用户名: 密码: 验证码:
基于动态面控制的寻的导引规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新的大气层内拦截导弹用于拦截隐身战斗机、大俯冲攻击的制导炸弹和高音速巡航导弹等高速大机动目标,而自动驾驶仪动态特性是影响大气层内飞行导弹最终脱靶量的一个重要原因。本文应用动态面控制方法,考虑导弹自动驾驶仪的动态特性设计寻的导引规律。
     在实际应用中,导弹自动驾驶仪动态特性可以近似为二阶动态特性。建立平面内考虑导弹自动驾驶仪二阶动态特性的制导系统模型,基于该模型,应用动态面控制方法,设计考虑导弹自动驾驶仪二阶动态特性的新型导引律。进一步,根据导弹和目标三维空间相对运动,建立考虑导弹自动驾驶仪二阶动态特性的三维制导模型,应用动态面控制方法,设计考虑导弹自动驾驶仪二阶动态特性的新型三维导引规律。以上两种导引律表达式中都不含有视线角的高阶导数,因此便于实际应用。仿真验证所设计的两种导引律能有效补偿导弹自动驾驶仪动态特性对制导精度的影响,不仅能精确拦截非机动目标和机动目标,而且在目标做高速大机动逃逸和导弹自动驾驶仪有较大滞后的情况下,仍能保证精确的制导结果。
     为了彻底摧毁一些特殊目标,设计两种带终端攻击角度约束的导引律。在目标终端速度方向能够探测到的条件下,把终端攻击角度控制变换成终端视线角度控制,建立终端攻击角度约束的制导模型。基于该模型,在导弹自动驾驶仪是理想情况下,设计拦截机动目标的带终端攻击角度约束的滑模导引律。该导引律保证制导系统中视线角及其速率能够在有限时间内收敛到滑模面;在制导终端时刻,进入滑模面后的视线角能够指数收敛到期望值,视线角速率指数收敛到零。该导引律可以应用于导弹自动驾驶仪响应足够快的情况。进一步,将导弹自动驾驶仪近似为二阶动态环节,应用动态面控制方法,设计带终端攻击角度约束的新型导引律。仿真验证该导引律能够有效地拦截机动目标和补偿导弹自动驾驶仪的动态特性,它能够导引导弹以期望的攻击角度和较小的脱靶量拦截机动目标。因为在导引律表达式中没有视线角的高阶导数,所以设计的考虑导弹自动驾驶仪二阶动态特性的带终端攻击角度约束的新型导引律易于实际应用。
     针对实际应用中导弹的加加速度不能直接测量,应用动态面控制方法和观测器设计理论,设计两种带观测器考虑导弹自动驾驶仪二阶动态特性的导引律和带观测器的攻击角度约束导引律,并证明该导引律构成的制导系统的稳定性。仿真验证设计的带观测器的导引律对目标非机动和机动都有效,该导引律有效补偿了导弹自动驾驶仪的动态特性,在导弹自动驾驶仪滞后较大的情况下,仍能导引导弹精确地拦截大机动目标。该导引律中没有使用视线角的高阶导数。
     基于平面内目标和导弹相对运动方程,考虑导弹自动驾驶仪二阶动态特性,通过合理选择滑模面,应用滑模控制方法和有限时间收敛控制理论,设计有限时间收敛导引律。对所设计的导引律构成的制导系统进行稳定性分析,证明该制导系统能有限时间收敛到滑模面,并且在滑模面上系统的状态能够指数收敛到零。仿真验证设计的导引律对拦截非机动目标和机动目标都有效,该导引律克服了导弹自动驾驶仪的动态特性,制导系统在制导过程结束前能够有限时间收敛。由于设计的有限时间收敛导引律表达式中不含有视线角的高阶导数,所以更易于实际应用。
New endo-atmospheric interceptor missiles are required to intercepte stealthfighters, great dive attacked guided bombs, hypersonic cruise missiles and other fastand maneuvering targets. The autopilot dynamics of endo-atmospheric missiles is animportant factor to cause the final miss distance. In this dissertation, some homingguidance laws are designed based on dynamic surface control method with consid-eration of the autopilot dynamics.
     In practical applications, the autopilot dynamics can be approximated as secondorder dynamics. The model of a guidance system accounting for the second-orderdynamics of missile autopilot is established in plane. Based on this model, a newguidance law accounting for the second-order dynamics of missile autopilot is de-signed using the dynamic surface control method. Furthermore, based on the targetand the missile dynamics in three dimensional coordinate, a three dimensionalguidance model accounting for the second-order dynamics of missile autopilot isestablished. A new three dimensional guidance law accounting for second-orderdynamics of missile autopilot is then designed using the dynamic surface controlmethod. The above two guidance laws avoid the occurrence of high-order deriva-tives of line of sight angle in their expressions such that they are easy to implementin practical applications. Simulation results show the guidance laws are effective incompensating for the bad influence of the autopilot dynamics on guidance accuracy.They ensure exact guidance results for intercepting both non maneuver targets andmaneuvering targets, even if a target escapes in a great and fast maneuver and themissile autopilot has a relatively large lag.
     In order to destroy some specific targets, two guidance laws with terminal im-pact angle constraint are designed. Under the condition that the terminal flight pathangles of the target can be predicted, the control of terminal impact angle wastransformed into the control of the final line of sight angle and then a guidancemodel with terminal impact angle constraint is established. Based on this model, asliding mode guidance law is designed to intercept maneuvering targets with termi-nal impact angle constraint under the assumption of an ideal missile autopilot. Thesliding mode guidance law ensures that the line of sight angle and its rate of theguidance system converge to the sliding mode in finite time. The line of sight angleexponentially converge to a desired value and line of sight angular rate exponen-tially converge to zero after entering the sliding mode at the final time of the guid-ance process. This guidance law can be used to cases where the missile autopilot has a fast response. Furthermore, accounting for the second-order dynamics of missileautopilot, a new guidance law with terminal impact angle constraint is designed us-ing the dynamic surface control method. Simulation results show that this guidancelaw is effective in intercepting maneuvering targets and compensating for the mis-sile autopilot dynamics. It is able to guide a missile to intercept a maneuver targetwith a desired angle and a small miss distance. Because there is no occurrence ofhigh-order derivatives of the line of sight angle in the expression of the guidancelaw, it is apt to be implemented in practical applications.
     Since a missile’s jerk cannot be directly measured in practice, two ob-server-based guidance laws accounting for the missile autopilot as second-orderdynamics and observer-based guidance law with impact angle constraint are de-signed using the dynamic surface control method and observer design theory. Sta-bility of the guidance system with such a guidance law is proved. Simulation resultsshow that the proposed guidance law is effective in intercepting both non maneu-vering targets and maneuvering targets, and compensating the dynamics of the mis-sile autopilot. The proposed guidance law is able to guide a missile to accuratelyintercept targets with great maneuvers in the presence of a large autopilot lag. Theguidance law does not use the high-order derivatives of the line of sight angle.
     Based on the relative motion equation of missile and target in plane and thesecond-order missile autopilot dynamics, through properly selecting the slidingmode, a guidance law with finite time convergence is designed using the slidingmode control method and finite time convergence control theory. Stability of theguidance system with the proposed guidance law is analyzed. The guidance systemconverges to the sliding mode in finite time, and then the states of system in thesliding mode exponentially converge to zero. Simulation results show that the pro-posed guidance law is effective in intercepting non maneuvering targets and ma-neuvering targets, and compensating the dynamics of the missile autopilot. Theguidance system converges in finite time before the final time of the guidance proc-ess. The high-order derivatives of the line of sight angle are avoided in the expres-sion of guidance law such that it can be implemented in practical applications.
引文
[1]高劲松,陈哨东.国外隐身战斗机超视距空战问题[J].电光与控制,2011,18(8):17-20,63.
    [2]邵玉卓,陶建锋,董会旭,等.米波MIMO制导雷达抗隐身目标关键技术[J].飞航导弹,2011,(5):77-79.
    [3]焦方金.隐身与反隐身技术的发展动向[J].国防技术基础,2003,(2):33-36.
    [4] Harrison G A. Hybrid Guidance Law for Approach Angle and Time-of-Arri-val Control[J]. Journal of Guidance, Control, and Dynamics,2012,35(4):1104-1114.
    [5]李玉林,万自明.直接力/气动力复合控制拦截弹末制导精度研究[J].现代防御技术,2008,36(2):55-60.
    [6]张巍,王敏,徐世录.美国导弹防御系统的发展动向分析[J].现代防御技术,2007,35(3):25-31,45.
    [7]钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社,2000:270-276.
    [8]李雯雯,姜长生. BTT导弹增广比例导引律研究[J].电光与控制,2008,15(10):16-20,50.
    [9] Gurfil P, Jodorkovsky M, Guelman M. Neoclassical Guidance for HomingMissiles[J]. Journal of Guidance, Control, and Dynamics,2001,24(3):452-459.
    [10] Tyan F. Capture Region of a GIPN Guidance Law for Missile and Target withBounded Maneuverability[J]. IEEE Transactions on Aerospace and ElectronicSystems,2011,47(1):201-213.
    [11] Prasanna H M, Ghose D. Retro-Proportional-Navigation: A New GuidanceLaw for Interception of High-Speed Targets[J]. Journal of Guidance, Control,and Dynamics,2012,35(2):377-386.
    [12] Tyan F. Unified Approach to Missile Guidance Laws:3D Extension[J]. IEEETransactions on Aerospace and Electronic Systems,2005,41(4):1178-1199.
    [13]韩京清.最优导引律.航空学报[J],1979,(1):83-90.
    [14] Hexner G, Pila A W. Practical Stochastic Optimal Guidance Law for BoundedAcceleration Missiles[J]. Journal of Guidance, Control, and Dynamics,2011,34(2):437-445.
    [15] Morgan R W, Tharp H, Vincent T L. Minimum Energy Guidance for Aerody-namically Controlled Missiles[J]. IEEE Transactions on Automatic Control,2011,56(9):2026-2037.
    [16] Rusnak I, Meir L. Optimal Guidance for High-Order and Acceleration Con-strained Missile[J]. Journal of Guidance, Control, and Dynamics,1991,14(3):589-596.
    [17] Xin M, Balakrishnan S N, Ohlmeyer E J. Integrated Guidance and Control ofMissiles with θ-D Method[J]. IEEE Transactions on Control Systems Tech-nology,2006,14(6):981-992.
    [18] Rusnak I, Meir L. Modern Guidance Law for High-Order Autopilot[J]. Jour-nal of Guidance, Control, and Dynamics,1991,14(5):1056-1058.
    [19] Kim M, Grider K V. Terminal Guidance for Impact Attitude Angle Con-strained Flight Trajectories[J]. IEEE Transactions on Aerospace and Elec-tronic Systems,1973,9(6):852-859.
    [20] Shima T, Idan M, Golan O M. Sliding-Mode Control for Integrated MissileAutopilot Guidance[J]. Journal of Guidance, Control, and Dynamics,2006,29(2):250-260.
    [21]任义元,袁建平,方群.空空导弹变结构末制导律研究[J].计算机仿真,2009,26(10):25-29.
    [22] Yeh F K. Adaptive-Sliding-Mode Guidance Law Design for Missiles withThrust Vector Control and Divert Control System[J]. IET Control Theory andApplications,2012,6(4):552-559.
    [23] Zhou D, Mu C D, Xu W L. Adaptive Sliding-Mode Guidance of a HomingMisile[J]. Journal of Guidance, Control, and Dynamics,1999,22(4):589-594.
    [24] Atir R, Hexner G, Weiss H, et al. Target Maneuver Adaptive Guidance Lawfor a Bounded Acceleration Missile[J]. Journal of Guidance, Control, andDynamics,2010,33(3):695-706.
    [25]徐世许,马建敏.不确定多变量线性系统的快速收敛滑模控制[J].系统工程与电子技术,2011,33(7):1585-1589,1672.
    [26]范金锁,张合新,张明宽,等.基于自适应二阶终端滑模的飞行器再入姿态控制[J].控制与决策,2012,27(3):403-407.
    [27] Shtessel Y B, Shkolnikov I A. Integrated Guidance and Control of AdvancedInterceptors Using Second Order Sliding Modes[C]. Proceedings of the42thIEEE Conference on Decision and Control, Maui, Hawaii, USA, December,2003:4587-4592.
    [28] Moon J, Kim K, Kim Y. Design of Guidance Law via Variable Structure Con-trol[J]. Journal of Guidance, Control, and Dynamics,2001,24(4):659-664.
    [29] Harl N, Balakrishnan S N, Phillips C. Sliding Mode Integrated Missile Guid-ance and Control[C]. AIAA Guidance, Navigation, and Control Conference,Toronto, Ontario Canada,2-5August2010, AIAA2010-7741.
    [30] Koren A, Idan M, Golan O M. Integrated Sliding Mode Guidance and Controlfor a Missile with On–Off Actuators[J]. Journal of Guidance, Control, andDynamics,2008,31(1):204-214.
    [31] Hou M Z, Duan G R. Integrated Guidance and Control of Homing Missilesagainst Ground Fixed Targets. Chinese Journal of Aeronautics,2008,21(1):162-168.
    [32] Shtessel Y B, Tournes C H. Integrated Higher-Order Sliding Mode Guidanceand Autopilot for Dual-Control Missiles[J]. Journal of Guidance, Control, andDynamics,2009,32(1):79-94.
    [33]朱凯,齐乃明,秦昌茂. BTT导弹的自适应滑模反演控制设计[J].宇航学报,2010,31(3):769-773.
    [34]顾文锦,赵红超,杨智勇.变结构控制在导弹制导中的应用综述.飞行力学,2005,23(1):1-4.
    [35] Liaw D C, Liang Y W, Cheng C C. Nonlinear Control for Missile TerminalGuidance[J]. Journal of Dynamic Systems, Measurement, and Control,2000,122(12):663-668.
    [36] Shaferman V, Shima T. Linear Quadratic Guidance Laws for Imposing a Ter-minal Intercept Angle[J]. Journal of Guidance, Control, and Dynamics,2008,31(5):1400-1412.
    [37]李登峰.微分对策及其应用[M].北京:国防工业出版社,2000:1-14,180-190.
    [38]花文华,陈兴林.变速导弹有界控制非线性微分对策制导律[J].控制与决策,2011,26(12):1886-1890.
    [39]田进,李言俊.临近空间防空导弹制导律[J].火力与指挥控制,2012,37(3):87-89,93.
    [40] Shima T, Golan O M. Linear Quadratic Differential Games Guidance Law forDual Controlled Missiles[J]. IEEE Transactions on Aerospace and ElectronicSystems,2007,43(3):834-842.
    [41] Raghunathan T, Ghose D. An Online-Implementable Differential EvolutionTuned All-Aspect Guidance Law[J]. Control Engineering Practice,2010,18:1197-1210.
    [42] Shinar J, Shima T. Nonorthodox Guidance Law Development Approach forIntercepting Maneuvering Targets[J]. Journal of Guidance, Control, and Dy-namics,2002,25(4):658-666.
    [43] Omar H M, Abido M A. Multiobjective Evolutionary Algorithm for Design-ing Fuzzy-Based Missile Guidance Laws[J]. Journal of Aerospace Engineer-ing,2011,24(1):89-94.
    [44] Leng G. Guidance Algorithm Design: A Nonlinear Inverse Approach[J]. Jour-nal of Guidance, Control, and Dynamics,1998,21(5):742-746.
    [45] Chen R H, Speyer J L, Lianos D. Homing Missile Guidance and EstimationUnder Agile Target Acceleration[J]. Journal of Guidance, Control, and Dy-namics,2007,30(6):1577-1589.
    [46] Bezick S, Rusnak I, Gray W S. Guidance of a Homing Missile via NonlinearGeometric Control Methods[J]. Journal of Guidance, Control, and Dynamics,1995,18(3):441-448.
    [47] Gurfil P. Non-Linear Missile Guidance Synthesis Using Control LyapunovFunctions[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,2005,219(2):77-87.
    [48]李君龙,陈杰,胡恒章.目标机动时的一种非线性末制导律[J].宇航学报,1998,19(2):37-42.
    [49]洪奕光,程代展.非线性系统的分析与控制[M].北京:科学出版社,2005:225-228.
    [50] Dhananjay N, Ghose D, Bhat M S. Capturability of a Geometric GuidanceLaw in Relative Velocity Space[J]. IEEE Transactions on Control SystemsTechnology,2009,17(1):111-122.
    [51] Hexner G, Shima T, Weiss H. LQG Guidance Law with Bounded AccelerationCommand[J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(1):77-86.
    [52] Hexner G, Shima T. Stochastic Optimal Control Guidance Law with BoundedAcceleration[J]. IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):71-78.
    [53] Lin C M, Peng Y F. Missile Guidance Law Design Using Adaptive CerebellarModel Articulation Controller[J]. IEEE Transactions on Neural Networks,2005,16(3):636-644.
    [54] Liu L J, Shen Y. Three-Dimension H∞Guidance Law and Capture RegionAnalysis[J]. IEEE Transactions on Aerospace and Electronic Systems,2012,48(1):419-429.
    [55] Shieh C S. Design of Three-Dimensional Missile Guidance Law via TunableNonlinear H∞Control with Saturation Constraint[J]. IET Control Theory andApplications,2007,1(3):756-763.
    [56]窦荣斌,张科.基于二阶滑模的再入飞行器末制导律研究[J].宇航学报,2011,32(10):2109-2114.
    [57]蒲明,吴庆宪,姜长生,等.基于二阶动态Terminal滑模的近空间飞行器控制[J].宇航学报,2010,31(4):1056-1062.
    [58] Shtessel Y B, Shkolnikov I A, Levant A. Smooth Second-Order SlidingModes: Missile Guidance Application[J]. Automatica,2007,43(8):1470-1476.
    [59] Hong Y G, Wang J K, Cheng D Z. Adaptive Finite-Time Control of NonlinearSystems with Parametric Uncertainty[J]. IEEE Transactions on AutomaticControl,2006,51(5):858-862.
    [60] Gurfil P, Jodorkovsky M, Guelman M. Finite Time Stability Approach toProportional Navigation Systems Analysis[J]. Journal of Guidance, Control,and Dynamics,1998,21(6):853-861.
    [61] Hong Y. G. Finite-Time Stabilization and Stabilizability of a Class of Con-trollable Systems[J]. Systems&Control Letters,2002,46(4):231-236.
    [62] Hong Y G, Huang J, Xu Y S. On an Output Feedback Finite-Time Stabiliza-tion Problem[J]. IEEE Transactions on Automatic Control,2001,46(2):305-309.
    [63] Levant I. Universal Single-Input–Single-Output(SISO) Sliding-Mode Con-trollers with Finite-Time Convergence[J]. IEEE Transactions on AutomaticControl,2001,46(9):1447-1451.
    [64] Binazadeh T, Yazdanpanah M J. Partial Stabilization Approach to3-Dimen-sional Guidance Law Design[J]. Journal of Dynamic Systems, Measurement,and Control, November2011,133:064504-1-4.
    [65]乌日娜,季海波,张保利.导弹有限时间三维非线性导引律[J].电光与控制,2009,16(4):22-24,41.
    [66]丁世宏,李世华,罗生.基于连续有限时间控制技术的导引律设计[J].宇航学报,2011,32(4):727-733.
    [67]王洪强,方洋旺,伍友利.基于非奇异Terminal滑模的导弹末制导律研究[J].系统工程与电子技术,2009,31(6):1391-1395.
    [68]孙胜,周荻.有限时间收敛变结构导引律[J].宇航学报,2008,29(4):1258-1262.
    [69] Zhou D, Sun S, Teo K L. Guidance Laws with Finite Time Convergence[J].Journal of Guidance, Control, and Dynamics,2009,32(6):1838-1846.
    [70]周荻,邹昕光,孙德波.导弹机动突防滑模制导律[J].宇航学报,2006,27(2):213-216.
    [71] Kim K B, Yoon T W, Kwon W H. Receding Horizon Guidance Laws for Con-strained Misssiles with Autopilot Lags[J]. Control Engineering Practice,2001,9(10):1107-1115.
    [72] Kumar S R, Rao S, Ghose D. Sliding-Mode Guidance and Control forAll-Aspect Interceptors with Terminal Angle Constraints[J]. Journal ofGuidance, Control, and Dynamics,2012,35(4):1230-1246.
    [73] Chen R H, Speyer J L, Lianos D. Optimal Intercept Missile Guidance Strate-gies with Autopilot Lag[J]. Journal of Guidance, Control, and Dynamics,2010,33(4):1264-1272.
    [74] Hexner G, Weiss H. Stochastic Approach to Optimal Guidance with UncertainIntercept Time[J]. IEEE Transactions on Aerospace and Electronic Systems,2010,46(4):1804-1820.
    [75] Zhou D, Zhang Y A, Duan G R. Multiple Model Adaptive Two-Step Filterand Motion Tracking Sliding-Mode Guidance for Missiles with Time Lag inAcceleration[J]. Transactions of the Japan Society for Aeronautical and SpaceSciences,2004,47(156):81-89.
    [76]孙胜,周荻.考虑导弹自动驾驶仪动特性的三维非线性导引律[J].宇航学报,2009,30(3):1052-1056.
    [77] Blackburn T R. Method for Improving Autopilot Lag Compensation in Inter-cept Guidance[J]. Journal of Guidance, Control, and Dynamics,1996,19(3):724-726.
    [78] Aggarwal R K, Moore C R. Terminal Guidance Algorithm for Ram-jet-Powered Missiles[J]. Journal of Guidance, Control, and Dynamics,1998,21(6):862-866.
    [79] No T S, Cochran J E, Kim E G. Bank-to-Turn Guidance Law Using LyapunovFunction and Nonzero Effort Miss[J]. Journal of Guidance, Control, and Dy-namics,2001,24(2):255-260.
    [80]佘文学,周军,周凤岐.一种考虑自动驾驶仪动态特性的自适应变结构制导律[J].宇航学报,2003,24(3):245-249.
    [81]佘文学,周凤岐,周军.考虑自动驾驶仪动态鲁棒自适应变结构制导律[J].系统工程与电子技术,2003,25(12):1513-1516.
    [82] Chwa D, Choi J Y. Adaptive Nonlinear Guidance Law Considering ControlLoop Dynamics[J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1134-1143.
    [83] Chwa D, Choi J Y, Anavatti S G. Observer-Based Adaptive Guidance LawConsidering Target Uncertainties and Control Loop Dynamics[J]. IEEETransactions on Control Systems Technology,2006,14(1):112-123.
    [84]孙未蒙,刘湘洪,郑志强.多约束条件下的制导律研究综述[J].飞行力学,2010,28(2):1-5.
    [85]蔡洪,胡正东,曹渊.具有终端角度约束的导引律综述[J].宇航学报,2010,31(2):315-323.
    [86] Wu P, Yang M. Integrated Guidance and Control Design for Missile withTerminal Impact Angle Constraint Based on Sliding Mode Control[J]. Journalof Systems Engineering and Electronics,2010,21(4):623-628.
    [87] Ryoo C K, Cho H, Tahk M J. Time-to-Go Weighted Optimal Guidance withImpact Angle Constraints[J]. IEEE Transactions on Control Systems Tech-nology,2006,14(3):483-492.
    [88] Ratnoo A, Ghose D. Impact Angle Constrained Interception of StationaryTargets[J]. Journal of Guidance, Control, and Dynamics,2008,31(6):1816-1821.
    [89] Manchester I R, Savkin A V. Circular Navigation Missile Guidance with In-complete Information and Uncertain Autopilot Model[J]. Journal of Guidance,Control, and Dynamics,2004,27(6):1078-1083.
    [90] Manchester I R, Savkin A V. Circular-Navigation-Guidance Law for Preci-sion Missile/Target Engagements[J]. Journal of Guidance, Control, and Dy-namics,2006,29(2):314-320.
    [91] Lee J I, Jeon I S, Tahk M J. Guidance Law to Control Impact Time and An-gle[J]. IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):301-310.
    [92] Kim B S, Lee J G, Han H S. Biased PNC Law for Impact with Angular Con-straint[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):277-288.
    [93] Kumar S R, Rao S, Ghose D. Non-singular Terminal Sliding Mode Guidanceand Control with Terminal Angle Constraints for Non-maneuvering Tar-gets[C].12th IEEE Workshop on Variable Structure Systems, VSS’12,Mumbai,12-14January,2012:291-296.
    [94] Yoon M G. Relative Circular Navigation Guidance for the Impact Angle Con-trol Problem[J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(4):1449-1463.
    [95] Yoon M G. Relative Circular Navigation Guidance for Three-DimensionalImpact Angle Control Problem[J]. Journal of Aerospace Engineering,2010,23(4):300-308.
    [96] Song T L, Shin S J, Cho H. Impact Angle Control for Planar Engagements[J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(4):1439-1444.
    [97] Song T L, Shin S J. Time-Optimal Impact Angle Control for Vertical PlaneEngagements[J]. IEEE Transactions on Aerospace and Electronic Systems,1999,35(2):738-742.
    [98] Idan M, Golan O M, Guelman M. Optimal Planar Interception with TerminalConstraints[J]. Journal of Guidance, Control, and Dynamics,1995,18(6):1273-1279.
    [99]宋建梅,张天桥.带末端落角约束的变结构导引律[J].弹道学报,2001,13(1):16-20.
    [100]曹邦武,姜长生,关世义,等.电视指令制导空地导弹垂直命中目标的末制导系统研究[J].宇航学报,2004,25(4):393-397.
    [101]林波,孟秀云,刘藻珍.具有末端角约束的鲁棒制导律设计[J].系统工程与电子技术,2005,27(11):1943-1945.
    [102]糜玉林,施建洪,张友安.带有攻击角度控制的三维制导[J].海军航空工程学院学报,2008,23(3):293-296.
    [103]张一,张合新,范金锁,等.带末端角约束的三维最优滑模制导律设计[J].科学技术与工程,2010,10(25):6177-6180,6193.
    [104]孙晓旭,单家元.带末端角约束反演变结构控制律设计[J].弹箭与制导学报,2009,29(4):47-50.
    [105]尹永鑫,杨明,吴鹏.针对机动目标带攻击角约束的三维制导律[J].固体火箭技术,2010,33(3):237-241.
    [106] Gu W J, Zhang R C, Yu J Y. A Three-Dimensional Missile Guidance Law withAngle Constraint Based on Sliding Mode Control[C].2007IEEE Interna-tional Conference on Control and Automation, Guangzhou, China, May30-June1,2007:299-302.
    [107] Ge L Z, Shen Y, Gao Y F, et al. Head Pursuit Variable Structure Guidance Lawfor Three-dimensional Space Interception[J]. Chinese Journal of Aeronautics,2008,21(3):247-251.
    [108]梁卓,薛晓中,王航,马伟. SINS/GPS制导炸弹俯仰平面制导控制一体化设计[J].飞行力学,2009,27(3):32-35,40.
    [109]梁冰,徐殿国,段广仁.导弹俯仰通道带有落角约束的制导与控制一体化设计[J].科学技术与工程,2008,8(1):70-75.
    [110] Yeh F K. Design of Nonlinear Terminal Guidance/Autopilot Controller forMissiles with Pulse Type Input Devices[J]. Asian Journal of Control,2010,12(3):399-412.
    [111] Shinar J, Turetsky V, Oshman Y. Integrated Estimation/Guidance Design Ap-proach for Improved Homing Against Randomly Maneuvering Targets[J].Journal of Guidance, Control, and Dynamics,2007,30(1):154-161.
    [112] Shinar J, Turetsky V. Improved Estimation is a Prerequisite for SuccessfulTerminal Guidance[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2005,219(2):145-156.
    [113]姚郁,王宇航.基于扩张状态观测器的机动目标加速度估计[J].系统工程与电子技术,2009,31(11):2682-2684,2692.
    [114]马克茂,贺风华,姚郁.目标机动加速度的估计与导引律实现[J].宇航学报,2009,30(6):2213-2219.
    [115]李雅静,侯明善,熊飞.一种改进的观测器算法在制导中的应用[J].宇航学报,2010,31(8):1920-1926.
    [116] Shkolnikov I A, Shtessel Y B, Lianos D P. Effect of Sliding Mode Observersin the Homing Guidance Loop[J]. Proceedings of the Institution of Mechani-cal Engineers, Part G: Journal of Aerospace Engineering,2005,219(2):103-111.
    [117] Gurfil P. Zero-Miss-Distance Guidance Law Based on Line-of-Sight RateMeasurement Only[J]. Control Engineering Practice,2003,11(7):819-832
    [118] Yan H, Ji H B. Guidance Laws Based on Input-to-State Stability andHigh-Gain Observers[J]. IEEE Transactions on Aerospace and ElectronicSystems,2012,48(3):2518-2529.
    [119] Swaroop D, Gerdes J C, Yip P P, et al. Dynamic Surface Control of NonlinearSystems[C]. Proceedings of the American Control Conference, Albuquerque,New Mexico, June1997:3028-3034.
    [120] Swaroop D, Hedrick J K, Yip P P, et al. Dynamic Surface Control for a Classof Nonlinear Systems[J]. IEEE Transactions on Automatic Control,2000,45(10):1893-1899.
    [121] Maulana A P, Ohmori H, Sano A. Friction Compensation via Smooth AdaptiveDynamic Surface Control[C]. Proceedings of the American Control Confer-ence, San Diego, California, USA, June1999:540-541.
    [122] Kazemi R, Zaviyeh K J. Development of a New ABS for Passenger Cars Us-ing Dynamic Surface Control Method[C]. Proceedings of the American Con-trol Conference, Arlington, USA, VA June25-27,2001:677-683.
    [123] Girard A R, Hedrick J K. Formation Control of Multiple Vehicles Using Dy-namic Surface Control and Hybrid Systems[J]. International Journal of Con-trol,2003,76(9):913-923.
    [124] Qaiser N, Iqbal N, Hussain A, et al. Exponential Stabilization of a Class ofUnderactuated Mechanical Systems Using Dynamic Surface Control[J]. In-ternational Journal of Control, Automation, and Systems,2007,5(5):547-558.
    [125] Song B, Hedrick J K, Howell A. Robust Stabilization and Ultimate Bounded-ness of Dynamic Surface Control Systems via Convex Optimization[J]. In-ternational Journal of Control,2002,75(12):870-881.
    [126] Yang Z J, Miyazaki K, Kanae S, et al. Robust Position Control of a MagneticLevitation System via Dynamic Surface Control Technique[J]. IEEE Transac-tions on Industrial Electronics,2004,51(1):26-34.
    [127] Zhang G Z, Chen J, Lee Z. Adaptive Robust Control for Servo Mechanismswith Partially Unknown States via Dynamic Surface Control Approach[J].IEEE Transactions on Control Systems Technology,2010,18(3):723-731.
    [128] Yoo S J, Park J B, Choi Y H. Adaptive Dynamic Surface Control for Distur-bance Attenuation of Nonlinear Systems[J]. International Journal of Control,Automation, and Systems,2009,7(6):882-887.
    [129] Shieh H J, Hsu C H. An Integrator-Backstepping-Based Dynamic SurfaceControl Method for a Two-Axis Piezoelectric Micropositioning Stage[J].IEEE Transactions on Control Systems Technology,2007,15(5):916-926.
    [130] Mathieu J L, Hedrick J K. Robust Multivariable Dynamic Surface Control forPosition Tracking of a Bicycle[C].2010American Control Conference, Mar-riott Waterfront, Baltimore, MD, USA, June30-July2,2010:1159-1165.
    [131] Xiong G L, Xie Z W, Huang J B, et al. Dynamic Surface Control-Backstep-ping Based Impedance Control for5-DOF Flexible Joint Robots[J]. Journal ofCentral South University of Technology,2010,17(4):807-815.
    [132] Shojaei K, Shahri A M. Output Feedback Tracking Control of UncertainNon-Holonomic Wheeled Mobile Robots: a Dynamic Surface Control Ap-proach[J]. IET Control Theory and Applications,2012,6(2):216-228.
    [133] Yoo S J, Park J B, Choi Y H. Adaptive Dynamic Surface Control of Flexi-ble-Joint Robots Using Self-Recurrent Wavelet Neural Networks[J]. IEEETransactions on Systems, Man, and Cybernetics-Part B: Cybernetics,2006,36(6):1342-1355.
    [134]张天平,鲁瑶.带有未建模动态的非线性系统的自适应动态面控制[J].控制与决策,2012,27(3):335-342.
    [135]王允建,刘贺平,王玲.自寻优自适应动态面控制[J].控制与决策,2010,25(6):939-942,957.
    [136] Chen W S. Adaptive Backstepping Dynamic Surface Control for Systems withPeriodic Disturbances Using Neural Networks[J]. IET Control Theory andApplications,2009,3(10):1383-1394.
    [137] Wang M, Liu X, Shi P. Adaptive Neural Control of Pure-Feedback NonlinearTime-Delay Systems via Dynamic Surface Technique[J]. IEEE Transactionson Systems, Man, and Cybernetics—Part B: Cybernetics,2011,41(6):1681-1692.
    [138] Mehraeen S, Jagannathan S, Crow M L. Decentralized Dynamic Surface Con-trol of Large-Scale Interconnected Systems in Strict-Feedback Form UsingNeural Networks with Asymptotic Stabilization[J]. IEEE Transactions onNeural Networks,2011,22(11):1709-1722.
    [139] Mehraeen S, Jagannathan S, Crow M L. Power System Stabilization UsingAdaptive Neural Network-Based Dynamic Surface Control[J]. IEEE Transac-tions on Power Systems,2011,26(2):669-680.
    [140] Chwa D. Global Tracking Control of Underactuated Ships with Input and Ve-locity Constraints Using Dynamic Surface Control Method[J]. IEEE Transac-tions on Control Systems Technology,2011,19(6):1357-1370.
    [141] Tong S C, Li Y M, Feng G, et al. Observer-Based Adaptive Fuzzy Backstep-ping Dynamic Surface Control for a Class of MIMO Nonlinear Systems[J].IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,2011,41(4):1124-1135.
    [142] Tong S C, Li Y M, Feng G, et al. Observer-Based Adaptive Fuzzy Backstep-ping Dynamic Surface Control for a Class of Non-linear Systems with Un-known Time Delays[J]. IET Control Theory and Applications,2011,5(12):1426-1438.
    [143] Song B, Hedrick J K. Observer-Based Dynamic Surface Control for a Class ofNonlinear Systems: An LMI Approach[J]. IEEE Transactions on AutomaticControl,2004,49(11):1995-2001.
    [144]周丽,姜长生.改进的非线性鲁棒自适应动态面控制[J].控制与决策,2008,23(8):938-943.
    [145] Hou M Z, Duan G R. Robust Adaptive Dynamic Surface Control of UncertainNonlinear Systems[J]. International Journal of Control, Automation, and Sys-tems,2011,9(1):161-168.
    [146] Wang D, Huang J. Neural Network-Based Adaptive Dynamic Surface Controlfor a Class of Uncertain Nonlinear Systems in Strict-feedback Form[J]. IEEETransactions on Neural Networks,2005,16(1):195-202.
    [147] Yip P P, Hedrick J K. Adaptive Dynamic Surface Control: A Simplified Algo-rithm for Adaptive Backstepping Control of Nonlinear Systems[J]. Interna-tional Journal of Control,1998,71(5):959-979.
    [148]宋鸿飞,孙秀霞,董文瀚,等.超机动飞行的动态面Backstepping控制[J].飞行力学,2009,27(3):28-31.
    [149]陈洁,周绍磊,宋召青.基于不确定性的高超声速飞行器动态面自适应反演控制系统设计[J].宇航学报,2010,31(11):2550-2556.
    [150]唐治理,雷虎民,刘代军,等.高机动导弹非线性自动驾驶仪动态面控制[J].系统工程与电子技术,2008,30(8):1523-1525.
    [151] Hou M Z, Duan G R. Adaptive Dynamic Surface Control for Integrated Mis-sile Guidance and Autopilot[J]. International Journal of Automation andComputing,2011,8(1):122-127.
    [152]周荻.寻的导弹新型导引规律[M].北京:国防工业出版社,2002:8-26.
    [153]段广仁.线性系统理论(第2版)[M].哈尔滨:哈尔滨工业大学出版社,2004,292-297.
    [154] Haimo V T. Finite Time Controllers[J]. SIAM Journal on Control and Opti-mization,1986,24(4):760-770.
    [155]查旭,崔平远,常伯浚.攻击固定目标的飞行器制导控制一体化设计[J].宇航学报,2005,26(1):13-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700