用户名: 密码: 验证码:
钡原子强外场效应光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Rydberg原子与外场的结合会表现出许多独特的性质,对其研究涉及到原子物理和量子力学的许多基本问题,因而一直是原子分子物理学实验与理论研究的重要领域。本文选择具有大原子实和两个价电子的Rydberg态钡原子作为研究对象,分别从实验和理论两方面研究其在电场、磁场、联合场中的外场性质及非氢效应;此外,通过电离显微镜技术我们理论上研究了金属表面势中氢原子的电离动力学。主要研究内容包括以下四方面:
     (1)电场效应:包括光谱性质和动力学效应。实验上获得了束缚态π偏振和σ偏振的Stark谱,并在理论上重现了实验谱;通过Stark map分析了电场对不同宇称态的耦合作用及非氢效应,观测到了能级抗交叉;实验上测量了经典电离域以上的共振结构,发现随着电场的增加,共振间隔和调制深度相应增大;实现了Rydberg态的Stark减速,并通过Stark map进行了定性的分析。
     (2)磁场效应:包括抗磁结构的分析及偏振光谱的分解。实验及理论上获得了σ+偏振的抗磁谱,分析了磁场对相同宇称态的耦合作用,发现抗磁谱表现出比Stark谱简单的能级结构;通过改变量子亏损值分析了非氢态对抗磁结构的影响,同时观测到能级抗交叉效应;实验上系统测量了π偏振、σ偏振及“任意角度”偏振下的抗磁谱,将复杂偏振的抗磁谱分解到三种基本的偏振状态:π偏振、σ+偏振和σ-偏振,从而在理论计算中重现了复杂偏振的抗磁谱。
     (3)联合场效应:包括相互平行和垂直的电磁场情况。对于平行场情况,实验上获得了π偏振和σ偏振抗磁谱随平行电场的演化图,观察到了由于电场对不同宇称态的耦合导致的抗磁结构能级分裂;获得了Stark谱随平行磁场的演化图,发现了磁场对±m态的解简并引起的Stark谱能级分裂;理论上重现了实验谱;确认了平行场中三种类型态的存在,发现类型I和II的态之间存在原子实导致的抗交叉效应,这不同于氢原子的能级交叉;对于交叉场情况,实验上获得了电离阈附近的交叉场光谱,开展了初步的三维理论计算。
     (4)金属表面的氢原子:通过半经典计算在空间域研究了金属表面势中氢原子的电离动力学效应,获得了不同标度能量下电离电子波函数的空间干涉图样;结果表明不同的干涉结构对应于不同的经典轨道,随着标度能的增加,干涉图样平滑演化并且会出现新的轨道类型,这类似于平行场中的情况;金属表面势具有等效于磁场的作用势,可以模拟抗磁项的作用从而导致体系呈现混沌现象。
The effect of strong external fields on the Rydberg atom is one of the most important issues in atomic physics. As an important subject it involves many fundamental conceptions and theoretical problems in atomic physics and quantum mechanics. In this thesis, we investigate on barium atom which has two valence electrons and a large core. Besides, ionization dynamics of hydrogen atom near a metal surface is studied theoretically. The main research contents and results are as follows:
     (1) The effect of electric field on the Rydberg atom:spectral properties and dynamics effect. We obtained π and σ polarized Stark spectra experimentally and theoretically. The coupling between states with different parities and core effect were analyzed by the aid of Stark map, and a level anti-crossing was observed. The resonance structures above classical ionization threshold was obtained. The Stark deceleration of Rydberg atom was realized experimentally and analyzed qualitatively with Stark map.
     (2) The effect of magnetic field on the Rydberg atom:spectral properties and decomposition of the polarized spectrum. We obtained σ+polarized diamagnetic spectra experimentally and theoretically, and analyzed the coupling between states with the same parity. By sweeping the quantum defect values of different states, we studied the effect of non-hydrogen states on the diamagnetic spectra and an anti-crossing was identified. We obtained π and "arbitrary" polarized diamagnetic spectra experimentally. By decomposing the complex spectrum into three basic polarized spectra, we reproduced the diamagnetic spectra satisfyingly.
     (3) The effect of combined fields on the Rydberg atom:the spectroscopy in the parallel and crossed fields. We obtained experimentally the evolution map of diamagnetic spectra on electric field and Stark spectra on magnetic field, and reproduced them theoretically. We observed splitting of diamagnetic spectra with electric field increasing and splitting of Stark structures with magnetic field increasing. Three types of states for barium atom in parallel fields were found. An anti-crossing between the states of types Ⅰ and Ⅱ was observed, which is induced by atomic core. The spectra of barium atom in corssed fields were obtained experimentally and a preliminary calculation was undertaken by the direct diagonalization of the Hamitonian matrix in three-dimensional spaces.
     (4) Hydrogen atom near a metal surface. We studied the ionization dynamics of hydrogen atom near a metal surface in spatial domain with semi-classical calculation. We obtained the interference patterns at different scaled energies. The results show that different types of trajectories contribute predominantly to different manifolds in a certain interference pattern. With the increase of scaled energy, the interference patterns evolve smoothly and new types of orbits come to appear, which is similar to the case of hydrogen atom in parallel fields. Metal surface can play the same role of magnetic field and induces chaos at small atom-surface distance.
引文
[1]J. Neukammer, H. Rinneberg, K. Vietzke, A. Konig, H. Hieronymus, M. Kohl, H. J. Grabka, G. Wunner. Spectroscopy of Rydberg Atoms at n-500:Observation of Quasi-Landau Resonances in Low Magnetic Fields [J]. Phys. Rev. Lett.,1987, 59(26):2947.
    [2]T. F. Gallagher. Rydberg atoms[M]. New York:Cambridge University Press,1994.
    [3]D. Delande. Chaos and Atoms in Strong Magnetic Fields [J]. Phys. Scr.,1991, 1991(T34):52.
    [4]M. G. Littman, M. L. Zimmerman, T. W. Ducas, R. R. Freeman, D. Kleppner. Structure of Sodium Rydberg States in Weak to Strong Electric Fields [J]. Phys. Rev. Lett.,1976, 36(14):788.
    [5]M. L. Zimmerman, T. W. Ducas, M. G. Littman, D. Kleppner. Stark structure of barium Rydberg states [J]. J. Phys. B,1978,11(1):L11.
    [6]M. L. Zimmerman, M. G. Littman, M. M. Kash, D. Kleppner. Stark structure of the Rydberg states of alkali-metal atoms [J]. Phys. Rev. A,1979,20(6):2251.
    [7]R. D. Knight, L.-G. Wang. Stark structure in Rydberg states of xenon [J]. Phys. Rev. A, 1985,32(2):896.
    [8]C. T. W. Lahaye, W. Hogervorst, W. Vassen. Stark manifolds of barium Rydberg states [J]. Z. Phys. D,1987,7(1):37-45.
    [9]T. Bolzinger, P. Breger, F. Roussel, M. Cheret, G. Spiess. Efficient optical excitation of the highest energy level of the N=17 Stark manifold in barium [J]. J. Phys. B,1989, 22(13):2081.
    [10]C. T. W. Lahaye, W. Hogervorst. Stark manifolds and electric-field-induced avoided level crossings in helium Rydberg states [J]. Phys. Rev. A,1989,39(11):5658.
    [11]K. Ito, H. Masuda, Y. Morioka, K. Ueda. Stark effect for the Rydberg states of the krypton atom near the ionization threshold [J]. Phys. Rev. A,1993,47(2):1187.
    [12]R. R. Freeman, N. P. Economou, G. C. Bjorklund, K. T. Lu. Observation of Electric-Field-Induced Resonances above the Ionization Limit in a One-Electron Atom [J]. Phys. Rev. Lett.,1978,41(21):1463.
    [13]E. Luc-Koenig, A. Bachelier. Interpretation of Electric-Field-Induced Oscillations in the Cross Section of a One-Electron Atom above the Ionization Limit [J]. Phys. Rev. Lett., 1979,43(13):921-924.
    [14]E. Luc-Koenig, A. Bachelier. Systematic theoretical study of the Stark spectrum of atomic hydrogen. II. Density of oscillator strengths. Comparison with experimental absorption spectra in solid-state and atomic physics [J]. J. Phys. B,1980,13(9):1769.
    [15]A. R. P. Rau, K. T. Lu. Comments on near-zero-energy resonance in atoms in external fields [J]. Phys. Rev. A,1980,21(3):1057.
    [16]W. Sandner, K. A. Safinya, T. F. Gallagher. Photoabsorption of Ba and Na in an electric field:Manifestation of strong-field-mixing resonances [J]. Phys. Rev. A,1981,23(5):2448.
    [17]S. Feneuille, S. Liberman, E. Luc-Koenig, J. Pinard, A. Taleb. Photoionization Stark spectra of m=1 excited sodium atoms [J]. Phys. Rev. A,1982,25(5):2853.
    [18]T. W. Ducas, M. G. Littman, R. R. Freeman, D. Kleppner. Stark Ionization of High-Lying States of Sodium [J]. Phys. Rev. Lett.,1975,35(6):366.
    [19]R. F. Stebbings, C. J. Latimer, W. P. West, F. B. Dunning, T. B. Cook. Studies of xenon atoms in high Rydberg states [J]. Phys. Rev. A,1975,12(4):1453-1458.
    [20]R. J. Damburg, V. V. Kolosov. A hydrogen atom in a uniform electric field [J]. J. Phys. B, 1976,9(18):3149.
    [21]T. F. Gallagher, L. M. Humphrey, W. E. Cooke, R. M. Hill, S. A. Edelstein. Field ionization of highly excited states of sodium [J]. Phys. Rev. A,1977,16(3):1098-1108.
    [22]T. Yamabe, A. Tachibana, H. J. Silverstone. Theory of the ionization of the hydrogen atom by an external electrostatic field [J]. Phys. Rev. A,1977,16(3):877-890.
    [23]M. G. Littman, M. M. Kash, D. Kleppner. Field-Ionization Processes in Excited Atoms [J]. Phys. Rev. Lett.,1978,41(2):103-107.
    [24]R. J. Damburg, V. V. Kolosov. A hydrogen atom in a uniform electric field. Ⅲ [J]. J. Phys. B,1979,12(16):2637.
    [25]P. M. Koch, D. R. Mariani. Precise Measurement of the Static Electric-Field Ionization Rate for Resolved Hydrogen Stark Substates [J]. Phys. Rev. Lett.,1981,46(19):1275-1278.
    [26]T. Breeden, H. Metcalf. Stark Acceleration of Rydberg Atoms in Inhomogeneous Electric Fields [J]. Phys. Rev. Lett.,1981,47(24):1726.
    [27]G. Raithel, M. Fauth, H. Walther. Quasi-Landau resonances in the spectra of rubidium Rydberg atoms in crossed electric and magnetic fields [J]. Phys. Rev. A,1991,44(3):1898.
    [28]A. L. Goodgame, T. P. Softley. Control of atomic and molecular motion via the Stark effect in Rydberg states [J]. J. Phys. B,1999,32(20):4839-4857.
    [29]S. R. Procter, Y. Yamakita, F. Merkt, T. P. Softley. Controlling the motion of hydrogen molecules [J]. Chem. Phys. Lett.,2003,374(5-6):667-675.
    [30]Y Yamakita, S. R. Procter, A. L. Goodgame, T. P. Softley, F. Merkt. Deflection and deceleration of hydrogen Rydberg molecules in inhomogeneous electric fields [J]. J. Chem. Phys.,2004,121 (3):1419-1431.
    [31]E. Vliegen, F. Merkt. On the electrostatic deceleration of argon atoms in high Rydberg states by time-dependent inhomogeneous electric fields [J]. J. Phys. B,2005, 38(11):1623-1636.
    [32]G. D. Stevens, C. H. Iu, T. Bergeman, H. J. Metcalf, Ⅰ. Seipp, K. T. Taylor, D. Delande. Absolute Calibration of Electric Fields Using Stark Spectroscopy [J]. Phys. Rev. Lett., 1995,75(19):3402-3405.
    [33]T. Jiang, M. D. Bowden, E. Wagenaars, E. Stoffels, G. M. W. Kroesen. A study of Stark effects of Rydberg p states of noble gas atoms [J]. J. Phys. D,2006,39(24):5216.
    [34]T. Jiang, M. D. Bowden, E. Wagenaars, E. Stoffels, G. M. W. Kroesen. Diagnostics of electric fields in plasma using Stark spectroscopy of krypton and xenon atoms [J]. New J. Phys.,2006,8(9):202.
    [35]D. Patel, D. Margolese, T. R. Dykea. Electric dipole moment of SO2 in ground and excited vibrational states [J]. J. Chem. Phys.,1979,70(6):2740-2747.
    [36]E. Vliegen, H. J. Worner, T. P. Softley, F. Merkt. Nonhydrogenic Effects in the Deceleration of Rydberg Atoms in Inhomogeneous Electric Fields [J]. Phys. Rev. Lett., 2004,92(3):033005.
    [37]E. Vliegen, F. Merkt. Stark deceleration of hydrogen atoms [J]. J. Phys. B,2006, 39(11):L241.
    [38]F. A. Jenkins, E. Segre. The Quadratic Zeeman Effect [J]. Phys. Rev.,1939,55(1):52-58.
    [39]W. R. S. Garton, F. S. Tomkins. Diamagnetic Zeeman effect and magnetic configuration mixing in long spectral series of Ba I [J]. Astrophys. J.,1969,158(2):839-845.
    [40]J. P. Connerade, G. Droungas, R. Elliott, X. He, N. Karapanagioti, M. A. Farooq, H. Ma, J. P. Marangos, M. Nawaz. Many-electron atoms in high magnetic fields [J]. J. Phys. B,1994, 27(13):2753-2770.
    [41]T. A. Miller, R. S. Freund. Fine Structure and Diamagnetic Zeeman Effect in He 43P [J]. Phys. Rev. A,1971,4(1):81.
    [42]R. J. Fonck, F. L. Roesler, D. H. Tracy, K. T. Lu, F. S. Tomkins, W. R. S. Garton. Atomic Diamagnetism and Diamagnetically Induced Configuration Mixing in Laser-Excited Barium [J]. Phys. Rev. Lett.,1977,39(24):1513-1516.
    [43]K. T. Lu, F. S. Tomkins, W. R. S. Garton. Configuration Interaction Effect on Diamagnetic Phenomena in Atoms:Strong Mixing and Landau Regions [J]. Proc. R. Soc. London, Ser. A,1978,362(1710):421-424.
    [44]W. R. S. Garton, F. S. Tomkins, H. M. Crosswhite. Magnetic Effects in Ba I and Sr I Absorption Spectra [J]. Proc. R. Soc. London, Ser. A,1980,373(1753):189-197.
    [45]J. P. Connerade, H. Ma, N. Shen, T. A. Stavrakas. On the perturbation in the f values of the principal series of Ba I [J]. J. Phys. B,1988,21(10):L241.
    [46]G. Raithel, M. Fauth. Observation of high angular momentum states of Rydberg atoms in strong magnetic and weak crossed electric fields [J]. J. Phys. B,1995,28(9):1687.
    [47]C. W. Clark, K. T. Taylor. Dynamical symmetry in the quadratic Zeeman effect [J]. Nature, 1981,292(5822):437-439.
    [48]D. Delande, J. C. Gay. On a possible dynamical symmetry in diamagnetism [J]. Phys. Lett. A,1981,82(8):393-398.
    [49]W. Gao, H. F. Yang, H. Cheng, X. J. Liu, H. P. Liu. Experimental observation and theoretical calculation of the diamagnetic spectrum of sodium Rydberg states [J]. Phys. Rev. A,2012,86(1):012517.
    [50]J. C. Castro, M. L. Zimmerman, R. G. Hulet, D. Kleppner, R. R. Freeman. Origin and Structure of the Quasi-Landau Resonances [J]. Phys. Rev. Lett.,1980,45(22):1780.
    [51]D. Delande, J. C. Gay. Early building up of the quasi Landau spectrum in the diamagnetic coulomb region [J]. Phys. Lett. A,1981,82(8):399-403.
    [52]J. P. Connerade, A. M. Lane. Interacting resonances in atomic spectroscopy [J]. Rep. Prog. Phys.,1988,51(11):1439.
    [53]M. L. Zimmerman, M. M. Kash, D. Kleppner. Evidence of an Approximate Symmetry for Hydrogen in a Uniform Magnetic Field [J]. Phys. Rev. Lett.,1980,45(13):1092-1094.
    [54]D. Wintgen, H. Friedrich. Approximate separability for the hydrogen atom in a uniform magnetic field [J]. J. Phys. B,1986,19(9):1261.
    [55]T. S. Monteiro, G. Wunner. Analysis of quantum manifestations of chaos in general Rydberg atoms in strong magnetic fields [J]. Phys. Rev. Lett.,1990,65(9):1100-1103.
    [56]R. J. Elliott, G. Droungas, J. P. Connerade. Active cancellation of the motional Stark effect in the diamagnetic spectrum of Ba [J]. J. Phys. B,1995,28(17):L537-L542.
    [57]G. Raithel, M. Fauth, H. Walther. Atoms in strong crossed electric and magnetic fields: Evidence for states with large electric-dipole moments [J]. Phys. Rev. A,1993,47(1):419.
    [58]M. Fauth, H. Walther, E. Werner. Rydberg atoms in crossed external magnetic and electric fields:Experimental observation of an outer potential minimum [J]. Z. Phys. D,1987, 7(2):293.
    [59]O. Dippel, P. Schmelcher, L. S. Cederbaum. Charged anisotropic harmonic oscillator and the hydrogen atom in crossed fields [J]. Phys. Rev. A,1994,49(6):4415-4429.
    [60]C. Nessmann, W. P. Reinhardt. Saddle-point "trapping" of Rydberg electrons in crossed electric and magnetic dc fields:A time-dependent approach [J]. Phys. Rev. A,1987, 35(8):3269.
    [61]J. G. Rao, K. T. Taylor. Atoms in crossed fields:calculations for barium and hydrogen [J]. J. Phys. B,1997,30(16):3627.
    [62]K. Ganesan, K. T. Taylor. Rydberg states of the hydrogen atom near a metal surface [J]. J. Phys. B,1996,29(7):1293-1306.
    [63]E. Zaremba, W. Kohn. Van der Waals interaction between an atom and a solid surface [J]. Phys. Rev. B,1976,13(6):2270-2285.
    [64]D. Wang, K. Huang, S. Lin. Semiclassical calculation of ionization rate for Rydberg hydrogen atoms near a metal surface [J]. Eur. Phys. J. D,2009,54(3):699-706.
    [65]饶建国.有限基矢方法用于强场中原子问题的计算[D].武汉:中国科学院武汉物理与数学研究所,1999.
    [66]D. J. Griffiths. Introduction to quantum mechanics[M]. London:Pearson Prentice Hall,2005.
    [67]D. A. Harmin. Hydrogenic Stark effect:Properties of the wave functions [J]. Phys. Rev. A, 1981,24(5):2491.
    [68]D. A. Harmin. Theory of the Stark effect [J]. Phys. Rev. A,1982,26(5):2656.
    [69]D. A. Harmin. Analytical study of quasidiscrete Stark levels in Rydberg atoms [J]. Phys. Rev. A,1984,30(5):2413-2428.
    [70]A. F. Starace. Quasi-Landau spectrum of a hydrogen like atom in a high magnetic field [J]. J. Phys. B,1973,6(4):585-590.
    [71]P. A. Braun. On the quadratic Zeeman effect in highly excited states of hydrogen and alkali-metal atoms [J]. J. Phys. B,1983,16(23):4323-4338.
    [72]M. C. Gutzwiller. Phase-Integral Approximation in Momentum Space and the Bound States of an Atom [J]. J. Math. Phys.,1967,8(10):1979-2000.
    [73]M. C. Gutzwiller. Energy Spectrum According to Classical Mechanics [J]. J. Math. Phys., 1970,11 (6):1791-1806.
    [74]M. C. Gutzwiller. Periodic Orbits and Classical Quantization Conditions [J]. J. Math. Phys., 1971,12(3):343-358.
    [75]R. Balian, C. Bloch. Distribution of eigenfrequencies for the wave equation in a finite domain:Ⅲ. Eigenfrequency density oscillations [J]. Ann. Phys.,1972,69(l):76-160.
    [76]M. L. Du, J. B. Delos. Effect of closed classical orbits on quantum spectra:Ionization of atoms in a magnetic field [J]. Phys. Rev. Lett.,1987,58(17):1731.
    [77]M. L. Du, J. B. Delos. Effect of closed classical orbits on quantum spectra:Ionization of atoms in a magnetic field. I. Physical picture and calculations [J]. Phys. Rev. A,1988, 38(4):1896.
    [78]M. L. Du, J. B. Delos. Effect of closed classical orbits on quantum spectra:Ionization of atoms in a magnetic field. Ⅱ. Derivation of formulas [J]. Phys. Rev. A,1988,38(4):1913.
    [79]J. Gao, J. B. Delos. Closed-orbit theory of oscillations in atomic photoabsorption cross sections in a strong electric field. Ⅱ. Derivation of formulas [J]. Phys. Rev. A,1992, 46(3):1455.
    [80]J. Gao, J. B. Delos, M. Baruch. Closed-orbit theory of oscillations in atomic photoabsorption cross sections in a strong electric field. Ⅰ. Comparison between theory and experiments on hydrogen and sodium above threshold [J]. Phys. Rev. A,1992, 46(3):1449-1454.
    [81]J. Gao, J. B. Delos. Resonances and recurrences in the absorption spectrum of an atom in an electric field [J]. Phys. Rev. A,1994,49(2):869-880.
    [82]K. Weibert, J. Main, G. Wunner. General Rydberg atoms in crossed electric and magnetic fields:Calculation of semiclassical recurrence spectra with special emphasis on core effects [J]. Ann. Phys.,1998,268(1):172-204.
    [83]G. Wiebusch, J. Main, K. Kriiger, H. Rottke, A. Holle, K. H. Welge. Hydrogen atom in crossed magnetic and electric fields [J]. Phys. Rev. Lett.,1989,62(24):2821-2824.
    [84]C. De Boor. On calculating with B-splines [J]. J. Approx. Theory,1972,6(l):50-62.
    [85]J. Xi, X. He, B. Li. Energy levels of the hydrogen atom in arbitrary magnetic fields obtained by using B-spline basis sets [J]. Phys. Rev. A,1992,46(9):5806-5811.
    [86]H. Qiao, B. Li. Calculations of the helium atom in magnetic fields with B-spline-type functions [J]. Phys. Rev. A,1999,60(4):3134.
    [87]C. W. Clark, K. T. Taylor. The quadratic Zeeman effect in hydrogen Rydberg series: application of Sturmian functions [J]. J. Phys. B,1982,15(8):1175.
    [88]A. R. Edmonds. Studies of the quadratic Zeeman effect. I. Application of the sturmian functions [J]. J. Phys. B,1973,6(8):1603.
    [89]D. Delande, J. C. Gay. The hydrogen atom in a magnetic field. Spectrum from the Coulomb dynamical group approach [J]. J. Phys. B,1986,19(6):L173.
    [90]L. Wenyu, L. Baiwen. Numerical study of Rydberg Cs atoms in parallel electric and magnetic fields [J]. J. Phys. B,1994,27(21):5185.
    [91]L. Yong, L. Wenyu, L. Baiwen. Positions and widths for anticrossings of potassium Rydberg Stark states [J]. J. Phys. B,1996,29(8):1433.
    [92]G. Simons. New procedure for generating valence and Rydberg orbitals. Ⅰ. Atomic oscillator strengths [J]. J. Chem. Phys.,1974,60(2):645.
    [93]I. Martin, G. Simons. New procedure for generating valence and Rydberg orbitals. Ⅱ. Atomic photoionization cross sections [J]. J. Chem. Phys.,1975,62(12):4799-4803.
    [94]V. A. Kostelecky, M. M. Nieto. Analytical wave functions for atomic quantum-defect theory [J]. Phys. Rev. A,1985,32(6):3243.
    [95]P. F. O'mahony, K. T. Taylor. Quadratic Zeeman Effect for Nonhydrogenic Systems: Application to the Sr and Ba Atoms [J]. Phys. Rev. Lett.,1986,57(23):2931.
    [96]M. H. Halley, D. Delande, K. T. Taylor. The combination of R-matrix and complex coordinate methods:application to resonances in the diamagnetic Rydberg spectrum of Li [J]. J. Phys. B,1992,25(21):L525-L532.
    [97]M. H. Halley, D. Delande, K. T. Taylor. The combination of R-matrix and complex coordinate methods:application to the diamagnetic Rydberg spectra of Ba and Sr [J]. J. Phys. B,1993,26(12):1775-1790.
    [98]I. Seipp, K. T. Taylor. The combined R-matrix and complex coordinate method applied to the Stark and Stark diamagnetic Rydberg spectra of Na [J]. J. Phys. B,1994, 27(13):2785-2799.
    [99]J. N. Bardsley, B. R. Junker. Complex coordinate space calculations for resonant states [J]. J. Phys. B,1972,5(9):L178-L180.
    [100]W. P. Reinhardt. Complex coordinates in the theory of atomic and molecular structure and dynamics [J]. Annu. Rev. Phys. Chem.,1982,33(1):223-255.
    [101]F. Tomkins, B. Ercoli. A Modified King Furnace for Absorption Spectroscopy of Small Samples [J]. Appl. Opt.,1967,6(8):1299-1303.
    [102]R. Woodrief, G. Ramelow. Atomic absorption spectroscopy with a high-temperature furnace [J]. Spectroc. Acta B,1968,23(10):665-671.
    [103]K. T. Lu, F. S. Tomkins, H. M. Crosswhite, H. Crosswhite. Absorption Spectrum of Atomic Lithium in High Magnetic Fields [J]. Phys. Rev. Lett.,1978,41(15):1034.
    [104]G. Droungas, N. E. Karapanagioti, J. P. Connerade. Barium spectrum in high magnetic fields [J]. Phys. Rev. A,1995,51(1):191-196.
    [105]W. Quan, H. P. Liu, L. Shen, M. S. Zhan. Motional Stark Effect and Its Active Cancellation in Diamagnetic Spectrum of Barium [J]. Chin. Phys. Lett.,2007,24(3):672.
    [106]沈礼.交叉电磁场中Rydberg态Ba原子实验研究[D].武汉:中国科学院武汉物理与数学研究所,2009.
    [107]P. D. Zavitsanos. The Vapor Pressure of Barium [DB/OL]. Springfield:NTIS,68SD331, 1968.
    [108]C. De Boor. A Practical guide to splines[M]. New York:Springer,1978.
    [109]M. G. Cox. The Numerical Evaluation of B-Splines [J]. IMA J. Appl. Math.,1972, 10(2):134-149.
    [110]J. M. Drouffe, C. Itzykson. Lattice gauge fields [J]. Phys. Rep.,1978,38(3):133-175.
    [111]C. M. Bender, K. A. Milton, D. H. Sharp, L. M. Simmons, Jr., R. Stong. Discrete-time quantum mechanics [J]. Phys. Rev. D,1985,32(6):1476-1485.
    [112]W. R. Johnson, S. A. Blundell, J. Sapirstein. Finite basis sets for the Dirac equation constructed from B splines [J]. Phys. Rev. A,1988,37(2):307-315.
    [113]T. N. Chang. Combined perturbation and configuration-interaction calculation for the fine-structure level splittings of the 1s4f states of helium [J]. Phys. Rev. A,1989, 39(12):6129-6133.
    [114]W. Liu, J. Xi, X. He, L. Wu, B. Li. Hydrogenic circular states in a superstrong magnetic field:A B-spline approach [J]. Phys. Rev. A,1993,47(4):3151-3159.
    [115]乔豪学,饶建国,李白文.氦原子关联能的B样条计算[J].物理学报,1997,46(11):2104-2110.
    [116]孟慧艳.B样条基组方法在强外场中原子谱计算中的应用[D].武汉:中国科学院武汉物理与数学研究所,2007.
    [117]Y. Li. Initial anticrossing between Stark manifold n and n+1 in Na [J]. Theor. Chem. Acc., 2007,117(1):163.
    [118]H. Y. Meng, T. Y. Shi. Model Potential Calculations of Oscillator Strength Spectra of Rydberg Li Atoms in External Fields [J]. Commun. Theor. Phys.,2009,52(2):333.
    [119]I. Martin, G. Simons. New procedure for generating valence and Rydberg orbitals. Ⅲ. The be isoelectronic sequence [J]. Mol. Phys.,1976,32(4):1017-1025.
    [120]I. Martin, J. Karwowski. Quantum defect orbitals and the Dirac second-order equation [J]. J. Phys. B,1991,24(7):1539.
    [121]I. Martin, A. C. Lavin, M. Velasco, M. O. Martin, J. Karwowski, G. H. F. Diercksen. Quantum defect orbital study of electronic transitions in Rydberg molecules:ammonium and fluoronium radicals [J]. Chem. Phys.,1996,202(2-3):307-320.
    [122]J. M. Menendez, I. Martin, A. M. Velasco. Stark quantum defect orbital ionisation thresholds for the n=15-20 states of sodium [J]. Chem. Phys. Lett.,2004, 398(4-6):287-291.
    [123]W. R. S. Garton, K. Codling. Ultra-violet Extensions of the Arc Spectra of the Alkaline Earths:The Absorption Spectrum of Barium Vapour [J]. Proc. Phys. Soc.,1960,75(1):87.
    [124]W. R. S. Garton, F. S. Tomkins. B i Absorption-Line Series at High Resolution [J]. Astrophys. J.,1969,158(2):1219.
    [125]K. T. Lu, U. Fano. Graphic Analysis of Perturbed Rydberg Series [J]. Phys. Rev. A,1970, 2(1):81-86.
    [126]S. A. Bhatti, C. L. Cromer, W. E. Cooke. Analysis of the Rydberg character of the 5d7d'D2 state of barium [J]. Phys. Rev. A,1981,24(1):161-165.
    [127]B. H. Post, W. Vassen, W. Hogervorst, M. Aymar, O. Robaux. Odd-parity Rydberg levels in neutral barium:term values and multichannel quantum defect theory analysis [J]. J. Phys. B,1985,18(2):187-206.
    [128]M. Aymar. Eigenchannel R-matrix calculation of the J=1 odd-parity spectrum of barium [J]. J. Phys. B,1990,23(16):2697.
    [129]J. A. Armstrong, J. J. Wynne, P. Esherick. Bound, odd-parity J= 1 spectra of the alkaline earths:Ca, Sr, and Ba [J]. J. Opt. Soc. Am.,1979,69(2):211-230.
    [1301 C. Blondel, R.-J. Champeau, C. Delsart. Photoionization spectroscopy of Yb I from the 6s7s'So state in the presence of a static electric field [J]. Phys. Rev. A,1983, 27(1):583-586.
    [131]K. A. Bates, J. Masae, C. Vasilescu, D. Schumacher. Highly perturbed states of barium in a static electric field [J]. Phys. Rev. A,2001,64(3):033409.
    [132]M. Halka. Effects of static electric fields on the photoionization spectra of two-electron atoms and ions [J]. Radiat. Phys. Chem.,2006,75(12):2228-2231.
    [133]M. Aymar, P. Camus, M. Dieulin, C. Morillon. Two-photon spectroscopy of neutral barium: Observations of the highly excited even levels and theoretical analysis of the J=0 spectrum [J]. Phys. Rev. A,1978,18(5):2173-2183.
    [134]E. Luc-Koenig, A. Bachelier. Systematic theoretical study of the Stark spectrum of atomic hydrogen. I. Density of continuum states [J]. J. Phys. B,1980,13(9):1743.
    [135]V. Rojansky. On the Theory of the Stark Effect in Hydrogenic Atoms [J]. Phys. Rev.,1929, 33(1):1.
    [136]K. T. Lu, A. R. P. Rau. Multichannel quantum-defect theory of perturbed Rydberg atoms in external fields [J]. Phys. Rev. A,1983,28(5):2623-2633.
    [137]K. Sakimoto. Influence of electric fields on highly excited states of H2 quantum-defect-theory approach [J]. J. Phys. B,1989,22(17):2727.
    [138]R. Bluhm, V. A. Kostelecky. Atomic supersymmetry and the Stark effect [J]. Phys. Rev. A, 1993,47(2):794-808.
    [139]H. A. Bethe, E. E. Salpeter. Quantum mechanics of one-and two-electron atoms[M]. New York:Plenum Publishing Corporation,1977.
    [140]L. B. Mendelsohn. High-Order Perturbation Theory for a One-Electron Ion in a Uniform Electric Field [J]. Phys. Rev.,1968,176(1):90-95.
    [141]J. D. Bekenstein, J. B. Krieger. Stark Effect in Hydrogenic Atoms:Comparison of Fourth-Order Perturbation Theory with WKB Approximation [J]. Phys. Rev.,1969, 188(1):130-139.
    [142]P. M. Koch. Resonant States in the Nonperturbative Regime:The Hydrogen Atom in an Intense Electric Field [J]. Phys. Rev. Lett.,1978,41(2):99-103.
    [143]H. J. Silverstone. Perturbation theory of the Stark effect in hydrogen to arbitrarily high order [J]. Phys. Rev. A,1978,18(5):1853.1864.
    [144]K. a. H. Van Leeuwen, W. Hogervorst, B. H. Post. Stark effect in barium 6snd 1D2 Rydberg states; evidence of strong perturbations in the 1F3 series [J]. Phys. Rev. A,1983, 28(4):1901.
    [145]C. T. W. Lahaye, W. Hogervorst, T. Van Der Veldt. Avoided level crossings in bound Rydberg states of barium in an electric field [J]. Z. Phys. D,1989,13(2):107-113.
    [146]L. Nyvang, D. Fregenal, M. F(?)rre, E. Horsdal-Pedersen. Intrashell dynamics of Rydberg atoms:core effects [J]. J. Phys. B,2004,37(20):4039.
    [147]C. Jin, X.-X. Zhou, S.-F. Zhao. Positions and Widths of Anticrossings for Potassium Rydberg Stark States [J]. Commun. Theor. Phys.,2007,47(1):119.
    [148]T. H. Jeys, M. C. Copel, G. B. Mcmillian, F. B. Dunning, R. F. Stebbings. Sodium d-state fine structure in an electric field [J]. J. Phys. B,1983,16(20):3747.
    [149]C. Fabre, Y. Kaluzny, R. Calabrese, J. Liang, P. Goy, S. Haroche. Study of non-hydrogenic near degeneracies between m sublevels in the linear Stark effect of sodium Rydberg states [J]. J. Phys. B,1984,17(16):3217.
    [150]C. Delsart, L. Cabaret, C. Blondel, R. J. Champeau. Two-step high-resolution laser spectroscopy of the Stark substates of the n=44 level in atomic hydrogen [J]. J. Phys. B, 1987,20(18):4699.
    [151]P. F. Brevet, M. Pellarin, J. L. Vialle. Stark effect in argon Rydberg states [J]. Phys. Rev. A, 1990,42(3):1460.
    [152]M. Ciocca, C. E. Burkhardt, J. J. Leventhal, T. Bergeman. Precision Stark spectroscopy of sodium:Improved values for the ionization limit and bound states [J]. Phys. Rev. A,1992, 45(7):4720-4730.
    [153]K. Sakimoto. Multichannel quantum-defect theory of the Stark effect [J]. J. Phys. B,1986, 19(19):3011.
    [154]H. Rottke, K. H. Welge. Photoionization of the hydrogen atom near the ionization limit in strong electric fields [J]. Phys. Rev. A,1986,33(1):301.
    [155]S. Feneuille, S. Liberman, J. Pinard, P. Jacquinot. Narrow resonances in the photoionisation of rubidium atoms from the ground state in the presence of a DC electric field [J]. C. R. Acad. Sci. Ser. B,1977,284(10):291.
    [156]R. R. Freeman, N. P. Economou. Electric field dependence of the photoionization cross section of Rb [J]. Phys. Rev. A,1979,20(6):2356.
    [157]T. S. Luk, L. Dimauro, T. Bergeman, H. Metcalf. Continuum Stark Spectroscopy [J]. Phys. Rev. Lett.,1981,47(2):83-86.
    [158]A. Konig, J. Neukammer, H. Hieronymus, H. Rinneberg. Field-ionization Stark spectra of Ba Rydberg atoms at high density of states [J]. Phys. Rev. A,1991,43(5):2402-2415.
    [159]J. W. Cooper, E. B. Saloman. Stark effect on the oscillator-strength distribution of helium near the ionization limit [J]. Phys. Rev. A,1982,26(3):1452-1465.
    [160]C. Blondel, R. J. Champeau, C. Delsart. Photoionization spectroscopy of Yb I from the 6s7s 1S0 state in the presence of a static electric field [J]. Phys. Rev. A,1983,27(1):583.
    [161]A. R. P. Rau. Rydberg states in electric and magnetic fields:near-zero-energy resonances [J]. J. Phys. B,1979,12(6):L193.
    [162]W. P. Reinhardt. A time-dependent approach to the magnetic-field-induced redistribution of oscillator strength in atomic photoabsorption [J]. J. Phys. B,1983,16(21):L635.
    [163]V. S. Kazachok. The electrodynamic method of slowing down molecules [J]. Sov. Phys. Tech. Phys.,1965,10(4):882.
    [164]D. Auerbach, E. E. A. Bromberg, L. Wharton. Alternate-Gradient Focusing of Molecular Beams [J]. J. Chem. Phys.,1966,45(6):2160-2166.
    [165]R. Wolfgang, R. N. Zare, L. M. Branscomb. Chemical Accelerators [J]. Science,1968, 162(3855):818-822.
    [166]H. L. Bethlem, G. Berden, G. Meijer. Decelerating Neutral Dipolar Molecules [J]. Phys. Rev. Lett.,1999,83(8):1558-1561.
    [167]H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. Van Roij, G. Meijer. Electrostatic trapping of ammonia molecules [J]. Nature,2000,406(6795):491-494.
    [168]H. L. Bethlem, F. M. H. Crompvoets, R. T. Jongma, S. Y. T. Van De Meerakker, G. Meijer. Deceleration and trapping of ammonia using time-varying electric fields [J]. Phys. Rev. A, 2002,65(5):053416.
    [169]H. L. Bethlem, A. J. A. Van Roij, R. T. Jongma, G. Meijer. Alternate gradient focusing and deceleration of a molecular beam [J]. Phys. Rev. Lett.,2002,88(13):133003.
    [170]S. Y. T. Van De Meerakker, N. Vanhaecke, H. L. Bethlem, G. Meijer. Transverse stability in a Stark decelerator [J]. Phys. Rev. A,2006,73(2):023401.
    [171]H. L. Bethlem, G. Berden, A. J. A. Van Roij, F. M. H. Crompvoets, G. Meijer. Trapping neutral molecules in a traveling potential well [J]. Phys. Rev. Lett.,2000, 84(25):5744-5747.
    [172]F. M. H. Crompvoets, H. L. Bethlem, R. T. Jongma, G. Meijer. A prototype storage ring for neutral molecules [J]. Nature,2001,411(6834):174-176.
    [173]S. Jung, E. Tiemann, C. Lisdat. The Stark effect of the excited C'B2 state of SO2 and manipulation of dissociation channels [J]. J. Phys. B,2006,39(19):S1085-S1095.
    [174]W. H. Wing. Electrostatic Trapping of Neutral Atomic Particles [J]. Phys. Rev. Lett.,1980, 45(8):631.
    [175]J. A. Maddi, T. P. Dinneen, H. Gould. Slowing and cooling molecules and neutral atoms by time-varying electric-field gradients [J]. Phys. Rev. A,1999,60(5):3882.
    [176]S. D. Hogan, F. Merkt. Demonstration of three-dimensional electrostatic trapping of state-selected Rydberg atoms [J]. Phys. Rev. Lett.,2008,100(4):043001.
    [177]S. D. Hogan, C. Seiler, F. Merkt. Rydberg-State-Enabled Deceleration and Trapping of Cold Molecules [J]. Phys. Rev. Lett,2009,103(12):123001.
    [178]D. Townsend, A. L. Goodgame, S. R. Procter, S. R. Mackenzie, T. P. Softley. Deflection of krypton Rydberg atoms in the field of an electric dipole [J]. J. Phys. B,2001, 34(3):439-450.
    [179]L. I. Schiff, H. Snyder. Theory of the Quadratic Zeeman Effect [J]. Phys. Rev.,1939, 55(1):59-63.
    [180]D. Wintgen, A. Holle, G. Wiebusch, J. Main, H. Friedrich, K. H. Welge. Precision measurements and exact quantum mechanical calculations for diamagnetic Rydberg states in hydrogen [J]. J. Phys. B,1986,19(17):L557.
    [181]A. Holle, G. Wiebusch, J. Main, K. H. Welge, G. Zeller, G. Wunner, T. Ertl, H. Ruder. Hydrogenic Rydberg atoms in strong magnetic fields:Theoretical and experimental spectra in the transition region from regularity to irregularity [J]. Z. Phys. D,1987,5(4):279-285.
    [182]M. L. Zimmerman, J. C. Castro, D. Kleppner. Diamagnetic Structure of Na Rydberg States [J]. Phys. Rev. Lett.,1978,40(16):1083-1086.
    [183]P. Cacciani, S. Liberman, E. Luc-Koenig, J. Pinard, C. Thomas. Rydberg atoms in parallel magnetic and electric fields. I. Experimental studies of the odd diamagnetic multiplet of lithium:n mixing and core effects [J]. J. Phys. B,1988,21(21):3473-3498.
    [184]R. J. Elliott, G. Droungas, J. P. Connerade, X. H. He, K. T. Taylor. The pure diamagnetic spectrum of strontium [J]. J. Phys. B,1996,29(15):3341-3350.
    [185]H. P. Liu, W. Quan, L. Shen, J. P. Connerade, M. S. Zhan. Core scattering of quadratic Zeeman orbits in barium [J]. Phys. Rev. A,2007,76(1):013412.
    [186]W. Quan, H. P. Liu, L. Shen, M. S. Zhan. Experimental investigation of barium spectra in crossed electric and magnetic fields [J]. Chin. Phys. B,2007,16(12):3642.
    [187]T. Van Der Veldt, W. Vassen, W. Hogervorst. Low-field diamagnetism in helium Rydberg states [J]. J. Phys. B,1992,25(15):3295-3305.
    [188]H. F. Yang, W. Gao, W. Quan, X. J. Liu, H. P. Liu. Core effect on the diamagnetic spectrum of barium Rydberg states [J]. Phys. Rev. A,2012,85(3):032508.
    [189]H. Xinghong, L. Baiwen, C. Aiqiu, Z. Chengxiu. Model-potential calculation of lifetimes of Rydberg states of alkali atoms [J]. J. Phys. B,1990,23(4):661.
    [190]C. H. Iu, G. R. Welch, M. M. Kash, L. Hsu, D. Kleppner. Orderly structure in the positive-energy spectrum of a diamagnetic Rydberg atom [J]. Phys. Rev. Lett.,1989, 63(11):1133.
    [191]G. R. Welch, M. M. Kash, C.-H. Iu, L. Hsu, D. Kleppner. Positive-energy structure of the diamagnetic Rydberg spectrum [J]. Phys. Rev. Lett.,1989,62(17):1975.
    [192]D. Delande, A. Bommier, J. C. Gay. Positive-energy spectrum of the hydrogen atom in a magnetic field [J]. Phys. Rev. Lett.,1991,66(2):141.
    [193]A. R. Edmonds. The theory of the quadratic Zeeman effect [J]. J. Phys. Colloques,1970, 31(C4):C4-71-C4-74.
    [194]R. O'connell. Highly Excited States of Atoms in a Magnetic Field [J]. Astrophys. J.,1974, 187(8):275-276.
    [195]A. R. P. Rau. Phenomena exhibiting strong field mixing [J]. Phys. Rev. A,1977,16(2):613.
    [196]R. J. Fonck, F. L. Roesler, D. H. Tracy, F. S. Tomkins. Comparison of atomic quasi-Landau spectrum with semiclassical strong-field-mixing models [J]. Phys. Rev. A,1980, 21(3):861-871.
    [197]R. J. Fonck, D. H. Tracy, D. C. Wright, F. S. Tomkins. Atomic Diamagnetism:Quasi Landau Spectrum near the Ionization Threshold [J]. Phys. Rev. Lett.,1978, 40(21):1366-1369.
    [198]N. P. Economou, R. R. Freeman, P. F. Liao. Diamagnetic structure of Rb in intense magnetic fields [J]. Phys. Rev. A,1978,18(6):2506-2509.
    [199]J. C. Gay, D. Delande, F. Biraben. Landau condensation of the quasi-hydrogenic spectrum of caesium [J]. J. Phys. B,1980,13(24):L729.
    [200]P. Cacciani, E. Luc-Koenig, J. Pinard, C. Thomas, S. Liberman. Experimental Study and Analysis of the Lithium Atom in the Presence of Parallel Electric and Magnetic Fields [J]. Phys. Rev. Lett.,1986,56(14):1467-1470.
    [201]P. Cacciani, E. Luc-Koenig, J. Pinard, C. Thomas, S. Liberman. Rydberg atoms in parallel magnetic and electric fields. Ⅱ. Theoretical analysis of the Stark structure of the diamagnetic manifold of hydrogen [J]. J. Phys. B,1988,21(21):3499.
    [202]H. H. Fielding, J. Wals, W. J. Van Der Zande, H. B. Van Linden Van Den Heuvell. Rydberg-electron wave-packet dynamics in parallel electric and magnetic fields and evidence for stabilization [J]. Phys. Rev. A,1995,51(1):611-619.
    [203]P. Cacciani, S. Liberman, E. Luc-Koenig, J. Pinard, C. Thomas. Rydberg atoms in parallel magnetic and electric fields. Ⅲ. Experimental investigations of the Stark structure of the diamagnetic manifold of lithium [J]. J. Phys. B,1988,21(21):3523.
    [204]R. L. Waterland, J. B. Delos, M. L. Du. High Rydberg states of an atom in parallel electric and magnetic fields [J]. Phys. Rev. A,1987,35(12):5064.
    [205]H. Rinneberg, J. Neukammer, G. Jonsson, H. Hieronymus, A. Konig, K. Vietzke. High n Rydberg atoms and external fields [J]. Phys. Rev. Lett.,1985,55(4):382-385.
    [206]K. Richter, D. Wintgen, J. S. Briggs. Stark effect on diamagnetic Rydberg states [J]. J. Phys. B,1987,20(19):L627.
    [207]M. Courtney. Scaled-energy spectra and closed classical orbits of the hydrogen atom in parallel electric and magnetic fields [J]. Phys. Rev. A,1995,51(6):4558-4562.
    [208]E. Korevaar, M. G. Littman. Effect of crossed electric and magnetic fields on sodium Rydberg states [J]. J. Phys. B,1983,16(15):L437.
    [209]F. Penent, D. Delande, J. C. Gay. Rydberg states of rubidium in crossed electric and magnetic fields [J]. Phys. Rev. A,1988,37(12):4707-4719.
    [210]G. Raithel, M. Fauth, H. Walther. Quasi-Landau resonances in the spectra of rubidium Rydberg atoms in crossed electric and magnetic fields [J]. Phys. Rev. A,1991, 44(3):1898-1909.
    [211]J. Main, G. Wunner. Ericson fluctuations in the chaotic ionization of the hydrogen atom in crossed magnetic and electric fields [J]. Phys. Rev. Lett.,1992,69(4):586-589.
    [212]H. Marxer, I. Moser, F. Mota-Furtado, P. F. O'mahony. Photoabsorption spectra in the perturbative regime for atoms in crossed electric and magnetic fields [J]. J. Phys. B,1994, 27(19):4491.
    [213]X.-M. Tong, S.-I. Chu. Time-dependent approach to high-resolution spectroscopy and quantum dynamics of Rydberg atoms in crossed magnetic and electric fields [J]. Phys. Rev. A,2000,61(3):031401.
    [214]K. Weibert, J. Main, G. Wunner. General Rydberg Atoms in Crossed Electric and Magnetic Fields:Calculation of Semiclassical Recurrence Spectra with Special Emphasis on Core Effects [J]. Ann. Phys.,1998,268(3):172-204.
    [215]T. Bartsch, J. Main, G. Wunner. Closed orbits and their bifurcations in the crossed-field hydrogen atom [J]. Phys. Rev. A,2003,67(6):063410.
    [216]J. P. Connerade, G. Droungas, N. E. Karapanagioti, M. S. Zhan. Atoms in crossed fields:a new experimental approach [J]. J. Phys. B,1997,30(9):2047-2066.
    [217]J. P. Connerade, M. S. Zhan, J. Rao, K. T. Taylor. Strontium spectra in crossed electric and magnetic fields [J]. J. Phys. B,1999,32(10):2351.
    [218]J. P. Connerade, S. D. Hogan, A. M. Abdulla. Experimental investigation of atoms in crossed electric and magnetic fields [J]. J. Phys. B,2005,38(2):S141.
    [219]L. A. Burkova, I. E. Dzyaloshinski, G. F. Drukarev, B. S. Monozon. Hydrogenlike system in crossed electric and magnetic fields [J]. Sov. Phys. JETP,1976,44(3):276-278.
    [220]S. K. Bhattacharya, A. R. P. Rau. Coulomb spectrum in crossed electric and magnetic fields:Eigenstates of motion in double-minimum potential wells [J]. Phys. Rev. A,1982, 26(5):2315-2321.
    [221]C. W. Clark, E. Korevaar, M. G. Littman. Quasi-Penning Resonances of a Rydberg Electron in Crossed Electric and Magnetic Fields [J]. Phys. Rev. Lett.,1985,54(4):320.
    [222]S. D. Hogan. Rydberg states interactiong in crossed electric and magnetic fields[D]. London:Imperial College,2005.
    [223]W. Pauli. Uber das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik [J]. Z. Phys. A,1926,36(5):336-363.
    [224]C. Nicole, H. L. Offerhaus, M. J. J. Vrakking, F. L'epine, C. Bordas. Photoionization Microscopy [J]. Phys. Rev. Lett.,2002,88(13):133001.
    [225]V. D. Kondratovich, V. N. Ostrovsky. Resonance and interference phenomena in the photoionisation of a hydrogen atom in a uniform electric field. Ⅰ. Resonances below and above the potential barrier [J]. J. Phys. B,1984,17(10):1981-2010.
    [226]V. D. Kondratovich, V. N. Ostrovsky. Resonance and interference phenomena in the photoionisation of a hydrogen atom in a uniform electric field. Ⅱ. Overlapping resonances and interference [J]. J. Phys. B,1984,17(10):2011-2038.
    [227]Y. Demkov, V. Kondratovich, V. Ostrovskii. Interference of electrons resulting from the photoionization of an atom in an electric field [J]. JETP Lett.,1982,34(4):403-405.
    [228]C. Blondel, C. Delsart, F. Dulieu, C. Valli. Photodetachment microscopy of O-[J]. Eur. Phys. J. D,1999,5(2):207-216.
    [229]T. Kramer, C. Bracher, M. Kleber. Matter waves from quantum sources in a force field [J]. J. Phys. A:Math. Gen.,2002,35(40):8361.
    [230]T. Kramer, C. Bracher, M. Kleber. Four-path interference and uncertainty principle in photodetachment microscopy [J]. Europhys. Lett.,2001,56(4):471.
    [231]C. Bracher, T. Kramer, J. B. Delos. Electron dynamics in parallel electric and magnetic fields [J]. Phys. Rev. A,2006,73(6):062114.
    [232]C. Bracher, J. B. Delos. Motion of an Electron from a Point Source in Parallel Electric and Magnetic Fields [J]. Phys. Rev. Lett.,2006,96(10):100404.
    [233]S. Gao, G. C. Yang, S. L. Lin, M. L. Du. Electron flux distributions in photodetachment of H in parallel electric and magnetic fields [J]. Eur. Phys. J. D,2007,42(4):189.
    [234]V. D. Kondratovich, V. N. Ostrovsky. Resonance and interference phenomena in the photoionization of a hydrogen atom in a uniform electric field. Ⅳ. Differential cross sections [J]. J. Phys. B,1990,23(21):3785.
    [235]C. Bordas. Classical motion of a photoelectron interacting with its ionic core:Slow photoelectron imaging [J]. Phys. Rev. A,1998,58(1):400.
    [236]C. E. Nicole, I. Sluimer, F. Rosca-Pruna, M. Warntjes, M. Vrakking, C. Bordas, F. Texier, F. Robicheaux. Slow Photoelectron Imaging [J]. Phys. Rev. Lett.,2000,85(19):4024.
    [237]C. Bordas, F. Lepine, C. Nicole, M. J. J. Vrakking. Semiclassical description of photoionization microscopy [J]. Phys. Rev. A,2003,68(1):012709.
    [238]L. B. Zhao, J. B. Delos. Dynamics of electron wave propagation in photoionization microscopy. Ⅰ. Semiclassical open-orbit theory [J]. Phys. Rev. A,2010,81(5):053417.
    [239]L. B. Zhao, J. B. Delos. Dynamics of electron wave propagation in photoionization microscopy. Ⅱ. Quantum-mechanical formulation [J]. Phys. Rev. A,2010,81(5):053418.
    [240]L. Wang, H. F. Yang, X. J. Liu, H. P. Liu, M. S. Zhan, J. B. Delos. Photoionization microscopy of the hydrogen atom in parallel electric and magnetic fields [J]. Phys. Rev. A, 2010,82(2):022514.
    [241]D. Wang, M. L. Du, S. Lin. Application of closed-orbit theory to the Rydberg hydrogen atom near a metal surface [J]. J. Phys. B,2006,39(17):3529-3539.
    [242]D. Wang, Y. Yu, H. Wang. Photodetachment of H- near a metal surface [J]. Chin. Opt. Lett., 2009,7(3):176.
    [243]H. Y. Li, X. Zhao, S. Gao, X. Y. Xu, H. Zhou, S. L. Lin. Recurrence spectra and dynamical simulation of Rydberg hydrogen atom near a metal surface [J]. Eur. Phys. J. D,2008, 49(1):1-6.
    [244]D. H. Wang. Absorption and Recurrence Spectra of Nonhydrogenic Rydberg Atom Near a Metal Surface [J]. Commun. Theor. Phys.,2008,49(2):467-472.
    [245]J. P. Salas, N. S. Simonovic. Rydberg states of the hydrogen atom in the instantaneous van der Waals potential:quantum mechanical, classical and semiclassical treatment [J]. J. Phys. B,2000,33(3):291.
    [246]N. S. Simonovic. Classical chaos in the hydrogen atom near a metal surface [J]. J. Phys. B, 1997,30(18):L613-L618.
    [247]C. Fabre, M. Gross, J. M. Raimond, S. Haroche. Measuring atomic dimensions by transmission of Rydberg atoms through micrometre size slits [J]. J. Phys. B,1983, 16(21):L671.
    [248]V. Sandoghdar, C. I. Sukenik, E. A. Hinds, S. Haroche. Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity [J]. Phys. Rev. Lett.,1992,68(23):3432-3435.
    [249]A. Anderson, S. Haroche, E. A. Hinds, W. Jhe, D. Meschede. Measuring the van der Waals forces between a Rydberg atom and a metallic surface [J]. Phys. Rev. A,1988, 37(9):3594-3597.
    [250]G. R. Lloyd, S. R. Procter, T. P. Softley. Ionization of Hydrogen Rydberg Molecules at a Metal Surface [J]. Phys. Rev. Lett.,2005,95(13):133202.
    [251]G. R. Lloyd, S. R. Procter, E. A. Mccormack, T. P. Softley. lonization of H2 Rydberg molecules at a metal surface [J]. J. Chem. Phys.,2007,126(18):184702.
    [252]M. Ge, Y. Zhang, D. Wang, M. Du, S. Lin. The dynamical properties of Rydberg hydrogen atom near a metal surface [J]. Sci. Chin. G,2005,48(6):667-675.
    [253]M. Inarrea, V. Lanchares, J. F. Palacian, A. I. Pascual, J. P. Salas, P. Yanguas. Rydberg hydrogen atom near a metallic surface:Stark regime and ionization dynamics [J]. Phys. Rev. A,2007,76(5):052903.
    [254]L. Wang, H.-F. Yang, X.-J. Liu, H.-P. Liu. Ionisation of Rydberg hydrogen atom near a metal surface by short pulse laser [J]. Chin. Phys. B,2010,19(11):113301.
    [255]P. Nordlander. Energies and lifetimes of atomic Rydberg states near metal surfaces [J]. Phys. Rev. B,1996,53(7):4125.
    [256]S. K. Knudson, J. B. Delos, B. Bloom. Semiclassical calculation of quantum-mechanical wave functions for a two-dimensional scattering system [J]. J. Chem. Phys.,1985, 83(11):5703-5711.
    [257]K. Mitchell, J. Delos. The structure of ionizing electron trajectories for hydrogen in parallel fields [J]. Phys. D,2007,229(1):9-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700