用户名: 密码: 验证码:
量子动力学中并行算法的发展与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对量子动力学理论研究中并行算法问题,发展了Shepard插值方法的计算势能的GPU算法;研究了范德华体系振转光谱的束缚态理论计算的MPI/OpenMP并行算法;研究了X+NH3反应的七维量子动力学理论方法和MPI/OpenMP并行算法,并应用于研究Cl (2P)+NH3/ND3反应。本论文的研究工作如下:
     1.采用改进的Shepard插值方法构造的势能面被广泛用于化学反应动力学研究,这种构造方法通过对从头算数据点进行插值来获得任意构型的能量,采用该方法构造的势能面精度高,能够更精准地研究化学反应动力学。但是在实际运用中,插值势能面计算量大,从而限制了该方法的应用。本工作基于GPU的强大计算能力和高度并行性特点,发展采用Shepard插值方法计算势能的GPU新算法。并以H+H2O? H2+OH, H+NH3?H2NH2,H+CH4?H2+CH3这3个反应的势能面为例对算法进行验证,发现GPU算法相对CPU算法具有明显的优越性,并且GPU加速比随着体系增大而增大,随着数据点增加而增加。
     2.范德华体系振转光谱的束缚态理论计算需求精确求解Schrodinger方程,由于体系的波函数展开为各个坐标基函数的乘积,所以体系基函数的大小随原子数增加呈指数增加,计算时间和内存需求也随之增加。需要应用并行化计算方案使计算得以实现。我们针对线性分子-线性分子组成的范德华体系振转光谱的理论研究,开发了束缚态计算的并行算法,采用节点间采用MPI和节点内采用OpenMP的并行方案,并针对N2O-N2O体系验证了该并行算法,结果显示计算效率明显提高,加速比是1.67倍到8.6倍。
     3. Cl+NH3在过渡态前后都有较深的势阱,对量子动力学理论计算提出了挑战。在动力学计算中,我们采用X+YCZ2类型的七维量子动力学模型,其中不参与反应的NH2基团在反应过程中保持不变,采用该模型我们对Cl+NH3和Cl+ND3两个反应进行了研究,计算结果显示Cl+NH3和Cl+ND3有相似的动力学行为,而且反应几率都是非常小,与实验观测一致。由于该反应Cl+ND3比较复杂,Cl原子有较重的质量,因此,基函数大小为3.175*109,势能格点的数目为3.78*1010,传播时间为是25000a.u,是当前量子动力学研究中计算量最大的工作之一。
For the problem of parallel algorithms of quantum dynamics, GPU algorithm of accelerating modified Shepard interpolated potential energy calculations is developed; the OpenMP and MPI parallel algorithms of bound state calculation of vibrational and rotational spectrum of van der Waals(vdW) system is investigated; the method of seven dimension quantum dynamics theory and MPI/OpenMP parallel algorithms of X+NH3reaction is investigated, and this method and algorithm is applied to study the reaction of Cl (2P)+NH3/ND3. The present thesis is organized as follows:
     1. The potential energy surfaces constructed with the Modified Shepard interpolation scheme have been widely used in studies of chemical reaction dynamics. The energy of any configuration is obtained by interpolation of ab initio data points. The potential energy surface constructed using this method is high precision, more precise for research of chemical reaction dynamics. However, in practical application, the interpolation potential energy surface is computationally intensive, which limits the application of this method. This work is based on GPU computing power and highly parallel features, development of GPU algorithm of the Shepard interpolation method to calculate the potential energy. The algorithm is veritied through the potential energy surfaces of the three reactions of H+H2O(?)H2+OH, H+NH3(?)H2+NH2, H+CH4(?)H2+CH3. We find that the GPU algorithm has obvious advantages relative CPU algorithm, GPU speedup increases with the system size and speedup inceases with the increase of the number of data points in the PES(Potential Energy Surface).
     2. The bound state calculation of vibrational and rotational spectrum of vdW system needs exact solution of the Schrodinger equation. Because the wave function of the system is expanded as the product of the basis function of each degree of freedom, so the size of basis set increase exponentially with the number of atoms. Computation time and memory requirements have increased. Computing can be achieved by application of parallel computing. Parallel algorithms of bound state calculation using MPI between nodes and OpenMP in node is developed for the research of linear molecules-linear molecular vibrational and rotational spectrum of vdW system, and the parallel algorithm is verified by using N2O-N2O system, the results show that the computational efficiency is significantly improved, the speedup is1.67times to8.6times.
     3. That there are deep wells before and after the transition state is a challenge for theoretical calculation of quantum dynamics. In the calculation of dynamics, a seven-dimensional quantum dynamics model for the reaction X+YCZ2is employed. NH2group which does not participate in the reaction remains unchanged during the reaction, the two reactions of Cl+NH3and Cl+ND3are investigated by using this model. The calculated results show that C1+NH3and Cl+ND3have similar dynamic behavior and the reaction probabilities are small, consistent with the experiment observations. Because the reaction Cl+ND3is more complex and the Cl atom has heavy mass, so the size of the total basis function is3.175*109, the number of potential energy nodes is3.78*1010, the entire propagation time is25,000a. u. This is one of the largest computational work of current quantum dynamics study.
引文
[1]http://www.nvidia.com/object/GPU-applications.html(OL).
    [2]Harvey M J, Giupponi G, De Fabritiis G. ACEMD:Accelerating biomolecular dynamics in the microsecond time scale[J]. J. Chem. Theory. Comput.2009, 5(6):1632-1639.
    [3]Schmid N, Christ C D, Christen M, Eichenberger A P, Van Gunsteren W F. Architecture implementation and parallelization of the grooms software for biomolecular simulation[J]. Comput. Phys. Comm.2012,183(4):890-903.
    [4]Brown W M, Wang P, Plimpton S J. Tharrington A N, Implementing molecular dynamics on hybrid high performance computer-short range forces[J]. Comput. Phys. Comm.2011,182(4):898-911.
    [5]Morozov I V, Kazennov A M, Bystryi R G, Norman G E, Pisarev V V, stegailov V V. Molecular dynamics simulations of the relaxation processes in the condensed matter on GPUs[J]. Comput. Phys. Comm.,2011,182(9):1974-1978.
    [6]Levine B G, Stone J E, Kohlmeyer A. Fast analysis of molecular dynamics trajectories with graphics processing units-radial distribution function histogramming[J]. J. Comput. Phys.,2011,230(9):3556-3569.
    [7]Ganesan N, Bauer B A, Lucas T R, Patel S, Taufer M. Structural, Dynamics, and electrostatic properties of fully hydrated dmpc bilayers from molecular dynamics simulations accelerated with graphical processing units(GPUs)[J]. J. Comput. Chem.,2011,32(14):2958-2973.
    [8]Nguyen T D, Phillips C L, Anderson J A, Glotzer S C. Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units[J]. Comput. Phys. Comm.,2011,182(11):2307-2313
    [9]Colberg P H, Hoefing F. Highly accelerated simulations of glassy dynamics using GPUs:Caveats on limited floating-point precision[J]. Comput. Phys. Comm.,2011, 182(5):1120-1129.
    [10]Rapaport D C. Enhanced molecular dynamics performance with a programmable graphics processor[J]. Comput. Phys. Comm.2011,182(4):926~934.
    [11]Gotz A W, Williamson M J, Xu D, Poole D, Grand S L, Walker R C. Routine nicrosecond molecular dynamics simulations with AMBER on GPUs.1. Generalized born[J]. J. Chem. Theory Comput.,2012,8(5):1542~1555.
    [12]van der spoel D, Hess B. Gromacs-the road ahead[J]. Wiley Interdiscip. Rev.: Comput Mol Sci.,2011, 1(5):710~715.
    [13]Anderson J A, Lorenz C D, Travesset A. General purpose molecular dynamics simulations fully implemented on graphics processing units[J]. J. Comput. Phys., 2008,227(10):5342~5359.
    [14]https://simtk. org/home/openmm(OL)
    [15]Stone J E, Phillips J C, Freddolino P L, Hardy D J, Trabuco L G, Schulten K. Accelerating molecular modeling applications with graphics processors[J]. J. Comput. Chem.,2007,28(16):2618~2640.
    [16]Ufimtsev I S, Luehr N, Martinez T J. Charge transfer and polarization in solvated proteins from ab initio molecular dynamics[J]. J. Phys. Chem. Lett.2011, 2(14):1789~1793.
    [17]Ufimtsev I S, Martinez T J. Graphical processing units for quantum chemistry[J]. Comput. Sci. Eng.,2008,10(6):26~34.
    [18]Anderson A G, Godard 111 W A, Schroeder P. Quantum monte carlo on graphical processing units[J]. Comput. Phys. Comm.,2007,177(3):298-306.
    [19]Yasuda K. Accelerating density functional calculations with graphics processing unit[J]. J. Chem. Theory Comput.,2008,4(8):1230~1236.
    [20]Ufimtsev I S, Martinez T J. Quantum chemistry on graphical processing units.1. strategies for two-electron integral evaluation[J]. J. Chem. Theory Comput.,2008, 4(2):222~231.
    [21]Ufimtsev I S, Martinez T J. Quantum chemistry on graphical processing units.2. direct self-consistent-field implementation[J]. J. Chem. Theory Comput.,2009, 5(4):1004~1015.
    [22]Ufimtsev I S, Martinez T J. Quantum chemistry on graphical processing units.3. analytical energy gradients, geometry optimization, and first principles molecular dynamics[J]. J. Chem. Theory Comput.,2009,5(10):2619-2628.
    [23]Asadchev A, Allada V, Felder J, Bode B M, Gordon M S, Windus T L. Uncontracted rys quadrature implementation of up to G functions on graphical processing units[J]. J. Chem. Theory Comput.2010,6(3):696-704.
    [24]Genovese L, Neelov A, Goedecker S, Deutsch T, Alireza Ghasemi S, Willand A, Caliste D, Zilberberg O, Rayson M, Bergman A, Schneider A. Daubechies wavelets as a basis set for density functional pseudopotential calculations[J]. J. Chem. Phys., 2008,129(l):014109.
    [25]Vogt L, Olivares-Amaya R, Kermes S, shao Y H, Amador-Bedolla C, Aspuru-Guzik A. Accelerating resolution-of-the-identity second-order moller-plesset quantum chemistry calculations with graphical processing units[J]. J. Phys. Chem. A 2008, 112(10):2049-2057.
    [26]Watson M A, Olivares-Amaya R, Edgar R G, Arias T, Aspuru-Guzik A. Accelerating correlated quantum chemistry calculations using graphical processing units[J]. Comput. Sci. Eng.2010,12(4):40-50.
    [27]Olivares-Amaya R, Watson M A, Edgar R G, Vogt L, Shao Y H, Aspuru-Guzik A. Accelerating correlated quantum chemistry calculations using graphical processing units and a mixed precision matrix multiplication library [J]. J. Chem. Theory Comput. 2010,6(1):135-144.
    [28]Ma W J, Krishnamoorthy S, Villa O, Kowalski K. GPU-based implementations of the noniterative regularized-CCSD(T) corrections:Applications to strongly correlated systems[J]. J. Chem. Theory Comput.,2011,7(5):1316-1327.
    [29]DePrince A E 111, Hammond J R. Coupled cluster theory on graphics processing units 1. the coupled cluster doubles method[J]. J. Chem. Theory Comput.,2011, 7(5):1287-1295.
    [30]Steinfeld J I, Francisco J S, Hase W L. Chemical Kinetics and dynamics[M]. second edition Prentice Hall,1999.
    [31]Herschbach D R, Angewandte. Chemie-international edition in English 1987, 26:1221. Lee Y T. Molecular Beam studies of Elementary Chemical Processes[J]. Science,1987,236:793-798; J. C. Polanyi. Some Concepts in Reaction Dynamic[J]. Science,1987,236:680~690.
    [32]Zewail A H. Femtochenistry:atomic-scale Dynamic of the Chemical Bond[J]. J. Phys. Chem.,2000,104:5660~5694.
    [33]Zhang J Z H, Dai J, Zhu W. Development of accurate quantum dynamical methods for tetraatomic reaction[J]. J. Phys. Chem.,1997,101(15):2746~2754.
    [34]Neuhauser D, Baer M. The application of wave-packets to reactive atom-diatom systems-a new approach[J]. J. Chem. Phys.,1989,91 (8):4651~4657.
    [35]Fleck J A, Morris Jr J R, Feit M D. Time-dependent propagation of high-energy laser-beams through atmo sphere [J]. Appl. Phys.,1976,10(2):129~160.
    [36]Feit M D, Fleck J A, Steiger A. Solution of the schrodinger-equation by a spectral method[J]. J. Comput. Phys.,1982,47(3):412~433.
    [37]Tal-Ezer H, Kosloff D. An accurate and efficient scheme for propagating the time dependent schrodinger[J]. J. Chem. Phys.,1984,81(9):3967~3971.
    [38]Lanczos C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators[J]. J. Res, Natl, Bur. Stand.,1950,45(4):255~282.
    [39]Park T J, Light J C. Unitary quqntum time evolution by iterative lanczos reduction[J]. J. Chem. Phys.,1986,85(10):5870~5876.
    [40]Leforestier C, Bisseling R, Cerjan C, Feit M D, Friesner R, Guldberg A, Hammerich A, Jolicard G, Karrlein W, Meyer H D, Lipkin N, Roncero O, Kosloff R. A comparison of different propagation schemes for the time-dependent schrodinger-equation[J]. J. Comput. Phys.,1991,94(1):59-80.
    [41]Gray S K. Wave packet dynamics of resonance decay-an iterative equation approach with application to HCO->H+CO[J]. J. Chem. Phys.,1992,96(9):6543~6554.
    [42]Abramowitz H, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables[M]. Dover, New York,1972.
    [43]Mandelshtam V, Taylor H S.Spectral projection approach to the quantum scattering calculation[J]. J. Chem. Phys.,1995,102(19),7390~7399; A simple recursion polynomial expansion of the greens-function with absorbing boundary conditions application to the reactive scattering[J]. J. Chem. Phys.,1995,103(8):2903~2907.
    [44]Kosloff R, Kosloff D. A fourier method solution solution for the time-dependent schrodinger-equation-a study of the reaction H+H2, D+HD, and D+H2[J]. J. Chem. Phys.,1983,79(4):1823~1833.
    [45]Lill J V, Parker G A, Light J C. Discrete variable representations and sudden models in quantum scattering-theory [J]. Chem. Phys. Lett.,1982,89(6):483~489.
    [46]Bacic Z, Light J C. Theoretical method for rovibrational states of floppy molecules[J]. Ann. Rev. Phys. Chem.,1989,40:469~498.
    [47]Zhang J Z H. New method in time-dependent quantum scattering theory:integrating the wave function in the interaction picture[J]. J. Chem. Phys.,1990,92(1):324~331.
    [48]Zhang J Z H. Interaction representation in time-dependent quantum scattering-elimilation of finite boundary reflection[J]. Chem. Phys. Lett.,1989, 160(4):417~422.
    [49]Murrell J N, Cartrt S, Farantos S C, Huxley P, Varandas A J C. Molecular Potential Energy Functions[M], Chichester:Wiley(1984).
    [50]Zhang X, Braams B J, Bowman J M. An ab initio potential surface describing abstraction and exchange for H+CH4[J]. J. Chem. Phys.,2006,124(2):021104.
    [51]Siebert R, Fleurat-Lessard P, Schinke R, Bittererova M, Farantos S C. The vibrational energies of ozone up to the dissociation threshold:Dynamics calculations on an accurate potential energy surface[J]. J. Chem. Phys.,2002,116(22)9749-9767.
    [52]Jordan M J T, Thompson K C, Collins M A. Convergence of molecular potential energy surfaces by interpolation-application to the OH+H2->H2O+H reaction[J]. J. Chem. Phys.1995,102(14):5647~5657.
    [53]Guo Y, Kawano A, Thompson D L, Wagner A F, Minkoff M. Interpolating moving least-squares methods for fitting potential energy surfaces Applications to classical dynamics calculations[J]. J. Chem. Phys.2004,121(11):5091~5097.
    [54]Brown D F R, Gibb M N, Clary D C. J. Combing ab initio computations, neural network, and diffusion monte carlo:an efficient method to treat weakly bond molecules[J]. J. Chem. Phys.,1996,105(17):7597-7604.
    [55]Thompson K C, Jordan M J T, Collins M A. Polyatomic molecular potential energy surfaces by interpolation in local internal coordinates[J]. J. Chem. Phys.,1998, 108(20):8302-8316.
    [56]Bettens R P A, Collins M A. Learning to interpolate molecular potential energy surfaces with confidence:A Bayesian approach[J]. J. Chem. Phys.,1999, 111(3):816~826.
    [57]Bettens R P A, Collins M A, Jordan M J T. Ab initio potential energy surface for the reactions between H2O and H[J]. J. Chem. Phys.,2000,112(23):10162~10172.
    [58]Crittenden D L, Jordan M J T. Interpolated potential energy surface:How accurate do the second derivative have to be[J]? J. Chem. Phys.2005,122(4):044102.
    [59]Light J C, Zhang D H. Quantum transition state wavepacket method:H2+OH reaction[J]. Abstracts of Papers of The American Chemical Society.1998, 215:U201-U201.
    [60]Palma J, Echave J, Clary D C. Quasiclassical trajectory study of the reaction H2+OH → H20+H:Comparison with quantum results[J]. Journal of the chemical society-faraday transactions.1997,93(5):841~846.
    [61]Alagia M, Balucani N, Casavecchia P, Stranges D, Volpi G G, Clary D C, Kliesch A, Werner H J. The dynamics of the reaction OH+D2→OD+D:Crossed beam experiments and quantum mechanical scattering calculations on ab initio potential energy surfaces[J]. Chemical Physics.1996,207:389~409.
    [62]Fu Bina, Zhang D H. Full-dimensional quantum dynamics study of exchange processes for the D+H2O+HOD reactions[J]. Journal of Chemical Physics.2012, 136(19):194301.
    [63]Zhang D H. State-to-state quantum reactive scattering for four-atom chemical reactions;Differential cross section for the H+H2O→H2+OH abstraction reaction[J]. Journal of Chemical Physics.2006,125(13):133102.
    [64]Zhang D H, Xie D Q, Yang M H, Lee S Y. State-to-state integral cross section for the H+H20 → H2+OH abstraction reaction. Physical Review Letters.2002, 89(28):283203.
    [65]Zhang D H, Yang M H, Lee S Y. Accuracy of the centrifugal sudden approximation in the H+H2O reaction and accurate integral cross sections for the H+H2O→H2+OH abstraction reaction[J]. Journal of Chemical Physics.2002,117(22):10067~10072.
    [66]Espinosa-Garcia J, Corchado J C. Quasi-classical trajectory calculations of the hydrogen abstraction reaction H+NH3[J]. Journal of Physical Chemistry A.2010, 114(21):6194~6200.
    [67]Yang M H, Corchado J C. Seven dimensional quantum dynamics study of the H2+NH2→H+NH3 reaction[J]. Journal of Chemical Physics.2007,127(18):184308.
    [68]Zhang X Q, Cui Q, Zhang J Z H, Han K L. Quantum dynamics study of H+NH3 → H2+NH2 reaction[J]. Journal of Chemical Physics.2007,126(23):234304.
    [69]Yang M H, Corchado J C. Seven-dimensional quantum dynamics study of the H+NH3→H2+NH2 reaction[J]. Journal of Chemical Physics.2007,126(21):214312.
    [70]Li H, Liu X G, Zhang Q G. Stereodynamics and rovibrational effect for H+NH3→ H2+NH2 reaction[J]. Chinese Physics Letters.2005,22(5):1093-1096.
    [71]Liu S, Chen J, Zhang Z J, Zhang D H. A six-dimensional state-to-state quantum dynamics study of the H+CH4→H2+CH3 reaction(J=0)[J]. Journal of Chemical Physics.2013,138(1):011101
    [72]Welsch R, Manthe U. Reaction dynamics with multi-layer multi-configurational time-dependent hartree approach:H+CH4→H2+CH3 rate constants for different potentials [J]. Journal of Chemical Physics.2012,137(24):244106.
    [73]Liu R, Xiong H W, Yang M H. An eight-dimensional quantum mechanical Hamiltonian for X+YCZ3 system and its applications to H+CH4 reaction[J]. Journal of Chemical Physics.2012,137(17):174113.
    [74]Zhou Y, Fu B N, Wang C R, Collins M A, Zhang D H. Ab initio potential energy surface and quantum dynamics for the H+CH4 reaction[J]. Journal of Chemical Physics.2011,134(6):064323
    [75]Schiffel G, Manthe U. A transition state view on reactive scattering:initial state-selected reaction probabilities for the H+CH4→H2+CH3 reaction studied in full dimensionality[J]. Journal of Chemical Physics.2010,133(17):174124.
    [76]Schiffel G, Manthe U, Nyman G Full-dimensional quantum reaction rate calculation for H+CH4-*H2+CH3 on a recent potential energy surface[J]. Journal of Physical Chemistry.2010,114(36):9617-9622.
    [77]Andersson S, Nyman G, Arnaldsson A, Manthe U, Jonsson H. Comparison of quantum dynamics and quantum transition state theory estimates of the H+CH4 reaction rate[J]. Journal of Physical Chemistry.2009,113(16):4468-4478.
    [78]张舒,褚艳利。GPU高性能运算之CUDA[M].北京:中国水利水电出版社,2012
    [79]Harris M S, Sengupta, Owens J D. Chapter 29, "Parallel Prefix Sum (Scan) in CUDA"(R). in GPU Gems 3.
    [80]Yang M H, Zhang D H, Collins M A, Lee SY. Ab initio potential-energy surface for the reactions OH+H2<-> H2O+H[J]. J. Chem. Phys.,2001,115(1):174-178.
    [81]Fu B N, Kamarchik E, Bowman J M. Quasiclassical trajectory study of the postquenching dynamics of OH A(2) sigma(+) by H2/D2 on a global potntial energy surface[J]. J. Chem. Phys.,2010,133(16):164306.
    [82]Fu, B. N.; Zhang, D. H. Full-dimensional quantum dynamics study of exchange processes for the D+H2O and D+HOD reactions. J. Chem. Phys.2012,136, 194301.
    [83]Moyano G E, Collins M A. Interpolated potential energy surface for abstraction and exchange reactions oh NH3+hand deuterated analogues. Theor. Chem. Ace.,2005, 113(4):225-232.
    [84]Zhou Y, Fu B N, Wang C R, Collins M A, Zhang DH. Ab initio potential energy surface and quantum dynamics for the H+CH4->H2+CH3 reaction[J]. J. Chem. Phys.,2011,134(6),064323.
    [85]Yang Y, Yang M H. An interpolated PES for H2+NH2-+H+NH3 reaction to be published elsewhere.
    [86]都志辉。高性能计算并行编程技术-MPI并行程序设计[M].北京:清华大学出版社,2001
    [87]Zheng L M, Lu Y P, Lee S Y, Fu H, Yang M H. Theoretical studies of the N2O van der Waals dimer:ab initio potential energy surface, intermolecular vibrations and rotational transition frequencies.2011,134(5):054311.
    [88]Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry incombustion[J]. Prog Energy Combust Sci.,1989,15(4):287-338.
    [89]Westenberg A A, DeHaas N. Rates of H+CF3Br and Cl+NH3[J]. J Chem Phys.,1977, 67:2388-2390.
    [90]Gao Y, Alecu I M, Hsieh P C, Morgan B P, Marshall P, Krasnoperov L N. Thermochemistry is not a lower bound to the activation energy of endothermic reactions:A kinetic study of the gas-phase reaction of atomic chlorine with ammonia[J]. J Phys Chem A.,2006,110:6844-6850.
    [91]Kondo S, Tokuhashi K, Kaise M. Ab initio study of reactions between halogen atoms and various fuel molecules by Gaussian-2 theory[J]. J Hazard Mat.,2000, 79(1-2):77-86.
    [92]Xu Z F, Lin M C. Computational studies on the kinetics and mechanisms for NH3 reactions with ClOx(x=0-4)radicals(J). J Phys Chem A.2007, 111(4):584~590.
    [93]Monge-Palacios M, Espinosa-Garcia J. Reaction-path dynamics calculations of the C1+NH3 Hydrogen abstraction reaction:The role of the intermediate complexes[J]. J Phys Chem A,2010,114(12):4418~426.
    [94]Monge-palacios M, Rangel C, Corchado J C, Espinosa-Garcia J. Analytical potential energy surface for the reaction with intermediate complexes NH3+Cl→NH2+HCl:Application to the kinetics study[J]. Int J Quantum Chem,2012, 112(8):1887~1903.
    [95]Yang M, Corchado J C. Seven-dimensional quantum dynamics study of the H+NH3→H2+NH2 reaction[J]. J Chem Phys,2007,126(21):214312.
    [96]Monge-Palacios M, Yang M H, Espinosa-Garcia J. QCT and QM calculations of the C1(2P)+NH3 reaction:influence of the reactant well on the dynamics[J]. Physical Chemistry Chemical Physics.2012,14(14):4824~4834.
    [97]Monge-Palacios M, Rangel C, Corchado J C, Espinosa-Garcia J. Analytical potential energy surface for the reaction with intermediate complexes NH3+Cl→NH2+Cl:application to the kinetics study. International Journal of Quantum Chemistry.2012,112(8):1887~1903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700