水轮机内部非定常湍流的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水轮机是水力发电系统中的核心部件,工作在旋转湍流下会产生非定常压力脉动、空化、泥沙磨损、流激振动等严重影响机组正常运行的问题。研究该类问题具有工程实际意义和理论学术价值。数值模拟已成为当前研究水轮机内部流场及其复杂流动机理的重要工具。本文采用现代计算流体动力学中的先进数值模拟方法,围绕困扰水轮机领域安全高效稳定运行的一些技术难题开展工作,研究内容和取得的成果如下:
     (1)基于三维瞬态N-S方程,采用大涡模拟(LES)方法中的Smargorinsky-Lilly亚格子应力模型,应用模拟动静干扰效果较好的滑移网格技术,以标准k-ε湍流模型稳态计算的结果作为初始条件,对某原型混流式水轮机全流道进行了三维瞬态湍流数值模拟。采用非结构化的混合网格和压力速度耦合的PISO算法,成功地模拟了水轮机在运行中的各种瞬态细节过程,如涡旋的卷起、增长、合并、破碎和脱落。模拟结果给出了偏工况下水轮机导水机构和转轮流道内大尺度涡结构的瞬态发展演变过程。计算结果表明大涡模拟方法能较好地模拟水轮机内水流的瞬态流动特性和瞬时涡的发展演化过程,该方法可为探索研究水力机械复杂流道湍流运动状态下涡旋的形成机理提供有价值的参考。
     (2)基于不可压缩流体瞬态N-S方程对混流式水轮机内部三维非定常流进行精细模拟分析,以标准k-ε湍流模型对水轮机进行全流道定常计算的结果作为初始流场,应用较新的分离涡模拟(DES)和滑移网格技术进行了水轮机考虑两级动静干扰的非定常湍流数值模拟,得到了偏工况下活动导叶出口及转轮叶道内涡量场及速度场分布特性。模拟了大尺度涡旋结构的卷起、发展等瞬态演化过程,结果表明DES方法可以更加全面真实地模拟水轮机内部的流动情况,捕捉到水力机械中复杂流道内的三维动态涡结构。该研究对于探讨影响水力发电机组出力摆动的水轮机涡激振动的内在机理、确保机组的安全稳定运行具有重要意义。
     (3)基于欧拉-欧拉方法中均匀多相流假设的混合两相流体无滑移模型,加入考虑气穴影响的Schnerr and Sauer空化模型,采用标准k-ε湍流模型和压力速度耦合的SIMPLEC算法,转动区域应用多重参考系模型(MRF),对某原型混流式水轮机全流道进行了三维定常空化湍流数值模拟。获得了该水轮机在偏工况下转轮叶道和尾水管内空泡相的主要流动特征,分析了水轮机流道内空化发生的部位与程度。计算结果表明与单相流体模型相比该方法能有效地预测水轮机内的三维空化湍流场,可以较好地模拟水轮机内真实的有空化发生的多相流动情况,对揭示水力机械内部包含气穴影响的气液两相流场的内在特性、优化水轮机的水力设计和改善水轮机的空化性能具有重要参考价值。
     (4)基于欧拉-欧拉方法中的代数滑移混合多相流模型,采用标准k-ε湍流模型和多重参考系模型(MRF),对某原型混流式水轮机全流道进行了三维定常泥沙磨损湍流数值模拟。获得了该水轮机在偏工况下转轮叶道和尾水管内泥沙颗粒相的体积分数分布,分析了水轮机流道内泥沙磨损的特征规律。计算结果表明该方法能有效地预测水轮机内的三维泥沙磨损固液两相湍流场,可以较好地模拟水轮机内真实的有泥沙磨损发生的多相流动情况,对揭示水力机械内部包含泥沙颗粒影响的固液两相流场的内在特性、提高水轮机的运行效率和改善水轮机的磨蚀性能具有重要参考价值。
     (5)基于任意拉格朗日欧拉框架下的二维时均瞬态N-S方程,应用非结构动网格技术,对某型号混流式水轮机单个活动导叶在槽道内模拟导水机构在一段直线关闭规律和两段折线关闭规律下的关闭过程,进行了动态湍流数值模拟。采用非结构化三角形网格,标准k-ε湍流模型和压力速度耦合的PISO算法,真实地模拟了导水机构关闭的动态过程中活动导叶流道内的压力场、速度场和湍流特性的瞬态变化过程。数值计算结果表明,在两种导叶关闭规律过程中,随着活动导叶开度的减小,流场发展呈现明显的非定常特性,水流绕过活动导叶后出现强的旋涡,会对水轮机过渡过程的动态特性产生影响。该方法能有效地模拟由于活动导叶动作诱发的流场脉动。
     (6)基于三维非定常不可压缩粘性流体N-S方程,用浸入边界法(IBM)处理活动导叶运动产生的动边界,大涡模拟(LES)的亚格子应力(SGS)使用动态Smagoringsky-Lilly模型,对槽道内某混流式水轮机单个活动导叶翼型、双列线性动静叶栅及导水机构双列非线性环列叶栅动态绕流场进行了瞬态湍流精细数值模拟。计算很好地捕捉了活动导叶关闭动作典型时刻压力和分离尾迹涡拓扑结构随时间的变化规律。结果表明,活动导叶的调节运动动态绕流将产生大量而复杂的瞬态流动结构,其向上在管道系统中诱发水击波动,向下影响转轮叶道中的暂态特性。本文提出的基于Smagoringsky-Lilly动态SGS模型的LES-IBM方法可有效地模拟高雷诺数下活动导叶关闭运动与叶道湍流之间的相互作用过程,揭示水轮机调节过程中活动导叶动态绕流尾迹结构产生的机制及其向下游方向的演化特性。
As a core component of hydroelectric system, hydraulic turbine will be confronted with serious questions such as unsteady pressure pulsation, cavitation, silt abrasion and flow-induced vibration, which will influence hydraulic turbine work. The study of such problems has practical significance as well as theoretical values. Numerical simulations are an important tool to study the internal flow features for a Francis hydro-turbine. The dissertation mainly focuses on several technical problems which are affecting the high efficiency and the stable operation of hydraulic turbine by using the state-of-the-art numerical methods in modern computational fluid dynamics. The main work and results are stated as following.
     (1) Numerical simulation of three dimensional transient turbulent flow in the whole flow passage of a Francis hydro turbine based upon the Reynolds averaged Navier-Stokes equations was conducted with the large eddy simulation (LES) technique on Smargorinsky-Lilly model and sliding mesh technology. The steady flows simulated with the standard k-ε model were used as the initial conditions of the flow in the unsteady simulation. The large scale structures evolving in spatially and temporally were visualized by using unstructured hybrid-grid and PISO algorithm. The evolution details of the large scale structures such as eddy from generate to shedding in vane cascades and blade passages are well captured at special case. The results show that LES can simulate well transient turbulent flow and its evolution in a Francis hydro turbine with complex geometry. The computational method provides some reference for exploring mechanism of eddy formation in a complex turbulent of hydraulic machinery.
     (2) Finely numerical simulation of the three-dimension unsteady turbulent flows in whole flow passage of a Francis hydro-turbine based on the uncompressible viscous Navier-Stokes equations was conducted. The steady turbulent flow was firstly simulated with the standard k-ε model in different opening cases of the moving guide vanes and then used as the initial flow of the unsteady flow to be simulated. The detached eddy simulation (DES) and the sliding mesh technique were applied to the simulation of the unsteady turbulent flow. The flow structures in the turbine in the different opening cases were well captured, and the evolving of the large scale structures was finely shown spatially and temporally. The results show that DES is able to well simulate the unsteady turbulent flow and to obtain the finely dynamic eddy structures in a Francis hydro-turbine. The research relies on the understandings of the vibrating of a hydro-turbine due to the turbulent flow.
     (3) The numerical simulation of three dimensional cavitation turbulent flow in Francis hydro-turbine passage was conducted based on the mixture model for homogeneous multiphase flow hypothesis in the Euler-Euler approach and the Schnerr and Sauer cavitation models. The standard k-s model, SIMPLEC algorithm and multiple reference frame model were used. The distributions of the water-vapor volume fraction in blade passage and draft tube were obtained in special case. The position and degree of cavition in turbine passage were analyzed. The results show that the method can be used to simulate the3D cavitation turbulent flow and true multiphase flow with cavitation in Francis turbine than one-phase model. The calculation provides significant reference for revelation the feature of gas-liquid phase flow of hydraulic machinery and optimal design for the runner. The study is valuable for improving the cavitation of performance in Francis turbine.
     (4) The numerical simulation of three dimensional two phases turbulent flow in Francis hydro-turbine passage was conducted based on the mixture model for an algebraic slip formulation in the Euler-Euler approach. The standard k-s model, SIMPLEC algorithm and multiple reference frame model were used. The distributions of the silt volume fraction in blade passage and draft tube were obtained in special case. The position and degree of silt abrasion in turbine passage were analyzed. The results show that the method can be used to simulate the3D turbulent flow and true multiphase flow with silt abrasion in Francis turbine. The calculation provides significant reference for revelation the feature of solid-liquid phase flow of hydraulic machinery and improved hydraulic performance. The study is valuable for improving the abrasion of performance in Francis turbine.
     (5) The numerical simulation of two dimensional transient turbulent flow in a guide vane passage of wicket gate in a benchmark hydro-turbine was conducted based on the ALE(Arbitrary Lagrangian-Eulerian) and dynamic mesh technology. The dynamical changes of the pressure, velocity and turbulence characteristic are simulated, using unstructured-triangle grid, standard k-ε turbulence model and PISO algorithm as the guide vane is moving at linear and polyline closure. The results show that the evolution of the flow field is unsteady with decrease of the vane opening. Based on these researches, the eddy structures evolving spatially and temporally were visualized. The calculation provides some reference for vortex-induced vibration in a complex turbulent flow of hydraulic machinery. The study is valuable for simulating the turbulence induced by the guide vane adjustment.
     (6) The fine numerical simulation of three dimensional dynamic turbulent flow around one moving guide vane in a channel, linear and nonlinear oscillating cascade of the wicket gate of a benchmark hydro turbine unit was conducted based on the uncompressible viscous Navier-Stokes equations flow and immersed boundary method (IBM) for moving boundary. The dynamical subgrid stresses (SGS) on Smagorinsky-Lilly model was used in large eddy simulation (LES). The distributions of the pressure and the topological structures of wake were well captured as closure of the vane. The production and evolution of the wake vortices passing the kinetic guide vane was clearly shown, and the physics of the structures were analyzed. The results show that the flow around a moving guide vane will be produced numerous complex transient structure whose induce water hammer of upstream duct system and transient behavior of downstream runner passage. The numerical results show that the numerical method of LES-IBM with dynamical Smagorinsky-Lilly SGS model is able to well simulate the interaction between high Reynolds number turbulent flow with motion of the vane closure and reveal the mechanism evolution properties of the wake to the downstream in the hydro turbine adjustment process.
引文
[1]曹楚生,张丛林.电能新形势下困惑难解有待深思的问题—水电与各种能源的可持续发展[J].水力发电学报,2012,31(3),1-4.
    [2]韩志勇,张国祥.科学发展观指导下的水电能源开发政策研究[J].水力发电,2008,34(8),1-4.
    [3]缪益平,纪昌明,李崇浩,等.基于可持续发展的水电能源系统规划[J].水力发电,2005,31(6),1-5.
    [4]何璟.加快水电及清洁可再生能源发展,实现电源结构的战略性调整[J].水力发电学报,2010,29(6),1-5.
    [5]常近时,寿梅华,于希哲.水轮机运行[M].北京:水利电力出版社,1983.
    [6]于波,肖惠民.水轮机原理与运行[M].北京:中国电力出版社,2008.
    [7]刘树红,吴玉林.水力机械流体力学基础[M].北京:中国水利水电出版社,2007.
    [8]任玉新,陈海昕.计算流体力学基础[M].北京:清华大学出版社,2006.
    [9]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [10]李春.水泵现代设计方法[M].上海:上海科学技术出版社,2010.
    [11]何志霞,王谦,袁建平.数值热物理过程—基本原理及CFD软件应用[M].镇江:江苏大学出版社,2009.
    [12]董亮,刘厚林,谈明高,等.离心泵全流场与非全流场数值计算[J].排灌工程机械学报,2012,30(3),274-278.
    [13]吴大转,黄滨,胡芳芳,等.不同离散格式下的离心泵内部流动数值模拟研究[J].工程热物理学报,2012,33(1),55-58.
    [14]袁寿其,梁赞,袁建平,等.离心泵进口回流流场特性的数值模拟及试验[J].排灌工程机械学报,2011,29(6),461-465.
    [15]马栋棋.新型自吸离心泵数值模拟及试验研究[J].排灌工程机械学报,2011,29(6),483-486.
    [16]祝磊,袁寿其,袁建平,等.不同型式隔舌离心泵动静干涉作用的数值模拟[J].农业工程学报,2011,27(10),50-55.
    [17]周水清,孔繁余,王志强,等.基于结构化网格的低比转数离心泵性能数值模拟[J].农业机械学报,2011,42(7),66-69.
    [18]全良桂,许海明,吕金喜,等.离心泵内部非定常数值模拟与压力脉动研究[J].热能动力工程,2011,26(3),295-298.
    [19]袁寿其,司乔瑞,薛菲,等.离心泵蜗壳内部流动诱导噪声的数值计算[J].排灌 工程机械学报,2011,29(2),93-98.
    [20]黄剑峰,王文全,文俊.离心泵流场及动力特性研究[J].云南农业大学学报,2009,24(6),886-890.
    [21]辛喆,吴俊宏,常近时.混流式水轮机的三维湍流流场分析与性能预测[J].农业工程学报,2010,26(3),118-124.
    [22]肖若富,孙卉,刘伟超,等.预开导叶下水泵水轮机S特性及其压力脉动分析[J].机械工程学报,2012,48(8),174-179.
    [23]梁武科,董彦同,赵道利,等.减压管状态对混流式水轮机流场的影响[J].动力工程,2008,28(4),600-604,615.
    [24]王正伟,陈柳,肖若富,等.低水头混流式水轮机蜗壳和尾水管结构变化对流动损失的影响研究[J].水力发电学报,2008,27(5),147-152.
    [25]肖若富,王正伟,罗永要.基于流固耦合的混流式水轮机转轮静应力特性分析[J].水力发电学报,2007,26(3),120-123,133.
    [26]郭鹏程,罗兴锜,覃延春.基于计算流体动力学的混流式水轮机性能预估[J].中国电机工程学报,2006,26(17),132-137.
    [27]马文生,周凌九.网格对水轮机流动计算结果的影响[J].水力发电学报,2006,25(1),72-75.
    [28]黄剑峰,张立翔,王文全,等.混流式水轮机全流道三维非定常流场数值模拟[J].水电能源科学,2009,27(1),155-157,214.
    [29]John F. Wendt. Computational Fluid Dynamics—An Introduction. Springer,2009.
    [30]阎超,于剑,徐晶磊,等.CFD模拟方法的发展成就与展望[J].力学进展,2011,41(5),562-589.
    [31]张立翔,杨柯.流体结构互动理论及其应用[M].北京:科学出版社,2004.
    [32]唐友刚.海洋工程结构动力学[M].天津:天津大学出版社,2008.
    [33]宋学官,蔡林,张华.ANSYS流固耦合分析与工程实例[M].北京:中国水利水电出版社,2012.
    [34]张阿漫,戴绍仕.流固耦合动力学[M].北京:国防工业出版社,2011.
    [35]叶正寅,张伟伟,史爱明.流固耦合力学基础及其应用[M].哈尔滨:哈尔滨工业大学出版社,2010.
    [36]刘欣.无网格方法[M].北京:科学出版社,2011.
    [37]Hughes T J R, Liu W K, Zimmerman T K. Lagrangian-Eulerian finite element formulations for incompressible viscous flows [J].Computer Methods in Applied Mechanics and Engineering,1981,29:329-349.
    [38]Peskin C S. The immersed boundary method[J]. Acta Numerica,2002,11:479-517.
    [39]Wang X, Liu W K. Extended immersed boundary method using FEM and RKPM[J]. Computer Methods in Applied Mechanics and Engineering,2004,193:1305-1321.
    [40]Zhang L, Gerstenberger A, Wang X, etal. Immersed finite element method[J]. Computer Methods in Applied Mechanics and Engineering,2004,193:2051-2067.
    [41]Rabczuk T,Gracie R,Song J H,etal. Immersed particle method for fluid-structure interaction[J]. International Journal for Numerical Methods in Engineering,2010, 81:48-71.
    [42]Axel Gerstenberger,Wolfgang A Wall. An Extended finite element method/Lagrange multiplier based approach for fluid-structure interaction[J]. Computer Methods in Applied Mechanics and Engineering,2008,197:1699-1714.
    [43]王学,高普云,吴志桥,等.基于同步交替法求解流体-弹性板耦合作用[J].力学学报,2010,42(5),856-862.
    [44]Harlow F H, Welch J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J]. The Physics of Fluids,1965,8:2182-2189.
    [45]Hirt C W, Nicols B D. Volume of Fluid(VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics,1981,39(1):201-225.
    [46]张立翔,郭亚昆,王文全.强耦合流激振动的建模及求解的预测多修正算法[J].工程力学,2010,27(5),36-44.
    [47]张立翔,王文全,姚激.混流式水轮机转轮叶片流激振动分析[J].工程力学,2007,24(8),143-150.
    [48]张立翔,郭亚昆,张洪明.基于GMRES算法的弹性结构强耦合小变形流激振动分析[J].应用数学和力学,2010,31(1),81-90.
    [49]王福军,赵薇,杨敏,等.大型水轮机不稳定流体与结构耦合特性研究Ⅰ:耦合模型及压力场计算[J].水利学报,2011,42(12),1385-1391.
    [50]王福军,赵薇,杨敏,等.大型水轮机不稳定流体与结构耦合特性研究Ⅱ:结构动应力与疲劳可靠性分析[J].水利学报,2012,43(1),15-21.
    [51]黄典贵.振动叶栅中三维振荡欧拉流场的压力消去法[J].中国电机工程学报,1999,19(4):37-40,45.
    [52]王磊,朱茹莎,常近时.青铜峡与八盘峡水电站水中泥沙含量对空化压力的影响[J].水力发电学报,2008,27(4),44-47.
    [53]王磊,常近时.考虑水质状况的空化流计算理论[J].农业机械学报,2010, 41(3),62-66,76.
    [54]周凌九,王正伟.基于空化流动计算的混流式水轮机尾水管的压力脉动[J].清华大学学报(自然科学版),2008,48(6),972-976.
    [55]刘德民,刘树红,吴玉林,等.基于修正空化质量传输方程的水轮机空化的数值模拟[J].工程热物理学报,2011,32(12),2048-2051.
    [56]王玲花.水轮发电机组振动及分析[M].郑州:黄河水利出版社,2011.
    [57]Weaver D S,Ziada S,Au-Yang M K,Chen S S,etal.Flow-induced vibration in power and process plants components-progress and prospects[J]. ASME Journal of Pressure Vessel Technology,2000,122:339-348.
    [58]樊世英.大中型水力发电机组的安全稳定运行分析[J].中国电机工程学报,2012,32(9),140-148.
    [59]吴玉林,刘树红.粘性流体力学[M].北京:中国水利水电出版社,2007.
    [60]R.A.Clark,J.H.Ferziger,W.C.Reynolds.Evaluation of Subgrid-Scale Models Using an Accurately Simulated Turbulent Flow[J]. Journal of Fluid Mechanics,1979,91:1-16.
    [61]Ray M.M., Moin P.Direct Simulation of Turbulent Flow Using Finite-difference Scheme[J]. Journal of Computational Physics,1991,96(l):15-53.
    [62]Kim J.,Moin P.Moser R. Turbulent Statistics in Fully Developed Channel Flow at Low Reynolds Number[J] Journal of Fluid Mechanics,1987,177:133-166.
    [63]Verzicco R., Orlandi P. Direct Simulation of the Transitional Regime of a Circular Jet[J]. Phys. Fluids,1994,6(2):751-759.
    [64]Per-Olov Asen, Gunilla Kreiss, Dietmar Rempfer. Direct numerical simulations of localized disturbances in pipe Poiseuille flow[J]. Computers & Fluids,2010,39(6):926-935.
    [65]B.E.Launder, D.B.Spalding.Lectures in Mathematical Models of Turbulence. Academic Press, London,1972.
    [66]V.Yakhot, S.A.Orzag. Renormalization group analysis of turbulence:basic theory[J]. J. Scient Comput.1:3-11,1986
    [67]李人宪.有限体积法基础[M].北京:国防工业出版社,2008.
    [68]J. O. Hinze. Turbulence. McGraw-Hill Publishing Co., New York,1975.
    [69]J. Smagorinsky, General circulation experiments with the primitive equations:I. The basic experiment[J]. Monthly Weather Review,1963,91(3):99-165.
    [70]Germano M, Piomelli U,Moin P,etal.A dynamic subgrid-scale eddy viscosity model[J]. Phys Fluids A,1991,3(7):1760-1765.
    [71]D. K. Lilly. A Proposed Modification of the Germano Subgrid-Scale Closure Model[J]. Physics of Fluids,4:633-635,1992.
    [72]S.-E. Kim. Large eddy simulation using unstructured meshes and dynamic subgrid scale turbulence models. Technical Report AIAA-2004-2548, American Institute of Aeronautics and Astronautics,34th Fluid Dynamics Conference and Exhibit, June 2004.
    [73]W.-W. Kim and S. Menon. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. Technical Report AIAA-97-0210, American Institute of Aeronautics and Astronautics,35th Aerospace Sciences Meeting, Reno, NV, January 1997.
    [74]周俊波,刘洋等FLUENT6.3流场分析从入门到精通[M].北京:机械工业出版社,2012.
    [75]于勇FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008
    [76]M. Shur, P. R. Spalart, M. Strelets, and A. Travin. Detached-Eddy Simulation of an Airfoil at High Angle of Attack. In 4th Int. Symposium on Eng. Turb. Modeling and Experiments, Corsica, France, May 1999.
    [77]F. R. Menter, M. Kuntz, and R. Langtry. Ten Years of Experience with the SST Turbulence Model. In K. Hanjalic, Y. Nagano, and M. Tummers, editors, Turbulence, Heat and Mass Transfer 4, pages 625-632. Begell House Inc.,2003.
    [78]Hirt C W, Amsden A A, and Cook J L. An arbitrary Lagrangian-Eulerrian computing method for all flow speeds. Journal of Computational Physics,1974,14(3):227-253.
    [79]Song C C S, Chen X Y, He J,etal. Using Computational Tools for Hydraulic Design of Hydropower Plants[J].Hydro Review,1995,7:114-121.
    [80]Xiangying Chen等.采用大涡模拟方法对混流式水轮机系统进行综合模拟[J].国外大电机,2001,1:64-67.
    [81]杨建明,刘文俊,吴玉林.用大涡模拟方法计算尾水管内非定常周期性湍流[J].水利学报,2001,8:79-84.
    [82]WANG Wen-quan, ZHANG Li-xiang, YAN Yan. Large Eddy Simulation of Turbulent Flow Considering Inflow Wakes in a Francis Turbine Blade Passage[J]. Journal of Hydrodynamics,2007,19(2):201-209.
    [83]B. CARUELLE, F. DUCROS. Detached-Eddy Simulations of Attached and Detached Boundary Layers[J]. International Journal of Computational Fluid Dynamics,2003, 17(6):433-451.
    [84]李相鹏,周昊,岑可法.涡结构对小颗粒在圆管背风面碰撞分布的影响[J].浙江大学学报(工学版),2006,40(4):605-609.
    [85]张宇宁,刘树红,吴玉林.混流式水轮机压力脉动精细模拟和分析[J].水力发电学报,2009,28(1):183-186.
    [86]彭玉成,张克危,占梁梁,等.三峡左岸电厂6F机组小开度工况异常振动动态数值解析[J].水力发电学报,2008,27(6):157-162.
    [87]ABE K. A hybrid LES/RANS approach using an anisotropy-resolving algebraic turbulence model[J]. International Journal of Heat and Fluid Flow,2005,26 (2):204-222.
    [88JSPALART P. R. Strategies for turbulence modeling and simulations[J]. International Journal of Heat and Fluid Flow,2000,21(3):252-263.
    [89]SCHMIDT S, THIELE F. Comparison of numerical methods applied to the flow over wall-mounted cubes[J]. International Journal of Heat and Fluid Flow,2002,23 (3):330-339.
    [90]XU Chang-yue, CHEN Li-wei, LU Xi-yun. Large-eddy and detached-eddy simulations of the separated flow around a circular cylinder[J]. Journal of Hydrodynamics, Ser. B, 2007,19(5):559-563.
    [91]T. Nishino, G.T. Roberts, X. Zhang. Unsteady RANS and detached-eddy simulations of flow around a circular cylinder in ground effect[J]. Journal of Fluids and Structures, 2008,24:18-33.
    [92]LIU Zhi-hua, XIONG Ying, WANG Zhan-zhi, etal. Numerical simulation and experimental study of the new method of horseshoe vortex control [J]. Journal of Hydrodynamics, Ser. B,2010,22(4):572-581.
    [93]Kyle D. Squires, Vivek Krishnan, James R. Forsythe. Prediction of the flow over a circular cylinder at high Reynolds number using detached-eddy simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(10-11):1528-1536.
    [94]李霞,孙芦忠,尹洪波,等.机动式高架栈桥在风浪耦合作用下的位移响应[J].振动与冲击,2011,30(11):117-121.
    [95]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社,2007.
    [96]吴玉林,唐学林,刘树红,徐宇.水力机械空化和固液两相流体动力学[M].北京:中国水利水电出版社,2007.
    [97]Pardeep Kumar, R. P. Saini. Study of cavitation in hydro turbines—A review [J]. Renewable and Sustainable Energy Reviews,2010,14(1):374-383.
    [98]蒲中奇,张伟,施克仁,等.水轮机空化的小波奇异性检测研究[J].中国电机工程学报,2005,25(8):105-109.
    [99]张俊华,张伟,蒲中奇,等.轴流转桨式水轮机空化程度声信号辨识研究[J].中国电机工程学报,2006,26(8):72-76.
    [100]常近时.工质为浑水时水泵与水轮机的空化与空蚀[J].排灌机械工程学报,2010,28(2):93-97.
    [101]崔宝玲,万忠,朱祖超,等.具有诱导轮的高速离心泵汽蚀特性试验[J].农业机械学报,2010,41(3):96-99.
    [102]苏永生,王永生,段向阳,等.离心泵空化试验研究[J].农业机械学报,2010,41(3):77-80.
    [103]张博,王国玉,黄彪,等.绕水翼空化非定常动力特性的时频分析[J].实验流体力学,2009,23(3):44-49.
    [104]Vedanth Srinivasan, Abraham J. Salazar, Kozo Saito. Numerical simulation of cavitation dynamics using a cavitation-induced-momentum-defect (CIMD) correction approach[J]. Applied Mathematical Modelling,2009,33(3):1529-1559.
    [105]G. Wang, M. Ostoja-Starzewski. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil[J]. Applied Mathematical Modelling,2007,31(3):417-447.
    [106]张露颖,符松.钝体绕流空化的数值研究[J].工程力学,2009,26(12):46-51.
    [107]赵静,魏英杰,张嘉钟,等.不同湍流模型对空化流动模拟结果影响的研究[J].工程力学,2009,26(8):233-238.
    [108]Yoshirera K, Kato H, Yamagushi H, Myanage M. Experimental study on the internal flow of a sheet cavity [C]. In Cavitation and Multiphase Flow, ASME FED,1998,64: 94-98.
    [109]Shen Y T, Gowing S. Cavitation effects on foil lift[C]. In Cavitation and Multiphase Flow, ASME FED,1993,153:209-213.
    [110]吴墒锋,吴玉林,刘树红.轴流转桨式水轮机性能预测及运行综合特性曲线绘[J].水力发电学报,2008,27(4):121-125.
    [111]张乐福,张亮,张梁,等.混流式水轮机的三维空化湍流计算[J].水力发电学报,2008,27(1):135-138.
    [112]张梁,吴玉林,刘树红,等.混流式水轮机内部流场的三维空化湍流计算[J].工程热物理学报,2007,28(4):598-600.
    [113]陈庆光,吴玉林,刘树红,等.轴流式水轮机内三维空化湍流的数值研究[J].水力发电学报,2006,25(6):130-135.
    [114]王磊,常近时.混流式水轮机转轮优化设计的空化流计算[J].农业机械学报,2009,40(9):98-102.
    [115]谭磊,曹树良,桂绍波,等.带有前置导叶离心泵空化性能的试验及数值模拟[J].机械工程学报,2010,46(18):177-182.
    [116]郝宗睿,王乐勤,吴大转.水翼非定常空化流场的数值模拟[J]. 浙江大学学报(工学版),2010,44(5):1043-1048.
    [117]李军,刘立军,李国君,等.离心泵叶轮内空化流动的数值预测[J].工程热物理学报,2007,28(6):948-950.
    [118]李军,刘立军,李国君,等.空化数对离心泵水力性能影响的数值研究[J].工程热物理学报,2010,31(5):773-776.
    [119]吴达人.离心泵流体力学[M].北京:中国电力出版社,1998.
    [120]Knapp R T, Daily J W, Hammitt F G. Cavitation.McGraw-Hill, New York,1970.
    [121]吴玉林,何燕雨,曹树良.水轮机转轮内部的三维固液两相紊流计算[J].水利学报,1998,(3):17-21.
    [122]李琪飞,李仁年,韩伟,等.蜗壳内部含沙水两相流动的CFD模拟分析[J].排灌机械,2007,25(5):61-64.
    [123]张海库,刘小兵,何婷,等.含沙河流中混流式水轮机全流道三维性能预测[J].水电能源科学,2009,27(2):158-160.
    [124]钱忠东,王焱,郜元勇.双吸式离心泵叶轮泥沙磨损数值模拟[J].水力发电学报,2012,31(3):223-229.
    [125]郑源,鞠小明,程云山.水轮机[M].北京:中国水利水电出版社,2007.
    [126]温正,石良辰,任毅如.FLUENT流体计算应用教程[M].北京:清华大学出版社,2009.
    [127]Brennen.C.E. Cavitation and Bubble Dynamics. Oxford University Press,1995.
    [128]GH. Schnerr and J. Sauer. Physical and Numerical Modeling of Unsteady Cavitation Dynamics. In Fourth International Conference on Multiphase Flow, New Orleans, USA,2001.
    [129]M. Manninen, V. Taivassalo, S. Kallio. On the mixture model for multiphase flow. VTT Publications 288, Technica Research Centre of Finland,1996.
    [130]刘君,白晓征,郭正.非结构动网格计算方法—及其在包含运动界面的流场模拟中的应用[M].长沙:国防科技大学出版社,2009.
    [131]郑源,张健.水力机组过渡过程[M].北京:北京大学出版社,2008.
    [132]陈家远.水力过渡过程的数学模拟及控制[M].成都:四川大学出版社,2008.
    [133]巨江.工程水力学数值仿真与可视化[M].北京:中国水利水电出版社,2010.
    [134]杨开林.电站与泵站中的水力瞬变及调节[M].北京:中国水利水电出版社,2000.
    [135]常近时.水力机械装置过渡过程[M].北京:高等教育出版社,2005.
    [136]L He.Three-dimensional unsteady Navier-Stokes analysis of stator-rotor interaction in axial-flow turbines[C]. Proceedings of the Institution of Mechanical Engineers.2000,214,13-22.
    [137]B.S. Yilbas, M.O. Budair, M. Naweed Ahmed. Numerical simulation of the flow field around a cascade of NACA0012 airfoils-effects of solidity and stagger[J].Computer methods in applied mechanics and engineering,1998,158,143-154.
    [138]V Michelassil, J G Wissink, W Rodi. Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade:a comparison[C].Proceedings of the Institution of Mechanical Engineers,2003,217,403-411.
    [139]I. JADIC, R. M. C. SO, M. P. MIGNOLET. ANALYSIS OF FLUID-STRUCTURE INTERACTIONS USING A TIME-MARCHING TECHNIQUE[J]. Journal of Fluids and Structures,1998,12,631-654.
    [140]王春林,郑海霞,张浩,等.可调叶片高比转速混流泵内部流场数值模拟[J].排灌机械,2009,27(1):30-34.
    [141]朱红钧,林元华,谢龙汉FLUENT12流体分析及工程仿真[M].北京:清华大学出版社,2011.
    [142]周俊杰,徐国权,张华俊FLUENT工程技术与实例分析[M].北京:中国水利水电出版社,2010.
    [143]江帆,黄鹏Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    [144]朱红钧,林元华,谢龙汉FLUENT流体分析及仿真实用教程[M].北京:人民邮电出版社,2010.
    [145]张德良.计算流体力学教程[M].北京:高等教育出版社,2010.
    [146]Peskin C S.Flow patterns around heart valves:a numerical method[J]. Journal of Computational Physics,1972,10:252-271.
    [147]M. Meyer,A. Devesa, S. Hickel,etal. A conservative immersed interface method for Large-Eddy Simulation of incompressible flows[J]. Journal of Computational Physics, 2010,229:6300-6317.
    [148]P.H. Chiu, R.K. Lin, Tony W.H. Sheu. A differentially interpolated direct forcing immersed boundary method for predicting incompressible Navier-Stokes equations in time-varying complex geometries[J] Journal of Computational Physics,2010,229: 4476-4500.
    [149]Marcos Vanella, Patrick Rabenold, Elias Balaras. A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid-structure interaction problems[J] Journal of Computational Physics,2010,229:6427-6449.
    [150]Chuan-Chieh Liao, Chao-An Lin. Simulations of natural and forced convection flows with moving embedded object using immersed boundary method[J].Computer Methods in Applied Mechanics and Engineering,2012,213-216:58-70.
    [151]Yoichiro Mori, Charles S. Peskin. Implicit second-order immersed boundary methods with boundary mass[J].Computer Methods in Applied Mechanics and Engineering, 2008,197:2049-2067.
    [152]Frank Muldoon,Sumanta Acharya. A divergence-free interpolation scheme for the immersed boundary method[J]. International Journal for Numerical Methods in Fluids, 2008,56:1845-1884.
    [153]Tim Colonius, Kunihiko Taira. A fast immersed boundary method using a null space approach and multi-domain far-field boundary conditions[J].Computer Methods in Applied Mechanics and Engineering,2008,197:2131-214.
    [154]Xiaodong Wang, Wing Kam Liu. Extended immersed boundary method using FEM and RKPM[J].Computer Methods in Applied Mechanics and Engineering,2004, 193:1305-1321.
    [155]F. Ilinca, J.-F. Hetu. A finite element immersed boundary method for fluid flow around moving objects[J]. Computers & Fluids,2010,39:1656-1671.
    [156]Jian Deng, Xue-Ming Shao, An-Lu Ren. A new modification of the immersed-boundary method for simulating flows with complex moving boundaries [J]. International Journal for Numerical Methods in Fluids,2006,52:1195-1213.
    [157]Wei-Xi Huang, Hyung Jin Sung. An immersed boundary method for fluid-flexible structure interaction[J].Computer Methods in Applied Mechanics and Engineering, 2009,198:2650-2661.
    [158]Jung Hee Seo, Rajat Mittal. A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries[J]. Journal of Computational Physics,2011,230:1000-1019.
    [159]Mark N. Linnick, Hermann F. Fasel. A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains[J]. Journal of Computational Physics,2005,204:157-192.
    [160]Wei-Xi Huang, Cheong Bong Chang, Hyung Jin Sung.An improved penalty immersed boundary method for fluid-flexible body interaction[J]. Journal of Computational Physics,2005,230:5061-5079.
    [161]Yi Sui, Yong-Tian Chew, Partha Roy,etal. A hybrid immersed-boundary and multi-block lattice Boltzmann method for simulating fluid and moving-boundaries interactions[J]. International Journal for Numerical Methods in Fluids,2007,53:1727-1754.
    [162]C. Shu, N. Liu, Y.T. Chew. A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder[J]. Journal of Computational Physics,2007,226:1607-1622.
    [163]Liang Ge, Fotis Sotiropoulos. A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries[J]. Journal of Computational Physics,2007,225:1782-1809.
    [164]J. Yang, S. Preidikman, E. Balaras. A strongly coupled, embedded-boundary method for fluid-structure interactions of elastically mounted rigid bodies[J]. Journal of Fluids and Structures,2008,24:167-182.
    [165]R. Mittal, H. Dong, M. Bozkurttas,etal. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries[J]. Journal of Computational Physics,2008,227:4825-4852.
    [166]Johan Revstedt. A virtual boundary method with improved computational efficiency using a multi-grid method[J]. International Journal for Numerical Methods in Fluids,2004,45:775-795.
    [167]Rainald Lohner, Juan R. Cebral, Fernando E. Camelli,etal. Adaptive embedded and immersed unstructured grid techniques[J].Computer Methods in Applied Mechanics and Engineering,2008,197:2173-2197.
    [168]Dharshi Devendran, Charles S. Peskin. An immersed boundary energy-based method for incompressibleviscoelasticity[J]. Journal of Computational Physics,2012, 231:4613-4642.
    [169]Giuseppe Bonfigli, Patrick Jenny. An efficient multi-scale Poisson solver for the incompressible Navier-Stokes equations with immersed boundaries[J]. Journal of Computational Physics,2009,228:4568-4587.
    [170]C.Ji, A. Munjiza, J.J.R. Williams. A novel iterative direct-forcing immersed boundary method and its finite volume applications[J]. Journal of Computational Physics,2012,231:1797-1821.
    [171]Thomas Y. Hou, Zuoqiang Shi. An efficient semi-implicit immersed boundary method for the Navier—Stokes equations[J]. Journal of Computational Physics,2008,227: 8968-8991.
    [172]F. Ilinca, J.-F. Hetu. Numerical simulation of fluid-solid interaction using an immersed boundary finite element method[J]. Computers & Fluids,2012,59:31-43.
    [173]Kun Luo, Zeli Wang, Jianren Fan. A modified immersed boundary method for simulations of fluid-particle interactions[J].Computer Methods in Applied Mechanics and Engineering,2007,197:36-46.
    [174]Tobias Kempe, Jochen Frohlich. An improved immersed boundary method with direct forcing for the simulation of particle laden flows[J]. Journal of Computational Physics,2012,231:3663-3684.
    [175]Jianming Yang, Elias Balaras. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries[J]. Journal of Computational Physics,2006,215:12-40.
    [176]C. W. Li, L. L. Wang. An immersed boundary nite dierence method for LES of flow around bluff shapes[J]. International Journal for Numerical Methods in Fluids, 2004,46:85-107.
    [177]Shizhao Wang, Xing Zhang. An immersed boundary method based on discrete stream function formulation for two-and three-dimensional incompressible flows [J]. Journal of Computational Physics,2011,230:3479-3499.
    [178]Jung-I1 Choi, Roshan C. Oberoi, Jack R. Edwards,etal. An immersed boundary method for complex incompressible flows[J]. Journal of Computational Physics,2007, 224:757-784.
    [179]M.D. de Tullio, P. De Palma, G. Iaccarino,etal. An immersed boundary method for compressible flows using local grid refinement[J]. Journal of Computational Physics, 2007,225:2098-2117.
    [180]Dartzi Pan. An immersed boundary method for incompressible flows using volume of body function[J]. International Journal for Numerical Methods in Fluids, 2006,50:733-750.
    [181]Ming-Chih Lai, Yu-Hau Tseng, Huaxiong Huang. An immersed boundary method for interfacial flows with insoluble surfactant[J]. Journal of Computational Physics, 2008,227:7279-7293.
    [182]S.E. Hieber, P. Koumoutsakos. An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers[J]. Journal of Computational Physics,2008,227:8636-8654.
    [183]Shen-Wei Su, Ming-Chih Lai, Chao-An Lin. An immersed boundary technique for simulating complex flows with rigid boundary[J]. Computers & Fluids,2007,36:313-324.
    [184]Sheng Xu, Z. Jane Wang. An immersed interface method for simulating the interaction of a fluid with moving boundaries[J]. Journal of Computational Physics, 2006,216:454-493.
    [185]G. Morgenthal, J.H. Walther. An immersed interface method for the Vortex-In-Cell algorithm[J]. Computers & Fluids,2007,85:712-726.
    [186]D.V. Le, B.C. Khoo, J. Peraire. An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries [J]. Journal of Computational Physics,2006,220:109-138.
    [187]Haoxiang Luo, Rajat Mittal,Xudong Zheng,etal. An immersed-boundary method for flow-structure interaction in biological systems with application to phonation[J]. Journal of Computational Physics,2008,227:9303-9332.
    [188]D.V. Le, J. White, J. Peraire,etal. An implicit immersed boundary method for three-dimensional fluid-membrane interactions [J]. Journal of Computational Physics,2009, 228:8427-8445.
    [189]Tong Gao, Yu-Heng Tseng, Xi-Yun Lu. An improved hybrid Cartesian/immersed boundary method for fluid-solid flows [J]. International Journal for Numerical Methods in Fluids,2007,55:1189-1211.
    [190]Philippe Poncet. Analysis of an immersed boundary method for three-dimensional flows in vorticity formulation[J]. Journal of Computational Physics,2009,228:7268-7288.
    [191]G.D. Weymouth, Dick K.P. Yue. Boundary data immersion method for Cartesian-grid simulations of fluid-body interaction problems[J]. Journal of Computational Physics, 2011,230:6233-6247.
    [192]Rohallah Tavakoli. CartGen:Robust, efificient and easy to implement uniform/octree/embedded boundary Cartesian grid generator[J]. International Journal for Numerical Methods in Fluids,2008,57:1753-1770.
    [193]Rainald Lohner,Sunil Appanaboyina, Juan R. Cebral. Comparison of body-fitted, embedded and immersed solutions of low Reynolds-number 3-D incompressible flows[J]. International Journal for Numerical Methods in Fluids,2008,57:13-30.
    [194]Eunok Jung, Sookkyung Lim, Wanho Lee,etal. Computational models of valveless pumping using the immersed boundary method [J].Computer Methods in Applied Mechanics and Engineering,2008,197:2329-2339.
    [195]An Liang, Xiaodong Jing, Xiaofeng Sun. Constructing spectral schemes of the immersed interface method via a global description of discontinuous functions[J]. Journal of Computational Physics,2008,227:8341-8366.
    [196]Yaling Liu, Lucy Zhang, Xiaodong Wang,etal. Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics[J]. International Journal for Numerical Methods in Fluids,2004,46:1237-1252.
    [197]Seongwon Kang, Gianluca Iaccarino, Frank Ham. DNS of buoyancy-dominated turbulent flows on a bluff body using the immersed boundary method[J]. Journal of Computational Physics,2009,228:3189-3208.
    [198]Y. T. Feng, K. Han, D. R. J. Owen. Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows:Computational issues [J]. International Journal for Numerical Methods in Engineering,2007,72:1111-1134.
    [199]A.J. Gil, A. Arranz Carreno, J. Bonet, etal. The Immersed Structural Potential Method for haemodynamic applications[J]. Journal of Computational Physics,2010,229: 8613-8641.
    [200]Anderson DM, McFadden GB, Wheeler AA. Diffuse-interface methods in fluid mechanics[J]. Annu. Rev. Fluid Mech,1998,30:139-65.
    [201]Scardovelli R, Zaleski S. Direct numerical simulation of free-surface and interfacial flows[J]. Annu. Rev. Fluid. Mech,1999,31:567-603.
    [202]谢胜百,单鹏.两种浸入式边界方法的比较[J].力学学报,2009,41(5):618-627.
    [203]明平剑,张文平,卢熙群,等.基于非结构化网格和浸入边界的流固耦合数值模拟[J].水动力学研究与进展,A辑,2010,25(3):323-331.
    [204]王亮,吴锤结.“槽道效应”在鱼群游动中的节能机制研究[J].力学学报, 2011,43(1):18-23.
    [205]何国毅,张曙光,张星.摆动水翼的推力与流场结构数值研究[J].应用数学和力学,2010,31(5):553-560.
    [206]卢浩,张会强,王兵,等.横向粗糙元壁面槽道湍流的大涡模拟研究[J].工程热物理学报,2012,33(7):1163-1167.
    [207]宫兆新,鲁传敬,黄华雄.虚拟解法分析浸入边界法的精度[J].应用数学和力学,2010,31(10):1141-1151.
    [208]Rajat Mittal, Gianluca Iaccarino. Immersed Boundary Methods[J]. Annu. Rev. Fluid Mech,2005,37:239-261.
    [209]Goldstein D.,Handler R.,Sirovich L.. Modeling a no-slip flow boundary with an external force field[J]. Journal of Computational Phsyics,1993,105:354-366.
    [210]E.M.Saiki,S.Biringen. Numerical simulation of cylinder in uniform flow:Application of a virtual boundary method[J]. Journal of Computational Physics,1996,123:450-465.
    [211]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,1999.
    [212]朱克勤,许春晓.粘性流体力学[M].北京:高等教育出版社,2009.
    [213]庄礼贤,尹协远,马晖扬.流体力学[M].合肥:中国科学技术大学出版社,2009.
    [214]阎超,钱翼稷,连祺祥.粘性流体力学[M].北京:北京航空航天大学出版社,2005.
    [215]童秉纲,尹协远,朱克勤.涡运动理论(第2版)[M].合肥:中国科学技术大学出版社,2009.
    [216]Hunt J C R, Wray A A, Moin P. Eddies, stream and convergence zones in turbulent flows. Technical Report CTR-S88, Stanford Univesity.1988,193-208.
    [217]Dallman U, Hilgenstock A, Schulte-Werning B,etal.On the Footprints of Three-Dimensional Separated Vortex Flows Around Blunt Bodies.AGARD Conf. Proc.CP-494.1991.
    [218]Jeong J, Hussain F. On the identification of a vortex. Journal of Fluid Mechanics, 1995,285:69-94.
    [219]Wu J-Z,Ma H-Y,Zhou M-D.Vorticity and Vortex Dynamics[M].Berlin:Springer-Verlag,2006.
    [220]张建文,杨振亚,张政.流体流动与传热过程的数值模拟基础与应用[M].北京:化学工业出版社,2009.