979.
    [84]Stock F, Hoffmann J, Ranke J, Stormann R, et al. Effects of ionic liquids on the acetylcholinesterase-a structure-activity relationship consideration [J]. Green Chemistry.2004,6,286.
    [85]Stladanowski A C, Stepnowski P, Kleszcynski K, Dmochowska B, AMP deaminase in vitro inhibition by xenobiotics a potential molecular method for risk assessment of synthetic nitro- and polycyclic musks, imidazolium ionic liquids and N-glucopyranosyl ammonium salts [J]. Environmental Toxicology and Pharmacology.2005,19,291.
    [86]Swatloski R P, HolbreyJ D, Memon S B, Using Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic liquids[J]. Chemical Communication,2004,668-669.
    [87]Bernot R J, Kennedy E E, Lamberti G A, Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta [J]. Environmental Toxicology and Chemistry.2005,24,1759.
    [88]Landry T D, Brooks K, Poche D, Woolhiser M, Acute Toxicity Profile of 1-Butyl-3-Methylimidazolium Chloride [J]. Bulletin of Environment Contamination and Toxicology,2005,74,559.
    [89]Prettia C, Chiappeb C, Pieraccinib D, et al. Acute toxicity of ionic liquids to the zebrafish (Danio rerio) [J]. Green Chemistry.2006,8,238.
    [90]钱立伟,胡小玲,管 萍,唐一梅.手性离子液体应用的研究进展[J].材料导报A:综述篇,2012,26(2):1-8.
    [91]黄仰青,苏桂发,谭开云,手性离子液体研究进展[J].化学研究与应用,2006,18(10):1142-1151.
    [92]Baudequin C, Baudoux J, Levillain J, Ionic liquids and chirality:opportunities and challenges [J]. Tetrahedron:Asymmetry,2003,14(20):3081-3093.
    [93]Howarth J, Hanlon K, Fayne D, et al. Moisture stable dialky limidazolium salts as heterogeneous and homogeneous Lewis acids in the Diels-Alder reaction[J]. Tetrahedron Letters,1997,38(17):3097-3100
    [94]Rogers R, Seddon K, Ionic Liquids--Solvents of the Future [J]. Science,2003, 302 (5646):792-793
    [95]Ishida Y, Miyauchi H, Saigo K, Design and synthesis of a novel imidazolium-based ionic liquid with planar chirality [J]. Chemical Communcation,2002,2240-2241
    [96]Baudoux J, Judeinstein P, Cahard D, Plaquevent J, Design and synthesis of novel ionic liquid/liquid crystals (IL2Cs) with axial chirality[J].Tetrahedron Letters, 2005,46(7):1137-1140.
    [97]Ni B K, Zhang Q Y, Headley A D, Pyrrolidine-based chiral pyridinium ionic liquids(ILs)asrecyclable and highly efficient organocatalysts for the asymmetric Michael addition reactions[J]. Tetrahedron Letter,2008,49:1249.
    [98]Luo S Z, Zhang L, Mi X L, et al. Functionalized chiral ionic liquid catalyzed enantioselective desymmetrizations of prochiral ketones via asymmetric Michael addition reaction [J]. Journal of Organic Chemistry,2007,72:9350.
    [99]Wang W H, Wang X B, Kodama, K, et al. Novel chiral ammonium ionic liquids as efficient organocatalysts for asyrqmetric Michael addition of aldehydes to nitroolefins [J]. Tetrahedron,2010,66:4970.
    [100]Xu D Z, Liu Y J, Shi S, et al. Chiral quaternary alkylammonium ionic liquid [Pro-dabco][BF4]:As a recyclable and highly efficient organoeatalyst for asymmetric Michael addition reactions [J]. Tetrahedron:Asymmetry,2010,21: 2530.
    [101]Truong T K T, Vo_Thanh G. Synthesis of functionalized chiral ammonium, imidazolium, and pyridinium-based ionic liquids derived from (-)-ephedrine using solvent-free micro-wave activation. Applications for the asymmetric Michael addition [J]. Tetrahedron,2010,66:5277
    [102]Olivier N V B, Aupoix A, Vo-Thanh G Synthesis of novel chiralhnidazolium-based ionic liquids derived from isosorbide and their applications in asymmetricaza Diels-Alder reaction [J]. Tetrahedron,2009,65: 2260.
    [103]Zheng X, Qian Y B, Wang Y M. Direct asymmetric aza Diels-Alder reaction catalyzed by chiral 2-pyrrolidinecarboxylic acid ionic liquid [J]. Catalysis Communication.2010,11:567.
    [104]Zhou W, Xu I W, Qiu H Y, et al. Synthesis of a novel chiral ionic 1 iquid and its application in enantioselective aldol reactions [J]. Helvetica Chimical Acta,2008, 91:53.
    [105]Siyutkin D E, Kucherenko A S, Struchkova M I, et al. A novel (S)-proline-modified task-specific chiral ionic liquid -An amphiphilic recoverable catalyst for direct asymmetric aldol reactions in water [J]. Tetrahedron Letters, 2008,49:1212.
    [106]Siyutkin D E, Kucherenko AS, Zlotin S G. Hydroxy-a-amino acids modified by ionic liquid moieties:Recoverable or ganocatalysts for asymmetric aldol reactions in the presence of water [J]. Tetrahedron,2009,65:1366.
    [107]Siyutkin D E, Kucherenko A S, Zlotin S G,A new(S)-pro-linamide modified by an ionic liquid moietyda high performance recoverable catalyst for asymmetric aldol reactions in aqueous media[J]. Tetrahedron,2010,66:513.
    [108]Pegot B, VofThanh G, Gori D, et al. First application of chiral ionic liquids in asymmetric Baylis-Hillman reaction [J]. Tetrahedron Letters,2004,45:6425.
    [109]Gausepohl R, Buskens P, Kleinen J, et al. Highly enantioselective Aza-Baylis-Hillman reaction in a chiral reaction medium [J]. Angewandte Chemie International Edition,2006,45:3689.
    [110]Winkel A, Wilhelm R. New chiral ionic liquids based on enantiopure sulphate and sulfonate anions for chiral recognition [J]. European Journal of Organic Chemistry,2010,2010,30:5817.
    [111]Rooy S L D, Li M, Bwambok D K, et al. Ephedriniumbased protic chiral ionic liquids for enantiomeric recognition [J]. Chirality,2011,23:54.
    [112]Bwambok D K, Marwani H M, Fernand V E, et al. Synthesis and characterization of novel chiral ionic liquids and investigation of their enantiomeric recognition properties [J]. Chirality,2008,20:151.
    [113]Bwambok D K, Challa S K, Lowry M, et al. Amino acid based fluorescent chiral ionic liquid for enantiomeric recognition [J]. Analytical Chemistry,2010,82: 5028.
    [114]Armstrong D W, He L, Liu Y, Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography[J]. Analytical Chemistry,1999,71(17):3873.
    [115]Huang K, Zhang X T, Armstrong D W, Ionic cyclodextrins in ionic liquid matrices as chiral stationary phases for gas chromatography[J]. Journal of Chromatography A,2010,1217(32):5261
    [116]Ding J, Wehon T, Armstrong D W, Chiral ionic liquids as stationary phases in gas chromatography [J]. Analytical Chemistry,2004,76(22):6819.
    [117]李芙蓉,宋卿,赵丽,等.L-AlaCtNTf2手性离子液体作为新型气相色谱固定相的性能研究[J].高等学校化学学报,2009,30(2):258.
    [118]Tran C, Irena M, Chiral ionic liquids for enantioseparation of pharmaceutical products by capillary electrophoresis [J]. Journal of Chromatography A,2008, 1204(2):204.
    [119]Liu Q, Wu K K, Tang F, et al. Amino acid ionic liquids as chiral ligands in ligand-exchange chiral separations [J]. Chemistry-A European Journal,2009,15: 9889.
    [120]Ma Z, Zhang I J, Lin I N, et al. Enantioseparation of rabeprazole and omeprazole by nonaqueous capillary electro-phoresis with an ephedrine-based ionic liquid as the chiral selector [J]. Biomedical Chromatography,2010,24:1332
    [121]Haramoto Y, Miyashita T, Nanasawa M, Liquid crystal properties of new ionic liquid crystal compounds having a 1,3-dioxane ring[J]. Liquid Crystals,2002, 29(1):87
    [122]Tosoni M, Laschat S, Baro A. Synthesis of novel chiral ionic liquids and their phase behavior in mixtures with smectic and nematic liquid crystals [J]. Helvetica Chimica Acta,2004,87:2742.
    [123]Hu W, Zhao H Y, Song L, et al. Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites [J]. Advanced Materials,2010,22:468.
    [124]Bai X T, Li X W, Zheng L Q, Chiral ionic liquid monolayerstabilized gold nanoparticles:Synthesis, self-assembly, and application to SERS[J]. Langmuir, 2010,26(14):12209.
    [125]Tang F, Zhang Q I, Ren D D, et al. Functional amino acid ionic liquids as solvent and selector in chiral extraction [J]. Journal of Chromatography A,2010,1217: 4669.
    [126]Kouba A, Buric M, Kozak P, Bioaccumulation and effects of heavy metals in crayfish:a review [J]. Water Air and Soil Pollution.2010,211,5-16.
    [127]韩春梅,王林山,巩宗强,许华夏,土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12),1499-1502.
    [128]Pinto E, Sigaud-Kutner T, Leitao M et al. Heavy metal-induced oxidative in algae [J]. Journal of Phycology,2003,39,1008-1018.
    [129]Bernal M, Ramiro M V, Cases R, Rafael P, Yruela I. Excess copper effect on growth, chloroplast ultrastructure, oxygen-evolution activity and chlorophyll fluorescence in Glycine max cell suspensions [J]. Physiologia Plantarum,2006, 127,312-325.
    [130]Turgut C. The contamination with organochlorine pesticides and heavy metals in surface water in Kucuk Menderes River in Turkey,2000-2002[J]. Environmental International.2003,29,29-32.
    [131]Yatawara M, Qi S H, Owago O J, Zhang Y, et al. Organochlorine pesticide and heavy metal residues in some edible biota collected from Quanzhou Bay and Xinghua Bay, Southeast China [J]. Journal of Envionmental Science-China,2010, 22,314-320
    [132]Mansour S A, Gad M F, Risk assessment of pesticides and heavy metals contaminants in vegetables:A novel bioassay method using Daphnia magna Straus[J]. Food and Chemical Toxicology,2010,48,377-389.
    [133]Garrison A W, Probing the Enantioselectivity of Chiral Pesticides [J]. Environmental Science and Technology.2006,40,16-23.
    [134]Wen Y Z, Yuan Y L, Shen, C S, Liu H J, Liu W P. Spectroscopic investigations of the chiral interactions between lipase and the herbicide dichlorprop [J]. Chirality, 2009,21,396-401.
    [135]Liu H J, Ye W H, Zhan X M, Liu W P. A comparative study of Rac- and S-metolachlor toxicity to Daphnia magna [J]. Ecotoxicology and Environment Safety,2006,63,451-455.
    [136]Li H, Yuan Y L, Shen C S, Wen Y Z, Liu H J. Enantioselectivity in toxicity and degradation of dichlorprop-methyl in algal cultures [J]. Journal of Environment Science and Health, Part B Pesticides,2008,43,288-292.
    [137]Wen YZ, Yuan Y L, Chen H, Xu D M, Lin K D, Liu W P, Effect of chitosan on the enantioselective bioavailability of the herbicide dichlorprop to Chlorella pyrenoidosa [J]. Environmental Science and Technology,2010,44,4981-4987.
    [138]Collen J, Pedersen M A, stress-induced oxidative burst in Eucheuma platycladum (Rhodophyta) [J]. Physiologia Plantarum,1994,92, 417-422.
    [139]Kupper F C, Kolareg B, Guern J, Potin P. Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata [J]. Plant Physiology,2001,125, 278-291.
    [140]Camps P, Perez F, Soldevilla N. (R)- and (S)-3-hydroxy-4,4-dimethyl-1-phenyl-2-pyrrolidinone as chiral auxiliaries in the enantioselective preparation of alpha-aryloxypropanoic acid herbicides and alpha-chlorocarboxylic acids[J]. Tetrahedron-asymmetr.1998,9,2065-2079.
    [141]Liu H, Xiong M, Comparative toxicity of racemic metolachlor and S-metolachlor to Chlorella pyrenoidosa [J]. Aquatic Toxicology,2009,93:100-106.
    [142]Knauert S, Knauer K, The role of reactive oxygen species in copper toxicity to two freshwater green algae [J]. Journal of Phycology.2008,44,311-319.
    [143]Ritchie R J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents[J]. Photosynthetica,2008,46, 115-126.
    [144]Dorsey J, Yentsch C M, Mayo S, et al. Rapid analytical technique for the assessment of cell metabolic activity in marine microalgae[J]. Cytometry,1989, 10,622-628.
    [145]Choo K, Snoeijs P, Pedersen M. Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlneriana [J]. Journal of Experimental Marine Biology and Ecology,2004,298,111-123.
    [146]Box A, Sureda A, Terrados J, Pons A, Deudero S, Antioxidant response and caulerpenyne production of the alien Caulerpa taxifolia (Vahl) epiphytized by the invasive algae Lophocladia lallemandii (Montagne) [J]. Journal of Experimental Marine Biology and Ecology,2008,364:24-28.
    [147]Rahman I, Kode A, Biswas S K, Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method [J]. Nature protocols.2006,1(6):3159-3164.
    [148]Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine, Oxford Univ. Press New York 1999,3nd ed,936.
    [149]Faber M J, Smith L M J, Boermans H J, et al. Cryopreservation of fluorescent marker-labeled algae (selenastrum capricornutum) for toxicity testing using flow cytometry [J]. Environmental Toxicology and Chemistry,1997,16,1059-1067.
    [150]Zahn S, Canary J W. Electron-induced inversion of helical chirality in copper complexes of N, N-dialkylmethionines [J]. Science,2000,288,1404-1407.
    [151]Sies H, Glutathione and its role in cellular functions [J]. Free Radical Biology Medicine,1999,27,916-921.
    [152]Cai XY, Liu W P, Sheng G Y. Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater alga cultures [J]. Journal of Agricultural and Food Chemistry,2008,56,2139-2146.
    [153]Stauber J L, Florence T M. Mechanism of toxicity of ionic copper and copper complexes to algae [J]. Marine Biology,1987,94,511-519.
    [154]Gledhill M, Nimmo M, Hill S J. The toxicity of copper (Ⅱ) species to marine algae with particular reference to macroalgae [J]. Journal of Phycology.1997,33, 2-11.
    [155]Florencea T M, Stauber J L. Toxicity of copper complexes to the marine diatom Nitzschia closterium [J]. Aquatic Toxicology,1986,8,11-26.
    [156]Blumerisinger M, Meindl D, Loos E. Cell wall composition of chlorococcal algae [J]. Phytochemistry,1983,22,1603-1604.
    [157]Loos E, Meindl D. Composition of the cell wall of Chlorella fusca [J]. Planta, 1982,156,270-273.
    [158]Ballan-Dufranc C, Marcaillou C, Amiard-Triquet C. Response of the phytoplanktonic alga Tetraselmis suecica to copper and silver exposure:vesicular metal bioaccumulation and lack of starch bodies [J]. Biology Cell 1991,72, 103-112.
    [159]Nishikawa K, Yamakoshi Y, Uemura I, Tominaga N. Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism [J]. Microbiology Ecology,2003,44,253-259.
    [160]Liu J, Zhao Z, Jiang G, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water [J]. Environmental. Science and Technology,2008,42,6949-6954.
    [161]Christensen J B, Jensen D L, Christensen T H. Effect of dissolved organic carbon on the mobility of cadmium, nickel and zinc in leachate polluted groundwater [J]. Warter Research,1996,30(12),3037-3049.
    [162]Zhang H, He P, Shao L, Lee D. Source analysis of heavy metals and arsenic in organic fractions of municipal solid waste in a mega-city (Shanghai) [J]. Environmental Science and Technology,2008,42,1586-1593.
    [163]Speijers G JA, Speijers M H M. Combined toxic effects of mycotoxins [J]. Toxicology Letters,2004,153,91-98.
    [164]Duan Z, Zhu L, Zhu L, Yao K, Zhu X. Individual and joint toxic effects of pentachlorophenol and bisphenol A on the development of zebrafish (Danio rerio) embryo [J]. Ecotoxicology and Environmental Safety,2008,71,774-780.
    [165]Posthuma L, Baerselman R, Van Veen R P M, et al. Single and joint toxic effects of copper and zinc on reproduction of Enchytraeus crypticus in relation to sorption of metals in soils [J]. Ecotoxicology and environmental safety.1997,38, 108-121.
    [166]Liao B, Liu H, Lu S, et al. Combined toxic effects of cadmium and acid rain on vicia faba L [J]. Bulletin of Environment Contamination and Toxicology.2003, 71,998-1004.
    [167]Gatidou G, Thomaidis N S. Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays [J]. Aquatic Toxicology,2007,85,184-191.
    [168]Marianne M, Stefan S, Andrea B, et al. Mixture effects and predictability of combination effects of imidazolium based ionic liquids as well as imidazolium based ionic liquids and cadmium on terrestrial plants(Triticum aestivum) and limnic green algae (Scenedesmus vacuolatus) [J]. Green Chemistry,2008,10, 784-792.
    [169]Wang W, Lampi, M A, Huang X, et al. Assessment of mixture Toxicity of copper, cadmium, and phenanthrenequinone to the marine Bacterium Vibrio fischeri [J]. Environmental Technology,2009,24(2),166-177
    [170]Yruela I. Copper in plants [J]. Brazilian Journal of Plant Physiology,2005,17 (1), 145-156.
    [171]Qian H, Li J, Sun L, et al. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription [J]. Aquatic Toxicology.2009,94,56-61.
    [172]Zhang W, Jiang F, Ou J. Global pesticide consumption and pollution:with China as a focus [J]. Proceedings of the International Academy of Ecology and Environmental Sciences,2011,1(2),125-144.
    [173]Qian H, Hu H, Mao Y, et al. Enantioselective phytotoxicity of the herbicide imazethapyr in rice [J]. Chemosphere,2009,76 (7),885-892.
    [174]Maxwell K, Johnson G N. Chlorophyll fluorescence- a practical guide [J]. Journal of Experimental Botany,2000,51,659-668.
    [175]Brian D P, Elspeth A M, Ian B F. Estimation of hydrogen peroxide in plant extracts using titanium(Ⅳ) [J]. Aralytical Chemistry,1984,139,487-492.
    [176]Yefim M, Kathryn D H, John EB. Coumarin-3-carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radiation [J]. Radiation Research,1997,148,580-591.
    [177]Kopittke P M, Blarney F P C, Menzies N W. Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea [J]. Plant Soil, 2008,303,217-227.
    [178]Bernala M, Ramiroa M, Casesb V et al. Excess copper effect on growth, chloroplast ultrastructure, oxygen-evolution activity and chlorophyll fluorescence in Glycine max cell suspensions [J]. Physiologia Plantarum,2006,127(2), 312-325.
    [179]Patsikka E, Kairavuo M, Sersen F et al. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll [J]. Plant Physiology,2002,129,1359-1367.
    [180]Cid A, Herrero C, Torres E, Abalde J. Copper toxicity on the marine microalga Phaeodactylum tricornutum:effects on photosynthesis and related parameters [J]. Aquatic Toxicology,1995,31,165-174.
    [181]Ptsikka E, Aro E M, Tyystjarvi E. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo [J]. Plant Physiology.1998, 117,619-627.
    [182]Jean P C, Jean C M. Complexes of aluminium(III) with isoquercitrin: spectroscopic characterization and quantum chemical calculations [J]. Polyhedron, 2002,21,2801-2810.
    [183]Hsiao M C, Wang H, Yang Y. EXAFS and XANES studies of copper in a solidified fly ash [J]. Environmental Science and Technology.2001,35, 2532-2535.
    [184]Katsumi K, Ai K, Takaomi S. The dimer state of NO in micropores of Cu(OH),-dispersed activated carbon fibres [J]. Journal of the Chemical Society, 1988,84(6),1795-1805.
    [185]Xia K, Mehadi A, Taylor R, Bleam W. X-Ray absorption and electron paramagnetic resonance studies of Cu(Ⅱ) sorbed to silica:surface-induced precipitation at low surface coverages [J]. J. Colloid Interface Sci.1997,185, 252-257.
    [186]Anna M, Marcin D, Henryk K, Giovanni M, Alba P. Copper(II) complexes of the imidazolinone herbicide imazapyr [J]. Journal of Agricultural and Food Chemistry,1996,44,3698-3702.
    [187]Helmut S, Kurt W, Beda E F, Bernhard P. Metal ions and hydrogen peroxide. Catalase-like activity of Cu2+ in aqueous solution and its promotion by the coordination of 2,2,-bipyridyl [J]. Inorg. Chem.1979,18 (5),1354-1357.
    [188]Sigel H. Catalase and peroxidase activity of Cu2+ complexes [J]. Angewandte Chemie International Edition,1969,8 (3),167-177.
    [189]Andrade L R, Farina M, Amado G M. Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro [J]. Ecotoxicology and Environment Safety,2004, 58,117-125.
    [190]Nishizono H, Ichikawa H, Suziki S, et al. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense [J]. Plant Soil,1987,101,15-20.
    [191]J. Wilkes, A short history of ionic liquids-from molten salts to neoteric solvents [J]. Green Chemistry.2002,4,73-80.
    [192]Zhao D, Liao Y, Zhang Z, Toxicity of Ionic Liquids [J]. Clean,2007,35 (1), 42-48.
    [193]仇深杰,刘庆彬,胡进勇,张占辉,张福军,手性离子液体的合成及其应用[J],化学通报,2007,6,409-420.
    [194]Organization for Economic Cooperation and Development, Guideline for Testing of Chemicals:Algal Growth Inhibition Test, OECD Guideline 201,2006.
    [195]Mendoza-Cozatla D, Devarsa S, Loza-Taverab H, Moreno-Sanchez R, Cadmium accumulation in the chloroplast of Euglena gracilis[J]. Physiologia Plantarum, 2002,115,276-283.
    [196]Zhao L, Wang X, Li Y, et al. Chiral micelles of achiral TPPS and diblock copolymer induced by amino acids [J]. Macromolecules,2009,42 (16): 6253-6260.
    [197]Stolte S, Matzke M, Arning J, et al. Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids [J]. Green Chemistry.2007,9,1170-1179.
    [198]Fukaya Y, Hayashi K, Wadab M, Ohno H. Cellulose dissolution with polar ionic liquids under mild conditions:required factors for anions [J]. Green Chemistry. 2008,10,44-46.
    [199]Zhu S, Wu Y, Chen Q, et al. Dissolution of cellulose with ionic liquids and its application:a mini-review [J]. Green Chemistry.2006,8,325-327.
    [200]Sena D., Kulacki K., Chaloner D., Lamberti G., The role of the cell wall in the toxicity of ionic liquids to the alga Chlamydomonas reinhardtii [J]. Green Chemistry.2010,12,1066-1071
    [201]Kulacki K, Lamberti G, Toxicity of imidazolium ionic liquids to freshwater algae [J]. Green Chemistry,2008,10,104-110.
    [202]Latala A., Nedzia M., Stepnowski P., Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Bacillaria paxillifer (a microphytobenthic diatom) and Geitlerinema amphibium (a microphytobenthic blue green alga) [J]. Green Chemistry.2009,11,580-588.
    [203]Marcelo E, Gustavo A, Thiago B, et al. Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells [J]. Environmental Pollution,2002,120(3):779-786.
    [204]OdaY, Nakano Y, Kitaoka S, et al. Utilization and toxicity of exogenous amino acids in Euglena gracilis[J]. Microbiology,1982,128(4):853-858.
    [205]Vanneste S, Friml J, Auxin:a trigger for change in plant development [J]. Cell, 136:1005-1016(2009).
    [206]Ross JJ, O'Neill DP, Wolbang CM, et al. Auxin gibberellin interactions and their role in plant growth [J]. Journal of Plant Growth Regulation,2002,20:346-353.
    [207]Farrimond JA, Elliott MC, Clack DW, Charge separation as a component of the structural requirements for hormone activity [J]. Nature,1978,274:401-402.
    [208]Romano CP, Cooper ML, Klee HJ, Uncoupling auxin and ethylene effects in transgenic tobacco and Arabidopsis plants [J]. Plant Cell,1993,5:181-189.
    [209]Gilbert FA, The status of plant-growth substances and herbicides in 1945 [J]. Chemical Reviews,1946,39:199-218.
    [210]Kelley KB, Riechers DE, Recent developments in auxin biology and new opportunities for auxinic herbicide research [J]. Pesticide Biochemistry and Physiology,2007,89:1-11.
    [211]Grossmann K, Auxin herbicides:current status of mechanism and mode of action[J]. Pesticide Management Science,2010,66:113-120.
    [212]Pei Z, Kuchitsu K, Ward J, et al. Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abil and abi2 mutants[J]. The Plant Cell,1997,9:409-423.
    [213]鲁璐,吴瑜3种微量元素对小麦生长发育及产量和品质的影响研究进展,应用与环境生物学报[J].2010,16(3):435-439
    [214]郑甲成,刘婷,张百忍,刘继瑞,几种微量元素作用及对水稻发育的影响[J].吉林农业大学学报,2010,32(S):5-8
    [215]马扶林,微量元素对农作物品质影响概述[J].青海草业,2009,18(2):31-34
    [216]沈志锦,彭克勤,周浩等,植物微量元素锌的研究进展[J].湖南农业科学,2007,(3):110-112
    [217]Qian H, Lu T, Peng X, et al. Enantioselective phytotoxicity of the herbicide imazethapyr on the response of the antioxidant system and starch metabolism in Arabidopsis thaliana[J]. Plos One,2011,6(5):1-12.
    [218]Wintz H, Fox T, Wu Y, et al. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis[J]. The Journal of Biological of Biological Chemistry,2003,278(48):47644-47653.
    [219]Isaure M, Fayard B, Sarret G, et al. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy [J]. Spectrochimica Acta Part B.2006,6:1242-1252.
    [220]Wu B, Chen Y, Becker S. Study of essential element accumulation in the leaves of a Cu-tolerant plant Elsholtzia splendens after Cu treatment by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) [J]. Analytica Chimica Acta,2009,633:165-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700