用户名: 密码: 验证码:
非线性动力学分析与控制的若干理论问题及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界的本质是非线性的,以前我们研究的线性理论只是对客观的非线性世界的一种近似。因此,研究非线性动力学中的混沌运动和分岔现象是非常有趣的事情,它们帮助我们更深刻的认识自然界的非线性本质。在工程中的水电站系统,是典型的耦合了水利系统、机械系统和电气系统的复杂非线性系统。生产实践中,也发现国内外大中型水电站中水力发电机组均存在一定的稳定性问题。其表现出水轮机调节系统的控制十分困难,与之矛盾的是:水电站机组装机容量、其所占电力系统容量的比率越来越大和自动化水平要求的不断提高。所以,本文从非线性动力学理论入手,研究新的物理系统、物理现象、物理规律和物理概念,并尝试将其应用到水电站系统稳定性分析与控制。
     论文的主要内容和结论如下:
     (1)提出了一个新三维的混沌系统,若对这个三维混沌系统中的一个线性项进行绝对值运算,即可得到该系统的羽翼倍增的新混沌系统。它让我们认识到次要部分的微小改变的确也能重大改变事物的整体特征,因为,我们知道“非线性是产生混沌的必要条件”,换句话说,非线性项是非线性动力学系统中的主要部分。同时,还对这个新系统进行了耗散性分析、平衡点特征分析等动力学分析。最后,给出了实现该系统的电路图,电路实验观测结果和数值模拟结果彼此一致且互相印证。
     (2)通过提出一个新的分段线性函数,实现了能够产生二到n个涡卷的新混沌系统,并且给出了其电路设计方案。电路实验和数值模拟结果相互统一。最重要的是,在进行非线性动力学的过程中发现:系统的相轨迹图、庞加莱图和分岔图是统一在一起的。具体的说就是:①庞加莱图与相轨迹图在随着涡卷数量的变化时,是彼此一致的。更确切的为,在庞加莱图上的分形的圆圈数量是随着涡卷数量的增多而逐渐增多的。因此,我们可以说,庞加莱图和相轨迹图两者在这个方面上是一致的。②不同涡卷的分岔图上的密集点数目随着涡卷数量的增大而递增。换句话说,他们彼此是一致的。这就意味着,我们可以通过相轨迹图中吸引子的数目来判定分岔图中密集点的数目,而判定分岔图的正确与否,反之亦然。最后,我们可以说,相轨迹图、分岔图和庞加莱映射图,这些非线性动力学分析工具是统一的一个整体,彼此能互相校核。当然,各自都有自己的独特一面,能反映非线性动力学系统的一个侧面。
     (3)提出了一个新的四维的分数阶混沌系统,给出了分数阶混沌系统的数值模拟的算法迭代过程,根据分数阶稳定性定理,分析了分数阶动力学系统的平衡点稳定性。给出了分数阶0.8,0.9阶的单元电路的形式,和完整的新分数阶混沌系统的电路图。提出了一个新的三维分数阶混沌系统,通过对其第二个方程的一个线性项进行绝对值运算,可以得到该分数阶系统的羽翼倍增系统。并设计了其实现电路。
     (4)在混沌控制方面,首先研究了在考虑有界噪声时的滑模变结构控制方法对混沌系统的控制与实践,探讨了用饱和函数解决滑模变结构控制的抖振问题,深入研究了不同趋近率对被控系统过渡过程的影响;其次研究了一类三维分数阶混沌系统的控制问题,提出了一类三维分数阶混沌系统的一般形式,并通过三个典型例子证明所提方法的有效性;最后,提出了用只含一个控制项的控制器控制一类四维超混沌系统,该控制方法对非线性输入和随机噪声都具有很好的鲁棒性。
     (5)在混沌同步方面,首先基于LMI (Linear Matrix Inequality)变换采用模糊控制方法实现了分数阶与整数阶混沌系统的同步,以此来建立两者之间的桥梁,还同时实现了混沌系统的反同步,指出同步与反同步是统一在一起的,可以用同一方法实现,最后实现了不同维混沌系统之间的同步,提出控制是特殊的同步,同步是更广义的控制。最后,基于模糊滑模变结构控制实现一类n维混沌系统的同步,如果将每一维方程看作一个节点,该方法可以应用于复杂网络同步。
     (6)在同步电路方面,首先基于错位同步理论实现了整数阶混沌系统的同步电路设计。其次,基于非线性反馈方法实现了分数阶混沌系统的同步。最后,提出了一个全新的最小单元响应电路,该电路能够同步任一对称或不对称的整数阶或分数阶混沌电路,给出两个典型例子来证明该电路的正确性和可行性。这也是第一次在工程上实现分数阶与整数阶混沌系统的同步,此实验的成功为两者建立了完美的桥梁。在此工作之后,基于混沌电路的保密通信也将面临新的挑战。
     (7)在简单式调压井模型基础上,考虑弹性水击效应、发电机转矩角的影响等,建立了单机单管时的水轮机调节系统非线性数学模型。在此基础上,利用非线性理论,分析了系统的非线性动力学特征;建立了带缓冲罆的水轮机调节系统的非线性数学模型,在考虑电网频率波动对系统的非线性动力学行为的影响;在考虑调压设备及尾水管道的基础上建立了水轮机调节系统弹性水击非线性数学模型。并在此模型基于上,运用非线性动力学理论对某一具体水电站进行了稳定性分析和具体运动特性研究:最后,提出了模糊滑模变结构控制,并将其应用到水轮机调节系统中,消除系统的不稳定状态。
As we all know, the world is nonlinear in essence. Actually, what we have got based on linear theory is approximate average value of the world. Therefore, it is very interesting to study chaos and bifurcation of nonlinear systems, for that we can understand the nature of the things more deeply. As for Hydropower system, it is a complex nonlinear system including hydro system, mechanical system and electrical system. In production practice, stability is a universal problem for hydropower system in all over the world. Also, it is hard to control. Correspondingly, the capacity of the hydropower is becoming larger and larger, and the requirement of the system is increasing higher and higher. Therefore, we study new physical system, physical phenomenon, new law and physical concepts by using nonlinear dynamics theory, and try to apply it to the stability analysis of the hydropower system.
     The contents and conclusions of this paper include:
     (1) A new three dimentional chaotic system was presented here. Then, we can get a new double-wing chaotic system by the absolute operation of a linear term. It shows that a slight change on the secondary part can change the mainly characters of the whole system, for that we all know that nonlinear is a requirement to the occurance of chaos, in other words, nonlinear term is the main part of the system. Finally, the circuit diagram was also derived. Its experimental results are agreement with the numerical simulation.
     (2) A new multi-scroll chaotic system was presented by using a new piecewise function. Moreover, the circuit diagram was also designed, the experimental results in which are agreement with numerical simulation. We can get conclusion that the phase trajectories, Poincare maps and bifurcation diagram are all uniform and can describe different aspects of the dynamical system.①the numbers of circles in fractal structure in Poincare maps is gradually increasing with the increase of the scroll number. Therefore, the phase trajectories and Poincare maps are agreement with each other. In other words, they are consistent in essence.②The number of dense points is consistent with the number of the scrolls. Obviously, the number of dense points region is increasing with the number of the scrolls. In other words, they are equal to each other. In the future, we can judge the number of the attractors by confirming the number of the dense points region in bifurcation diagram, while the attractors are more intuitive from the phase trajectories maps.At last, we cam get that the phase trajectories, Poincare maps and bifurcation diagram are all uniform and can describe different aspects of the dynamical system.
     (3) A new four-dimentional fractional-order chaotic system and a new double-wing fractional-order chaotic system were derived including circuit diagram.
     (4) As for chaos control, we first study the sliding mode control with bounded noise, and discuss the no-chattering sliding mode control by using saturation funciton. Furthermore, we also study the effection of different reaching rate. Second, we also study the control of a class of chaotic systems by using three typical examples. Finally, we implemented a class of four dimentional hyperchaotic systems with only one controller term.
     (5) As for chaos synchronization, I try to bridge the fractional order chaotic system and integer order chaotic system by reaching the synchronization of fractional-order chaotic system and integer order chaotic sytem based on LMI. We also point that synchronization and anti-synchronization are unified with each other. They could be realized by the same method. Furthermore, we get a conclusion that chaos control is a special case of chaos synchronization, and chaos synchronization is a generalized concept of chaos control. Finally, a class of n-dimentional chaotic systems was realized via fuzzy sliding mode control, which is also suitable for complex networks.
     (6) As for circuit design, a circuit diagram of chaos synchronization via mismatch synchronization. Also, a circuit diagram of fractional order chaotic synchronization via nonlinear feedback control. Finally, a unit circuit of response system was presented, which is suitable for any fractional-order or integer order chaotic system, which was proved by two typical examples. It is the first time to reach synchronization of fractional-order and integer order chaotic systems. After this work, the secure communication will meet new change based on chaotic circuit.
     (7) A new dynamical model for the hydro-turbine governing system with elastic water hammer-impact and the second order model of generator was established, which is based on the model of simple surge shaft. By virtue of bifurcation diagram, Poincare maps, the power spectrum diagram, the time domain diagram, the orbits diagram and the spectrum diagram, the nonlinear dynamical responses of generator's relative deviation of rotational seed and the water pressure at the entrance of surge shaft were analyzed. Second, a new nonlinear mathematical model of a hydro-turbine governing system with a surge tank was presented. Finally, we introduce a new model of hydro-turbine system with the effect of surge tank based on state-space to study the dynamical behaviors of a hydro-turbine system.
引文
陈帝伊,申滔,马孝义.2011a.滑模变结构法实现旋转圆盘混沌振动的控制.振动与冲击,30(9):248-252.
    陈帝伊,申滔,马孝义.2011b.参数不定的旋转圆盘在有界扰动下混沌振动的滑模变结构控制.物理学报,60(5):050505.
    陈帝伊,杨朋超,马孝义,孙在涛.2011c.水轮机调节系统的混沌现象分析及控制.中国电机工程学报,31(14):113-120.
    陈帝伊,郑栋,马孝义,郑小贺.2012.混流式水轮机调节系统建模与非线性动力学分析.中国电机工程学报,32(32):116-123.
    陈关荣,汪小帆.2006.动力系统的混沌化:理论、方法与应用.上海:上海交通大学出版社:1
    陈贵清,董保珠,邱家俊.2010.电磁作用激发的水电机组转子轴系振动研究.力学季刊,31(1):108-112.
    陈国庆.2006.三峡左岸电站水轮发电机组运行分析与稳定措施.水力发电,32(2):39-42.
    陈嘉谋.1993.水轮机调节系统计算机仿真.北京:水利电力出版社:45
    曹程杰,莫岳平,刘洁.2010.基于Matlab模块化模型的水轮机发电机组仿真研究.电力系统保护与控制,38(3):68-71.
    程远楚,郭智俊,叶鲁卿,黄建勇.2007.非线性解析模糊控制及在水电机组控制中的应用.武汉大学学报(工学版),40(2):104-109.
    方红庆,陈龙,李训铭.2010.基于线性与非线性模型的水轮机调速器PID参数优化比较[J].中国电机工程学报,30(5):100-106.
    高立明,把多铎,谭剑波.2009.基于Matlab/Simulink的水轮机调节仿真研究.人民长江,40(19):84-86.
    高学军.2010.铁路客车系统横向运动对称/不对称分岔行为与混沌研究.[博士学位论文].成都:西南交通大学.
    高梅英,陈胜武.2011.三门峡电站水轮机叶片裂纹的分析及处理.华中电力,24(4):63-64.
    黄剑峰,张立翔,王文全,姚激.2011.混流式水轮机三维非定常流分离涡模拟的精细模拟.中国电机工程学报,31(26):83-89.
    黄源芳,刘光宁,樊世英.2010.原型水轮机运行研究.北京:中国电力出版社,34.
    黄志伟.2011.基于非线性转子动力学的水轮发电机组振动机理研究.武汉:华中科技大学.
    金鑫.2011.基于ANSYS的水轮发电机机电耦合弯曲振动响应仿真[博士学位论文].长春:吉林大学.
    孔繁镍,吴杰康.2011.水轮机调速系统的H∞双回路鲁棒控制策略.电网技术,35(8):212-217.
    李春彪,王翰康,陈谡.2010.一个新的恒Lyapunov指数谱混沌吸引子与电路实现.物理学报,59(2):783-791.
    李辉,王瀚,白亮,罗兴绮,郭鹏程.2011.改进希尔伯特-黄变换方法提取水轮机动态特性信息.中国电机工程学报,31(2):78-84.
    李友平,黄源芳,李建斌.2011.溪洛渡水电站福伊特水轮机模型及验收试验.大电机技术,(1):46-49.
    凌代俭.2007.水轮机调节系统分岔与混沌特性的研究[博士学位论文].南京:河海大学.
    刘志坚,束洪春,于继来,刘可真.2009.一种满意控制的水轮机调速系统参数优化方法.中国电机工程学报,29(20):99-105.
    吕金虎,陆君安,陈士华.2002.混沌时间序列分析及其应用.武汉:武汉大学出版社:1-5
    卢强,桂小阳,梅生伟,孙郁松,邵宜祥,蔡卫江.2005.大型发电机组调速器的非线性最优PSS.电 力系统自动化,29(9):15-19.
    马国强,刘建华,刘国峰.2011.澜沧江乌弄龙水电站水轮机主要参数选择.水力发电,37(4):76-78.
    马薇,李郁侠,乔卫东,段凌剑.2004.姚河坝水电站水轮机调节系统小波动稳定性分析.水利发电学报,23(6):13-16.
    南海鹏,贾嵘,邵文权.2004.PID算法对水轮机调节系统的稳定域影响.水利发电学报,23(6):17-23.
    倪一丹,周俊杰,刘怡.2011.基于MATLAB一管四机水电站小波动稳定分析.水电能源科学,29(7):121-123.
    潘熙和,王丽娟.2011.我国水轮机调速技术创新回顾与学科前景展望.长江科学院院报,28(10):221-226.
    潘云鹤.2011.潘云鹤院士:2010,中国工程科技的关键之年[N].科学时报,2011-2-9(A1).
    沈祖诒.2008.水轮机调节.北京:中国水利水电出版社.
    师彪,李郁侠,何常胜,于新花,闫旺,孟欣,李鹏.2010.水轮机智能调速系统数学模型仿真及参数辨识.电力自动化设备,30(4):10-15.
    舒周杨.2011.秀观水电站调速器系统改造.水力发电,37(8):71-72.
    宋兵伟,马震岳,Horiguchi Hironori, Tsujimoto Yoshinobu.2011.混流式水轮机进动过程中转轮上冠转动流体力矩研究.大连理工大学学报,51(6):876-882.
    孙郁松,孙元章,卢强,邵宜祥.2001.水轮机调节系统非线性H∞控制规律的研究.中国电机工程学报,21(2):56-65.
    谭剑波,把多铎,高立明.2010.基于改进BP网络的轴流式水轮机调节特性研究.人民长江,41(2):60-63.
    解建宝,辛华.2007.基于协同进化算法的水轮机模糊PID调速器研究.华北电力大学学报,34(1):89-93.
    凯文.M.罗兰,杰森.M.福斯特,格瑞戈里.D.勒威斯等.2011.美国新桥水电站的掺气水轮机.水利水电快报,32(2):25-28.
    徐洪泉,王万鹏,李铁友.2011.论水轮机比转速选择和水电站稳定性的关系.水力发电学报,30(5):220-223.
    徐明.2009.几类电力、电路系统的混沌动力学行为研究.[博士学位论文].南宁:广西师范大学
    岳高峰,郭振伟.2009.水轮机稳定运行的分析研究.水力发电,35(8):69-71.
    王宝华.2005.电力系统非线性动力学行为分析与控制.[博士学位论文].南京:南京理工大学
    王官宏,濮钧,陶向宇,刘增煌.2010.电力系统稳定计算用国产700MW水轮机调节系统建模及参数测试.电网技术,34(3):101-105.
    王乐勤,刘锦涛,梁成红,焦磊.2011.水泵水轮机水轮机制动区的流动特性.排灌机械工程学报,29(1):1-5.
    王涛,余向阳,辛华,南海鹏.2007.基于协同进化算法的水轮机模糊PID调节系统模糊规则的研究.水利发电学报,26(2):137-142.
    王忠林,邓斌,侯承玺,姚福安.2010.四翼Liu混沌系统的设计与电路实现.山东大学学报,45(11):43-46
    魏守平.2011.水轮机调节系统仿真.武汉:华中科技大学出版社,31.
    闻健.2007.比例-数字阀全冗余可编程调速系统的控制方法研究与系统实现[博士学位论文].西安:西安理工大学.
    臧强.2009.非线性微分-代数子系统的控制及其在电力系统中的应用研究[博士学位论文].南京:东南大学
    张国宝.2010.神女应无恙,当惊世界殊——在中国水电100年纪念大会上的讲话[N].人民日报,2010-8-26
    张兰金,王正伟,常近时.2011.混流式水泵水轮机全特性曲线S形区流动特性.农业机械学报,42(1):39-43.
    张蓉生,刘泽,王立闯,张友才.2011.基于Delaunay三角网剖分的水轮机综合特性曲线数据插值.水力发电学报,30(4):197-201.
    张思青,胡秀成,张立翔,余凤荣,李长臻.2011.基于CFD的长短叶片水轮机全流道湍流流动定常研究.水力发电学报,30(5):186-191.
    张飞,高忠信,潘罗平,葛新峰.2011.混流式水轮机部分负荷下尾水管压力脉动试验研究.水利学报,42(10):1234-1238.
    张绍杰.2008.一类非线性系统的若干控制问题研究.[博士学位论文].南京:南京航空航天大学
    赵林明,楚清河,代秋平,王利英.2011.基于小波分析与人工神经网络的水轮机压力脉动信号分析.水利学报,42(9):1075-1080.
    Ahmad W M.2005. Generation and control of multi-scroll chaotic attractors in fractional order systems, Chaos, Solitons & Fractals 25:727-735.
    Akkose M, Bayraktar A, Dumanoglu A A.2008. Reservoir water level effects on nonlinear dynamic response of arch dams. Journal of Fluids and Structures,24(3):418-435.
    Ataei M, Iromllozadeh A, Karimi B.2010. Robust synchronization of a class of uncertain chaotic systems based on quadratic optimal theory and adaptive strategy. Chaos,20(4):043137.
    Boccaletti S, Grebogi C, Lai Y C.2000. The control of chaos:theory and applications. Physcis Reports: Review Section of Physics Letters,329(3):103-197.
    Cao J D, Ho D W C, Yang Y Q.2009. Projective synchronization of a class of delayed chaotic systems via impulsive control. Physics Letters A,373(35):3128-3133.
    Cang S J, Qi G Y, Chen Z Q,2010. A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system. Nonlinear Dynamics,59:515-527.
    Celikovsky S, Chen G. 2005. On the generalized Lorenz canonical form. Chaos, Solitons and Fractals,26: 1271-1276.
    Che Y Q, Wang J, Cui S G, et al.2011. Chaos synchronization of coupled neurons via adaptive sliding mode control. Nonlinear Analysis:Real World Applications,12(6):3199-3206.
    Chen D Y, Liu Y X, Ma X Y et al.2011a. No-chattering sliding mode control in a class of fractional-order chaotic systems. Chinese Physics B,20(12):120506.
    Chen D Y, Zhao W L, Ma X Y, et al.2011b. No-chattering sliding mode control chaos in Hindmarsh-Rose neurons with uncertain parameters. Computers and Mathematics with Applications,61:3161-3171.
    Chen D Y, Wu C, Liu C F, et al.2012a. Synchronization and circuit simulation of a new double-wing chaos. Nonlinear Dynamics,67 (2):1481-1504.
    Chen D Y, Liu Y, Ma X Y.2012b. Parameter estimation of phase space reconstruction in chaotic time series based on RBF neural networks. Acta Physica Sinica,61(10):100501.
    Chen D Y, Liu C F, Wu C, Liu Y J, Ma X Y.2012c. A new fractional-order chaotic system and its synchronization with circuit simulation. Circuits, Systems & Signal Processing,31:1599-1613.
    Chen D Y, Liu Y X, Ma X Y, Zhang R F.2012d. Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dynamics,67 (1):893-901.
    Chen D Y, Shi L, Chen H T, Ma X Y.2012e. Analysis and control of a hyperchaotic system with only one nonlinear term. Nonlinear Dynamics,67(3):1745-1752.
    Chen D Y, Shi P, Ma X Y.2012f. Control and Synchronization of Chaos in an Induction Motor System. International Journal of Innovative Computing, Information and Control,8 (10B):7237-7248.
    Chen D Y, Sun Z T, Ma X Y, Chen L.2012g. Circuit Implementation and Model of a New Multi-Scroll Chaotic System. International Journal of Circuit Theory and Applications, doi:10.1002/cta.1860
    Chen D Y, Zhang R F, Sprott J C, Chen H T, Ma X Y.2012h. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control, Chaos,22: 023130.
    Chen D Y, Zhang R F, Sprott J C, Ma X Y.2012i. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dynamics,70:1549-1561.
    Chen D Y, Zhang R F, Ma X Y Liu S,2012j. Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dynamics,69(1-2): 35-55.
    Chen D Y, Zhang R F, Ma X Y, Wang J.2012k. Synchronization between a novel class of fractional-order and integer orders chaotic systems via sliding mode controller. Chinese Physics B,21(12):120507.
    Chen D Y, Zhao W L, Ma X Y, Zhang R F.20121. Control and synchronization of chaos in RCL-shunted Josephson junction with noise disturbance using only one controller term, Abstract and Applied Analysis, doi:10.1155/2012/378457
    Chen D Y, Zhao W L, Ma X Y, Wang J.2012m. Control for a class of 4D chaotic systems with random-varying parameters and noise disturbance. Journal of Vibration and Control, doi: 10.1177/1077546312441657.
    Chen D Y, Zhao W L, Sprott J C, Ma X Y.2013 a. Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization, Nonlinear Dynamics, doi: 10.1007/s11071-013-0880-1
    Chen D Y, Wu C, Iu H H C, Ma X Y.2013b. Circuit simulation for synchronization of a fractional-order and integer-order chaotic system, Nonlinear Dynamics, doi:10.1007/s11071-013-0894-8
    Chen D Y, Ding C, Ma X Y, Yuan P, Ba D D.2013c. Nonlinear dynamical analysis of hydro-turbine governing system with a surge tank. Applied Mathematical Modelling, doi: 10.1016/j.apm.2013.01.047.
    Chen D Y, Liu S, Ma X Y, Zhang R F.2013d. Modeling, nonlinear dynamical analysis of a novel power system with random wind power and its Control, Energy, doi:10.1016/j.energy.2013.02.013.
    Chen G, Ueta T.1999. Yet another chaotic attractor. International Journal of Bifurcation and Chaos,9: 1465-1466.
    Chen L P, Chai Y, Wu R C.2011. Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems. Physics Letters A,375(21):2099-2110.
    Chen Y, Wu X F, Gui Z F.2010. Global synchronization criteria for a class of third-order non-autonomous chaotic systems via linear state error feedback control, Applied Mathematical Modelling,34(12): 4161-4170.
    Cuomo K M, Oppenheim A V 1993. Circuit implementation of Synchronized chaos with Applications to Communications. Physical Review Letters,71(1):65-68.
    Dadras S, Momeni H R.2010. Four-scroll hyperchaos and four-scroll evolved from a novel 4D nonlinear smoth autonomous system. Physics Letter A,374:1368-1373.
    Dal Mehmet, Kaya Alaattin Metin, Aksit Mahmut F et al.2010. A hardware test setup for grid connected and island operation of micro hydro power generation systems.2010 IEEE International Energy Conference and Exhibition:624-629.
    Danca M F, Tang W K S, Chen G.2008. A swiching scheme for synthesizing attractors of dissipative chaotic system. Applied Mathematics and Computation,201:650-667
    De Paula A S, Savi M A.2009a. Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method. Chaos, Solitons and Fractals,42(5):2981-2988.
    De Paula A S, Savi M A.2009b. A multiparameter chaos control method based on OGY approach. Chaos, Solitons and Fractals,40(3):1376-1390.
    Dehghani M. Nikravesh S K Y 2008. Nonlinear state space model identification of synchronous generators, Electric Power Systems Research,78:926-940.
    Deng W H, Li C P.2005. Chaos synchronization of the fractional Lu system, Physica A-Statistical Mechanics and its Applications,353:61-72.
    Deng W H.2007. Generalized synchronization in fractional order systems, Physical Review E,75(5): 056201.
    Elwakil A S, Kennedy M P.1999. Inductorless hyperchaos generator. Microeletr J.30:739-743.
    Etemadi S, Alasty A, Salarieh H.2006. Synchronization of chaotic systems with parameter uncertainties via variable structure control. Physics Letter A,357:17-21.
    Fang H Q, Chen L, Dlakavu N, et al.2008. Basic Modeling and Simulation Tool for Analysis of hydraulic transients in hydroelectric power plants. IEEE Transactions on Energy Coversion,23(3):834-841.
    Gao T, Chen Z, Gu Q, Yuan Z.2008. A new hyper-chaos generated from generalized Lorenz system via nonlinear feedback. Chaos, Solitons and Fractals,35:390-397.
    Guerrier G, Paul R, Sananikhom P, et al.2011. Strategic success for Hydropower in Laos[J]. Science, 333(6052):38
    Fuller R L, Doyle S, Levy L, et al.2011. Impact of regulated releases on periphyton and macroinvertebrate communities:the dynamic relationship between hydrology and geomorphology in frequently flooded rivers[J]. River Research and Applications,27(5):630-645.
    Gao X, Yu J B.2005. Synchronization of two coupled fractional-order chaotic oscillators. Chaos, Solitons and Fractals,26 (1):141-145.
    Ge Z M, Li S C, Li S Y, Chang C M.2008. Pragmetical adaptive control from a new double van der Pol system to a new double Duffing system. Applied Mathematics and Computation,203:513-522.
    Guo H, Lin S, Liu J.2006. A radial basis function sliding mode controller for chaotic Lorenz system. Physics Letters A,351:257-261.
    Guo A W, Li J P, Yang J B.2011. PIDNN decoupling control of doubly fed hydro-generator system based on PSO method. Proceedings of the 30th Chinese Control Conference:2698-2701.
    Hydraulic Transients in Hydroelectric Power Plants. IEEE Transactions on Energy Conversion,23: 834-841.
    Hung Y C, Liao T L, Yan J J.2009. Adaptive variable structure control for chaos suppression of unified chaotic systems. Applied Mathematics and Computation,209:391-398.
    Jiang C W, Ma Y C, Wang C M,2006. PID controller parameters optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming (DCMEP). Energy Conversion and Management,47(9-10):1222-1230.
    Khodabakhshian A, Hooshmand R,2010. A new PID controller design for automatic generation control of hydro power systems. International Journal of Electrical Power and Energy Systems,35(5):375-382.
    Iokibe T, Yonezawa Y, Taniguchi M.2000. Short-term prediction of water flow data into hydroelectric power stations using local fuzzy reconstruction method. Electrical Engineering in Japan,130(4): 99-106.
    Larger Laurent, Dudley John M.2010. Nonlinear Dynamics Optoelectronic chaos. Nature,465(7294): 41-42.
    Kapitaniak T, Chua L O.1994. Hyperchaotic attractor of unidirectionally-coupled Chua's circuit. International Journal of Bifurcation and Chaos,4:477-482.
    Lai D, Chen G. 2000. Distribution of controlled Lyapunovexponents:A statistical simulation study. Computational Statistics and Data Analysis,33:69-77.
    Lai D, Chen G. 2003. Making a discrete dynamical system chaotic:Theoretical results and numerical simulations. International Journal of Bifurcation and Chaos,13(11):3437-3442.
    Lai D, Chen G 2004. Chaotification of discrete-time dynamical systems:An extension of the Chen-Lai algorithm, International Journal of Bifurcation and Chaos,15(1):109-117.
    Li C G.2006. Projective synchronization in fractional order chaotic systems and its control, Progress of Theoretical Physics,115(3):661-666.
    Li C G, Liao X F, Yu J B.2003. Synchronization of fractional order chaotic systems. Physical Review E, 68(6):067203.
    Li D.2008. A three-scroll chaotic attractor. Physics Letter A.372:387-393.
    Li H Y, Hu Y A.2011. Robust sliding-mode backstepping design for synchronization control of cross-strict feedback hyperchaotic systems with unmatched uncertainties. Communictions in Nonlinear Science and Numerical Simulation,16(10):3904-3913.
    Lu J G.2006. Chaotic dynamics of the fractional-order Lu system and its synchronization, Physics Letters A,354(4):305-311.
    Li R, Xu W, Li S.2006. Chaos controlling of extended nonlinear Lienard system based on the Melnikov theory. Applied Mathematics and Computation,178:405-414.
    Li Y, Tang W K S, Chen G.2005b. Generating hyperchaos via state feedback control. International Journal of Bifurcation and Chaos,15(10):3367-3375.
    Li Y F, Tseng C S.2008. Robust linear output feedback control design for nonlinear chaotic systems via T-S fuzzy model with H(infinity) setting, International Journal of Bifurcation and Chaos,18(11): 3375-3392.
    Li Y X, Chen G, Tang W K S.2005a. Controlling a unified chaotic system to hyperchaotic. IEEE Transactions on Circuit and System Ⅱ-Repid Comunications,52:204-207.
    Lin T C, Lee T Y.2011. Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Transactions on Fuzzy Systems,19(4): 623-635.
    Lin P, Zhou W, Fang J.2010. Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control, Communications in Nonlinear Science and Numerical Simulation,15(12):3754-3762.
    Liu Y, Yang Q G. (2010). Dynamics of a new Lorenz-like chaotic system. Nonlinear Analysis:Real World Applications,11:2563-2572.
    Lorenz E N.1963. Deterministic Non-periodic Flow, J. Atmos. Sci.,20:130-141.
    Lu J.2003. Controlling uncertain Lu system using linear feedback. Chaos, Soltions and Fractals,17: 127-133.
    Lu J G.2006. Chaotic dynamics of the fractional-order Lu system and its synchronization. Physics Letters A,354:305-311.
    Lu J, Chen G 2002. A new chaotic attractor coined. International Journal of Bifurcation and Chaos,12: 659-661.
    Lu J H, Han F L, Yu X H, Chen G R.2004. Generating 3-D multi-scroll chaotic attractros:A hysteresis series switching method, Automatica 40:1677-1687.
    Masoud J S, Ramin V, Mehrdad B et al.2012. Application of particle swarm optimization in chaos synchronization in noisy environment in presence of unknown parameter uncertainty. Communications in Nonlinear Science and Numerical Simulation,17(2):742-753.
    Mohammad S T, Mohammad H.2008. Chaos control via a simple fractional-order controller. Physics Letters A,372:798-807.
    Monje C A, Feliu V.2004. The fractional-order lead compensator. IEEE International Conference on Computational Cybernetics, Vienna, Austria.
    Munmuangsaen Buncha, Srisuchinwong Banlue.2009. A new five-term simple chaotic attractor. Physics Letters A 373:4038-4043.
    Ott E, Grebogi C, York J A.1990. Controlling chaos. Physical Review Letters,64:1196-1199.
    Pang S, Liu Y.2011. A new hyperchaotic system from the Lu system and its control. Journal of Computational and Applied Mathematics,235:2775-2789.
    Pai N S, Yau H T, Kuo C L.2010. Fuzzy logic combining controller design for chaos control of a rod-type plasma torch system. Expert Systems with Applications,37(12):8278-8283.
    Park J H, Kwon O M, Lee S M.2008. LMI optimization approach to stabilization of Genesio-Tesi chaotic system via dynamic controller. Applied Mathematics and Computation,196:200-206.
    Park J H, Won D H J, Lee S M.2008. H∞ synchronization of time-delayed chaotic sytems. Applied Mathematics and Computation,204:170-177.
    Peng G J, Jiang Y L.2010. Two routes to chaos in the fractional Lorenz system with dimension continuously varying. Physica A,389(19):4140-4148.
    Pereira-Pinto F H I, Ferreira A M, Savi M A.2004. Chaos control in a nonlinear pendulum using a semi-continuous method. Chaos, Solitons and Fractals,22(3):653-668.
    Pikovsky A S, Rosenblum M, Osipov G V, Kurths J.1997. Phase synchronization of chaotic oscillators by external driving, Physica D,104:219-239.
    Qian D W, Yi J Q, Liu X J.2011. Design of reduced order sliding mode governor for hydro-turbines. American Control Conference,2011:5073-5078.
    Ren T J, Chen T C, Chen C J. Motion control for a two-wheeled vehicle using a self-tuning PID controller. Control Engineering Practice,16(3):365-375.
    Robert B, Lu HHC, Feki M.2004. Adaptive time-delayed feedback for chaos control in a PWM single phase inverter. Journal of Circuits systems and Computers,13(3):519-534.
    Roopaei M, Sahraei B R, Lin T C. Adaptive sliding mode control in a novel class of chaotic systems. Communications in Nonlinear Science and Numerical Simulation,15(12):4158-4170.
    Rosenblum M G, Pikovsky A S, Kurths J.1997. From phase to lag synchronization in coupled chaotic oscillators. Physical Review Letters 78:4193-4196.
    Rossler O E.1976. An equation for continuous chaos. Physics Letters A 57:397-398
    Rossler O E.1979. An equation for hyperchaos. Physics Letters A 71:155-162.
    Salarieh H, Alasty A. Adaptive chaos synchronization in Chua's systems with noisy parameters. Mathemaitcs and Computers in Simulation,79(3):233-241.
    Saito Asaki, Konishi Keiji.2011. Dynamical singularities in adaptive delayed-feedback control. Physical Review E,84(3):031902.
    Sheu L J, Chen H K, Chen J H, Tam L M.2007. Chaos in a new system with fractional order. Chaos, Solitons and Fractals 31(5):1203-1212.
    Solak E, Morgul O, Ersoy U.2001. Observer-based control of a class of chaotic systems. Physics Letters A, 279 (1-2):47-55.
    Song L, Yang J Y, Xu S Y.2010. Chaos synchronization for a class of nonlinear oscillators with fractional order. Nonlinear Analysis:Real World Application,72:2326-2336.
    Sprott J C.1997. Simplest Dissipative Chaotic Flow. Physics Letters A 228:271-274.
    Stark B H, Ando E, Hartley G. 2011. Modelling and performance of a small siphonic hydropower system[J]. Renewable Energy,36(9):2451-2464.
    Stitz T H, Ihalainen T, Viholainen A, Renfors M.2010. Pilot-Based synchronization and equalization in filter bank multicarrier communications, Eurasip Journal on Advances in Signal Processing,741429.
    Suzuki T, Saito T.1994. On fundamental bifurcation from a hysteresis hyperchaos ggenerator. IEEE Transaction on Circuits and System Ⅰ:Fundamental Theory and Applications:41(12):876-884.
    Taghvafard H, Erjaee G H.2011. Phase and anti-phase synchronization of fractional order chaotic systems via active control. Communications in Nonlinear Science and Numerical Simulation,16(10): 4079-4088.
    Tan Y, Xu J X. Norrlof M, Freeman C.2011. On reference governor in iterative learning control for dynamic systems with input saturation. Automatica,47(11):2412-2419.
    Tavakoli-Kakhki M, Haeri M.2011. Temperature Control of a Cutting Process Using Fractional Order Proportional-Integral-Derivative Controller. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME,133(5):051014.
    Tomasz Kapitaniak.2000.面向工程的混沌学:理论、应用及控制.(第二版)施引,朱石坚,俞翔译.2008.北京:国防工业出版社:3
    Tsubone T, Saito T.1998. Hyperchaos from a 4-D manifold piecewisw-Linear system. IEEE Transaction on Circuits and System I:Fundamental Theory and Applications:45(9):889-894.
    Thamilmaran K, Lakshmanan M.2004. Hyperchaos in a modified canonical Chua's circuit. International Journal of Bifurcation and Chaos,14(1):221-243.
    Toiya M, Gonzalez-Ochaoa H O, Vanag V K, Fraden S.2010. Synchronization of Chemical Micro-oscillators. Journal of Physical Chemistry Letters,1(8):1241-1246.
    Turk M, Gulten A.2011. Modelling and simulation of the multi-scroll chaotic attractors using bond graph technique, Simulation Modelling Practice and Theory 19:899-910.
    Hassan Salarieh, Hoda Sadeghian, Kaveh Merat.2009. Chaos control in lateral oscillations of spinning disks via nonlinear feedback. Nonlinear Analysis:Real World Applications,10:2864-2872.
    Hosseinnia S H, Ghaderi R, Ranjbar N A, Mahmoudian M, Momani S.2010. Sliding mode synchronization of an uncertain fractional order chaotic system, Computers and Mathematics with Applications,59(5):1637-1643.
    Huang C H, Lin C H, Kuo C L.2011. Chaos synchronization-based detector for power-quality disturbances classification in a power system. IEEE Transactions on Power Delivery,26(2):944-953.
    IEEE Working Group.1992. Hydraulic turbine and turbine control model for system dynamic studies. IEEE Transactions on Power Systems,7(1):167-179.
    Kjetil Uhlen, ELKRAFT.2010. Hydro Turbine and Governor Modelling [博士学位论文]. Trondheim: Norwegian University of Science and Technology.
    Ueta T, Chen G R.2000. Bifurcation analysis of Chen's equation. International Journal of Bifucation and Chaos,10:1917-1931.
    Urazhdin S, Tabor P, Tiberkevich V, Slavin A.2010. Fractional synchronization of spin-torque nano-oscillators, Physical Review Letters,105(10):104101.
    Vaughan William.2011. Effects of Creating Order from Chaos. Science,332(6037):1501-1502.
    Vincent U E, Guo R.2011. Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Physics Letters A,375(24):2322-2326
    Wang F Q, Liu C X, Lu J J.2006. Emulation of multi-scroll chaotic attractors in four-dimensional systems. Acta Physica Sinica,55:3289-3293.
    Wang H, Han Z Z, Xie Q Y, Zhang W.2009. Finite-time chaos control of unified chaotic systems with uncertain parameters. Nonlinear Dynamics,55(4):323-328.
    Wang S, Yu Y G, Diao MA.2010. Hybrid projective synchronization of chaotic fractional order systems with different dimensions, Physica A:Statistical Mechanics and its Applications,389(21):4981-4988.
    Wang X F, Chen G.1999. On feedback anticontrol of chaos, International Journal of Bifurcation and Chaos, 9:1435-1441.
    Wang X F, Chen G.2000a. Chaotifying a stable map via smooth small-amplitude high-frequency feedback control, International Journal of Circuit Theory and Applications,28:305-312.
    Wang X F, Chen G.2000b. Chaotifying a stable LTI system by tiny feedback control, IEEE Transaction on Circuits and System I:Fundamental Theory and Applications,47:410-415.
    Wang X F, Chen G.2000c. Chaotification via arbitrarily small feedback controls. International Journal of Bifurcation and Chaos,10:549-570.
    Wang X F, Chen G R,2002. Synchronization in scale-free dynamical networks:Robustness and fragility. IEEE Transaction on Circuits and System I:Fundamental Theory and Applications,49(1):54-62.
    Wang X Y, He Y J, Wang M J.2009. Chaos control of a fractional order modified coupled dynamos system, Nonlinear Analysis:Theory Methods and Applications,71(12):6126-6134.
    Wang S, Yu Y G, Diao M.2010. Hybrid projective synchronization of chaotic fractional order systems with different dimensions. Physica A,389:4981-4988.
    Wang X, Chen G,2011. A chaotic system with only one stable equilibrium. Communications in Nonlinear Science and Numerical Simulation,17:1264-1272.
    Wang Z Y.2004. Controlling chaos in the RF-biased Josephson junction with thermal noise. Journal of Superconductivity,17(2):233-237.
    Working group on prime mover and energy supply models for system dynamic performance studies.1992. Hydraulic turbine and turbine control models for system dynamic studies. Transactions on Power System,7(1):167-179.
    Wu D, Li J J.2010. Generalized projective synchronization via the state observer and its application in secure communication, Chinese Physics B,19(12):120505.
    Wu X G, Lu H T, Shen S L.2009. Synchronization of a new fractional-order hyperchaotic system. Physics Letters A,373:2329-2337.
    Wu X J, Li J, Chen G R.2008. Chaos in the fractional order unified system and its synchronization, Journal of the Franklin Institute-Engineering and Applied Mathematics,345(4):392-401.
    Wu X J, Lu H T, Shen S L.2009. Synchronization of a new fractional-order hyperchaotic system. Phys. Lett. A 373:2329-2337.
    Xie Q, Chen G, Bollt E M. Hybrid chaos synchronization and its application in information processing. Mathematical and Computer Modelling,35(1-2):145-163.
    Yan J J, Chang W D, Lin J S, et al.2005. Adaptive chattering free variable structure control for a class of chaotic systems with unknown bounded uncertainties. Physics Letters A,335 (4):274-281.
    Yang C D, Wei C H. Strong chaos in one-dimensional quantum system. Chaos, Solitons and Fractals,37: 988-1001
    Yang H Y, Zhang S, Zong G D.2011. Trajectory Control of Scale-Free Dynamical Networks with Exogenous Disturbances. Communications in Theoretical Physics,55(1):185-192.
    Yang X L, Sun Z K.2011. Recovering unknown model parameters contained in a class of time-variant chaotic dynamical systems. Applied Mathematics Computation,217(17):7311-7317.
    Yassen M T.2002. The optimal control of Chen chaotic dynamical system. Applied Mathematics and Computation,131:171-180.
    Ye S X, Wang W Q, Zou Y, Xu H L. Non-Fragile Robust Guaranteed Cost Control of 2-D Discrete Uncertain Systems Described by the General Models. Circuits Systems and Signal Processing,30(5): 899-914.
    Zeng C B, Yang Q G, Wang J W.2011. Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable nodefoci, Nonlinear Dynamics,65(4):457-466.
    Zhang C Q, Zhou H, Feng X T.2011. An Index for Estimating the Stability of Brittle Surrounding Rock Mass:FAI and its Engineering Application. Rock Mechanics and Rock Engineering,44(4):401-414.
    Zhang H B, Li C G, Chen G R, Gao X.2005. Hyperchaos in the fractional-order nonautomous Chen's system and its synchronization, International Journal of Modern Physics C,16(5):815-826.
    Zhao L D, Hu J B, Liu X H.2010. Adaptive tracking control and synchronization of fractional hyper-chaotic Lorenz system with unknown parameters, Acta Physica Sinica,59(4):2305-2309.
    Zheng S, Dong G, Bi Q.2010. A new hyperchaotic system and its synchronization. Applied Mathematics and Computation,215:3192-3200.
    Zhou P, Zhu W.2011. Function projective synchronization for fractional-order chaotic systems, Nonlinear Analysis:Real World Applications,12(2):811-816.
    Zhou J X, Cai F L, Wang Y 2011. New Elastic Model of Pipe Flow for Stability Analysis of the Governor-Turbine-Hydraulic System. Journal of Hydraulic Engineering-ASCE,137(10):1238-1247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700