煤热解过程中PAHs的形成及其催化裂解特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤加工利用过程中排放的有机污染物特别是多环芳烃(PAHs)类物质,由于其具有“三致”作用,且是PM2.5的主要承载物,易引发雾霾天气,对生态环境造成了潜在危害,因此其生成、迁移及控制过程受到人们的关注,也越来越引起国内外各政府及环保部门的高度重视。煤的热解是煤热加工必不可少的过程,也是煤清洁利用的基础。因此本课题对煤热解过程中PAHs排放规律及裂解特性进行研究,为煤热加工过程中污染物的控制和煤的清洁利用提供理论依据。
     研究选取了15种具有代表性的不同变质程度的煤样,首先利用液固萃取方式得到煤中可溶于二氯甲烷的PAHs(作为自由态PAHs,简称为自由PAHs)及其残煤,利用GC-MS对自由PAHs进行分析,并利用对同一个样品可进行多段程序升温的PY-GC-MS分别对其他不同来源(原煤热解PAHs、抽提物热解PAHs、残煤热解PAHs)的16种需优先控制的PAHs进行全面系统的研究,此外还在线研究了廉价易得金属氧化物对煤热解产物中PAHs排放规律的影响。主要内容如下:
     (1)利用Gerhardt Soxtherm macro414抽提仪对原煤中PAHs进行二氯甲烷抽提,针对原煤中PAHs的萃取,建立了一整套完整的方法。该方法具有抽提效率高、省时、溶剂回收率高、环保的特点。
     (2)研究了原煤中16种PAHs的分布与原煤煤质指标的关系以及PAHs毒性当量的分布,结果表明:不同变质程度原煤中的自由PAHs都主要以4、5环为主,但烟煤中16种PAHs的种类和数量最多,导致烟煤的TEQ浓度最高,更容易对环境产生污染。
     (3)研究了原煤快速热解过程中PAHs的生成及其分布规律,结果表明:2-3环的PAHs在原煤热解产物中的比重最大,煤的变质程度对煤热解过程中PAHs的排放量及排放种类有显著的影响,炼焦用烟煤热解时生成的PAHs量最多,且TEQ浓度高;煤热解过程中PAHs的生成量随温度的升高有先增后减的趋势,热解终温相同时,升温速率越高,PAHs的生成量越少。
     (4)通过对比分析原煤中可抽提的自由PAHs、原煤及其抽提液和残煤热解过程中的PAHs生成量之间的差异,对煤热解过程中16种PAHs的来源进行探讨,结果表明:16种PAHs主要来源于煤热解过程中复杂的化学反应,而非原煤中自由态的PAHs;高环(5-6环)PAHs在一定温度下更易分解;在不同变质程度煤生成的PAHs总量中2、3环所占比例最大。大分子网状结构的断裂和自由基的缩合是煤热解过程中PAHs生成的主要原因。
     (5)通过对比分析平朔(PS)原煤抽提物及其热解产物的组成,对PAHs的前驱物进行探讨,结果表明:PS原煤抽提物的主要组成是芳烃类化合物,共占总萃取物的70.87%。芳烃类化合物主要包含EPA优先控制的16种PAHs及其烷基化和异构化衍生物,热解过程中,芳烃衍生物生成了小环PAHs,是小环PAHs的前驱体。
     (6)研究了两种廉价易得金属氧化物(CaO、Fe2O3)在不同温度下对煤热解产物中16种PAHs的催化裂解作用。结果表明:两种金属氧化物都对16种PAHs有催化裂解作用,但发生催化裂解作用的最佳温度不同,其中Fe203在600℃时对16种PAHs的催化裂解效果最好,而CaO催化裂解作用的最佳温度为700℃。
Polycyclic Aromatic Hydrocarbons (PAHs) from the coal conversion have attracted increasing attention due to carcinogenicity, teratogenicity, and mutagenicity which affect human's health and environment when they were released into the environment. Pyrolysis as the starting step plays a key role in coal thermal conversions, where include combustion, gasification and liquefaction, and especially for coking which is a pyrolysis process entirely. Research on the formation, emission and catalytic cracking property of PAHs during coal pyrolysis has significant effect on pollutants control and clean coal utilization at present and in the future
     Gerhardt Soxtherm macro414Soxhlet was used to fully extract the PAHs from15kinds of Chinese raw coals different in rank by the CH2C12, GC-MS was used to analyze the free PAHs extracted from raw coals and PY (Pyro-probe CDS5250)-GC-MS was used to online pyrolysis analysis of the raw coals, their extraction residues and extracts respectively. The influence of alkaline metal oxides which are inexpensive and easily available on the PAHs catalytic cracking was also investigated. Main contents as follow:
     (1) The Gerhardt Soxtherm macro414was used to extract the PAHs from raw coals by dichloromethane, a complete method for the extraction and analysis of PAHs from raw coals was established. The method has the characters of high extraction efficiency, time saving, high solvent recovery, high sensitivity and environmental protection.
     (2) The relationship between the distribution of free PAHs in raw coals and coals properties were studied, and the PAHs Toxicity Equivalent (TEQ) was also mentioned. The results showed that the properties of raw coals have significant effect on the distribution of free PAHs; The free PAHs in the raw coals were mainly dominated by4,5-ring PAHs, and bituminous coal has the highest concentration of TEQ, which may pollute the environment more easily;
     (3) PAHs emitted from15kinds of Chinese coals different in rank during pyrolysis were studied. The results suggest that the lower-ring (2,3-rings) PAHs prevailed over the higher-ring PAHs during the coals pyrolysis; the amounts and species of PAHs under the same conditons of coal pyrolysis depend on coal properties; Temperature has significant effect on the distribution of PAHs from coal pyrolysis and the emission amount of PAHs showed a single peak at800℃with increasing temperature. The emission amount of PAHs decrease with increasing heating rate at the same pyrolysis temperature.
     (4) The source of the PAHs from coal pyrolysis is discussed by comparing the difference among the amounts and species of the PAHs from the pyrolysis of raw coals, their extraction residues and extracts, the free PAHs from raw coals. The main conclusions are as follows:the16PAHs mainly came from complex chemical reactions of coal pyrolysis rather than from the free PAHs in the raw coals; the higher-ring (5,6-ring) PAHs were prone to decompose at certain temperature; NaP was formed by the reaction of coal pyrolysis, and the increase of the total PAHs was mainly the contribution of the2,3-ring PAHs; The breakdown of the macromolecular network and the free radicals condensation reaction were the main causes which gave rise to the forming of PAHs in the coal pyrolysis.
     (5) The precursors of PAHs was studied by comparing the omposition of PS coal extract and its extract pyrolysis. The results indicated that the extract of PS raw coal is mainly composed of aromatic compounds which accounted for70.87wt%of the total extract. Aromatic compounds mainly contains16PAHs and their derivatives of isomerization and alkylation, part of the derivatives which generate low-ring PAHs during the pyrolysis are the precursor of a small ring PAHs.
     (6) The effect of calcium oxide(CaO) and iron oxide(Fe2O3) on the16PAHs emitted from the coal pyrolysis were analyzed under different operation conditions including temperature, quality and partical size of catalyst. The results showed that the leading effect factor of CaO and Fe2O3on catalytic action of PAHs decomposition was temperature; at600℃, Fe2O3had the best catalytic cracking effect to16PAHs; while under the CaO catalytic cracking effect, the best temperature is700℃.
引文
[1]B P Statistical. Review of world Energy. June 2009,32.
    [2]F. Iino, T. Imagawa, M. Takeuchi, et al. Formation rates of polychlorinated dibenzofurans and dibenzo-p-dioxins from polycyclic aromatic hydrocarbons, activated carbon and phenol[J]. Chemosphere,1999,39(15):2749-2756.
    [3]程柱.煤热解过程多环芳烃(PAHs)生成规律研究[D].太原:太原理工大学,2010.
    [4]赛兴超.多环芳烃(PAHs)的污染[J].环境保护,1995,10:31-33.
    [5]Diana J., Freeman and Frank C. R. Cattlell. Wood burning as a source of Atmospheric Polycyclic Aromatic Hydrocarbons [J]. Environ. Sci. Technol,1990,24:1581-1585.
    [6]Egane著.钱引林译.环境样品中多环芳烃分析[M].北京:人民卫生出版社,1984:2-25.
    [7]潘白强.燃煤排放物中有害物质的测定与分析[M].北京:原子能工业出版社,1993,1-36.
    [8]段风魁,贺克斌,马永亮.2009.北京PM2.5中PAHs的污染特征及来源研究[J].环境科学学报,29(7):1363-1371.
    [9]程元恺编.致癌性多环芳烃[M].北京:人民卫生出版社,1980:310-311.
    [10]Ballester F, Tenias JM, Perez-hoyos S,et al. Air pollution and emergency hospital admissions for cardiovascular diseases in Valencia Spain[J]. Epidemiol Comm Health, 2001,55:57-65.
    [11]Schwartz J, Dockery DW, Neas LM. Is daily mortality associated specifically with fine particles [J]. Air Manag Assoc,1996,46:927-939.
    [12]Zhao Zhenghao, Liu Kunlei, Wei Xie, Pan Weiping, John T. Riley. Soluble Polycyclic aromatic hydrocarbons in raw coals[J]. Journal of Hazardous Materials,2000, (73):77-85
    [13]EHC 202 selected non-heterocyclic Polycyclic Hydrocarbons [J]. World Health Organization. Geneva:WHO,1998.
    [14]崔焕滨.淮南地区原煤及其燃烧产物中多环芳烃的研究[D].安徽:安徽理工大学.2009.
    [15]董洁,李凡,谢克昌.煤转化过程中多环芳烃排放的研究现状[J].现代化工,2009,29(z1):344-346.
    [16]丁枚,孟亚莉,任海燕.空气和废气监测分析方法指南上册[M].北京:中国环境科 学出版社,2006.
    [17]Tsai, P. J., Shieh, H. Y., Lee, W. J. and Lai S.O. Characterization of PAHs in the atmosphere of carbon black manufacturing workplaces. Journal of Hazardous materials, 2002, A91:25-42.
    [18]周宜成.ABS废料废弃物添加酵素及矿石粉焚化废气PAHs减量的可行性探讨[D].台湾:成功大学,2003.
    [19]P Pistikopoulos, HM Wortham, L Gomes et al. Mechanisms of formation of particulate polycyclic aromatic hydrocarbons in relation to the Particle size distribution[J]. effects on meso-scale transport. Atmospheric Environment,1990,24A(10):2573-258.
    [20]EHC 202 selected non-heterocyclic Polycyclic Hydrocarbons. National pollutant inventory 2001,9(25), vertion,1.1.
    [21]李哲浩.炼焦新技术[M].北京:冶金工业出版社,1988:81-82.
    [22]张庆庚,李凡,李好管.煤化工设计基础[M].北京:化学工业出版社,2012:335.
    [23]王桂山,仲兆庆,王福寿.PAH的危害及产生的途径[J].山东环境,2001,2:41.
    [24]岳敏,谷学新,邹洪,等.多环芳烃的危害与防治[J].首都师范大学学报(自然科学版),2003,24(3):40-44.
    [25]董瑞斌,许东风,刘雷,等.多环芳烃在环境中的行为[J].环境与开发,1999,14(2):10-11.
    [26]张林,戴树桂,白志鹏等.城市室内环境PAHs污染与源的相关性[J].城市环境与城市生态1997,10(4);43-45.
    [27]许国梁.炼焦过程中多环芳烃(PAHs)排放特性研究[D].太原.太原理工大学.2011.
    [28]俞誉福,叶明吕,郑志坚.环境化学导论[M].上海:复旦大学出版社,1997.
    [29]唐孝炎(主编),李金龙,粟欣,陈旦华.大气环境化学[M].北京,高等教育出版社,1991:210-214.
    [30]Seung S. Park, Young J, Kima, Chang H. Kang. Atmospheric Polycyclic aromatic hydrocarbons in Seoul[M]. Korea Atmospheric Environment.2002,36:2917-2924.
    [31]Jean-Luc B. Partieulate PAHs obseved in the surrounding of a municipal incinerator. Atmos. Envion. [M].2001,35:6093-6104.
    [32]胡健.贵阳市大气-水体-土壤环境中多环芳烃的研究[D].中国科学院地球化学研究所,2005.
    [33]Nielsen T., Hans E., Jsrgensen J., Larsenb C., Poulsenb M.. City air pollulion of Polycyclic aromatic hydrocarbons and other mutagens:occurrence, sources and health effects[J]. Sci. Total Environ.1996,189/190:41-49.
    [34]Jones K. C, Statford. A., Tidridge P.. Polynuclear Aromatic hydrocarbons in an agriculture soil:long term changes in profile distribution[J]. Environ. Pollution.1989,56: 337-351.
    [35]Saeed T., Al-Bloushi A., AI Matrouk K., Assessment of levels of hydrocarbons in the soil from Kuwait lakes[M], Achieves of Envion Contain. Toxicity,1995,29:45-51
    [36]焦海丽.原煤中可抽提多环芳烃(PAHs)及其热解特性[D].太原:太原理工大学.2010.
    [37]张丽珠,刘永庆,陈文琳.中国煤中多环芳烃的测定-氧化铝柱预分离高效液相色谱法[J].岩矿测试,1996,15(3):161-159.
    [38]李晓东,姚艳,严建华等.中国部分煤种二氯甲烷萃取液中极性和烃类有机物分布特性研究[J].燃料化学学报.2002,30(6):529-534.
    [39]张丽珠,刘永庆,陈文琳.中国煤炭苯提取液中多环芳烃赋存规律研究[J].中国矿业大学学报,1997,26(3):32-35.
    [40]张丽珠,刘永庆,陈文琳.原煤尾气和煤渣中多环芳烃相关性测定[J].岩矿测试,1996,15(4):268-273.
    [41]张丽珠.煤炭加工利用过程中的有机毒物污染[J].煤炭加工与综合利用,1995,(5):43-45.
    [42]晏蓉,朱丽华,朱海晶等.原煤二氯甲烷浸取液中多环方烃分布特征[J].中国环境监测.1996,12(2):5-7.
    [43]晏蓉,唐忠汉.煤燃烧排放有机污染物的试验研究[J].华中理工大学学报,1996,24(1):4-7.
    [44]晏蓉,朱丽华,朱海晶等.色谱-质谱-红外光谱联用系统研究原煤浸取液及燃煤烟气中环烃类有机污染物[J].色谱,1996,14(4):271-273.
    [45]刘大锰,刘志华,李运勇.煤中有害物质及其对环境的影响研究进展[J].地球科学进展,2002,17(6):840-847.
    [46]陆胜勇,王丽英,李晓东等.烟煤中多环芳烃分布特征的初步研究[J].环境科学研究,2002,15(4):7-9.
    [47]刘振学,魏贤勇,宗志敏.东胜煤有机溶剂分级苯取物的GC/MS分析研究[J].煤炭转化,2003,18(2):37-40.
    [48]刘慧永,张爱云,姚强等.燃煤过程中多环方烃污染物生成排放的影响因子研究[J].工程热物理学报,2001,22(6):759-762.
    [49]徐明厚,晏蓉,龙昱宣等.青山烟煤及其燃后飞灰中有机污染物分布的研究[J].热能动力工程,1997,12(4):281-284.
    [50]顾永达,相宏伟,肖贤明等.伊敏煤田伍牧场矿区煤中多环芳烃分布特征[J].燃料化学学报,1996,24(4):335-340.
    [51]濮贵新,单忠健.不同煤中多环方烃的初步研究[J].环境科学,1986,5(5):12-23.
    [52]韩朔暌,王连生,杨志伟.原煤中多环方烃的分离与测定[J].环境科学学报,1986,6(1):96-106.
    [53]晏蓉,原煤及燃后飞灰抽提液中有机物污染物的研究[C].全国高等学校工程热物理研究会第六届学术会议论文集.武汉,1996,427-430.
    [54]Wornat M.J., Sarofim A.F., Longwell J.P.. Changes in the degree of substitution of polycyclic aromatic compounds from pyrolysis of a high-volatile bituminous coal[J]. Energy & Fuels,1987,1(5):431-437.
    [55]J.Hayashi. T.Kawakami, T.Taniguchi ect. Control of molecular composition of tar by secondary reaction in fluidized-bed pyrolysis of a subbituminous coal[J]. Energy Fuels, 1993.7:57-66.
    [56]Kunlei Liu. Wei Xie, Zhengbao Zhao, et al. Investigation of polycyclic aromatic hydrocarbons in fly ash from Fluidized bed combustion systems[J]. Environ. Sci. Technol.,2000,34:2273-2279.
    [57]Kunlei Liu, Wenjun Han, Wei-Ping Pan, et al. Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system[J]. Journal of Hazardous Materials,2001, 84(2-3):175-188.
    [58]Mastral A.M., Callen M.S., Garcia T., et al. Assessment of PAH emissions as a function of coal combustion variables[J]. Fuel,1995,75(13):1533-1536.
    [59]Mastral A.M., Callen M.S., Garcia T, et al. Polycyclic aromatic hydrocarbon emissions from fluidized bed combustion of coal [J]. Fuel,1995,74(12):1762-1766.
    [60]Mastral A.M., Callen M.S., Garcia T., et al. Assessment of PAH emissions as a function of coal combustion variables in fluidized bed.2. Air excess percentage [J]. Fuel,1998, 77(13):1513-1516.
    [61]Mastral A.M., Callen M.S., Garcia T., et al. Influence on PAH emissions of the air flow in AFB coal combustion[J]. Fuel,1999,78(13):1553-1557.
    [62]Mastral A.M., Garcia T., Callen M.S., et al. Effect of limestone on polycyclic aromatic hydrocarbon emissions during coal atmospheric fluidized bed combustion[J]. Energy & Fuels,2001,15:1469-1474.
    [63]Yiannis A.L., Ajay A., Joel B.C.. On the correlation of CO and PAH emissions from the combustion of pulverized coal and waste tires[J]. Environ. Sci. Technol.,1998,32: 3767-3777.
    [64]倪明江,尤孝方,李晓东,等.燃煤流化床多环芳烃生成特性的研究[J].浙江大学学报(工学版),2004,38(3):342-346.
    [65]倪明江,尤孝方,李晓东,等.不同煤燃烧方式多环芳烃生成特性的研究[J].动力工程,2004,24(3):400-405.
    [66]李晓东,祁明峰,尤孝方,等.烟煤燃烧过程中多环芳烃生成研究[J].中国电机工程学报,2002,22(12):127-132.
    [67]李晓东,傅钢,尤孝方,等.不同煤种燃烧生成多环芳烃的研究[J].热能动力工程,2003,18(2):125-127.
    [68]张丽珠,刘永庆,陈文琳,等.原煤尾气和煤渣中多环芳烃相关性测定[J].岩矿测试,1996,15(4):268-273.
    [69]黄美玉,朱子彬,何亦华等.烟煤快速加氢热解研究:Ⅲ.焦油组成考察[J].燃料化学学报,2000,28(1):55-58.
    [70]J. Thomas Mckinnon, Eleanor Meyer, Jack B. Howard. Infrared Analysis of Flame-Generated PAH Samples[J]. Combustion and Flame,1996,105:161-166.
    [71]Wang H, Frenklach M. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames[J]. Combustion and Flame,1997,110: 173-221.
    [72]Stephen J. Harris, AnitaM. Weinerand, Richard J. Blini. Kinetic and Thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels[J]. Combustion and Flame,1988,72:91-109.
    [73]J. Appel, H. Bockhron, M. Frenklach. Kinetic modeling of soot formation with detailed chemistry and physics:laminar premixed flames of C2 hydrocarbons [J]. Combustion and Flame,2000,121(1-2):122-136.
    [74]H. Bohm, K. Kohse-Hoinghaus. On PAH formation in strained counterflow diffusion flames[J]. Combustion and flame,2001,124:127-136.
    [75]A. M. Mastral, M. Callen, R. Murillo. Assessment of PAH emissions as a function of coal combustion variables. Fuel,1996,75(13):1533-1536.
    [76]N. M. Marlnov, W. J. Pitz, C. K. Westbrook, et al. Aromatic and Polycyclic Aromatic Hydrocarbon formation in a Laminar Premixed n-Butane Flame[J]. Combustion and Flame,1998,114:192-213.
    [77]C. W. Bauschlicher Jr., A. Ricca. Mechanisms for Polycyclic Aromatic Hydrocarbon (PAH) growth[J]. Chemical physics,2000,326:283-287.
    [78]H. Richter, W. J. Grieco, J. B. Howard. Formation mechanism of polycyclic aromatic hydrocarbons and fullerenes in premixed benzene flames[J]. Combustion and Flame, 1999,119:1-22.
    [79]胡启秀,赵继俊,蒋锦锋,等.从自由基反应角度探讨多环芳烃的形成机理[J].四川省卫生管理干部学院学报,2009,28(1):33-35.
    [80]Li C, Suzuki K. Resources, properties and utilization of tar [J]. Resour Conserv Recy, 2010,54(11):905-915.
    [81]室内空气质量标准.中华人民共和国国标,GB/T 18883-2002.
    [82]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002:210-215.
    [83]曹志勇.燃烧过程中多环芳烃类污染物排放特性及其催化分解实验研究[D].杭州:浙江大学.2004.
    [84]Weber R.,SakuraiT., Hagenmaier H., Low temperatured ecomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts[J]. Applied Catalysis B: Environmental,1999,20:249-256.
    [85]Weber R., Plinke M., Vu Z., Wilken M., Destruetion efficiency of catalytic filters for Polychlorinated dibenzo-p-dioxin and dibenzofurans in laboratory test and field operation insight into destruction and adsorption behavior of semivolatile compounds[J]. Applied Catalysis B:Environmental,2001,31:195-207.
    [86]Kurihara K., Kaneko M., Tsukamoto K., et al. Method and apparatus for treating combustion exhaust gases,2000, US6027697.
    [87]Liljelind P., Unsworth J., Maaskant O., Marklund S., Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction[J]. Chemosphere,2001,42:615-623.
    [88]Bonte J., Fritsky K., Plinke M., Wilken M., Catalytic destruction of PCDD/F in a fabric filter:experience at a municipal waste incinerator in Belgium[J]. Waste Management. 2002,22:421-426.
    [89]朱廷钰,刘丽鹏,王洋,等.氧化钙催化煤温和气化研究[J].燃料化学学报,2000, 28(1):36-39.
    [90]贾永斌,黄戒介,程中虎,等.煤快速热解过程中氧化钙对焦油裂解的影响[J].煤炭转化,2001,24(2):53-57.
    [91]贾永斌,黄戒介,王洋.停留时间对氧化钙催化裂解焦油的影响[J].燃烧科学与技术,2004,10(6):549-553.
    [92]吕俊复,郭庆杰,岳光溪.焦油裂解过程循环灰催化活性失活及再生研究[J].煤炭转化,2001,24(1):71-75.
    [93]李晓东,曹志勇,祁明峰,等.铜及氧化铜对煤燃烧过程多环芳烃排放的影响[J].燃料化学学报,2003,31(6):548-552.
    [94]倪明江,尤孝方,严建华,等.煤燃烧过程中铜对多环芳烃生成的影响[J].工程热物理学报,2005,26(4):705-708.
    [95]Dongli Wang, Xiaobai Xu, Minghui Zheng and Chung H. Chiu. Effect of copper chloride on the emissions of PCDD/Fs and PAHs from PVC combustion[J]. Chemosphere,2002,48:857-863.
    [96]Yu J, Tian F J, Chow M C, et al. Effect of Iron on the Gasification of Victorian Brown Coal with Steam:Enhancement of Hydrogen Production[J]. Fuel,2006,85 (2):127-133.
    [97]公旭中,郭占成,王志.Fe203对高变质程度脱灰煤热解反应性与半焦结构的影响[J].化工学报,2009,60(9):2321-2326.
    [98]Sato S, Morita M, Hashimoto T, et al. Activity Enhancement of Iron Ores as a Catalyst for Direct Coal Liquefaction[J]. Fuel,1989,68 (5):622-625.
    [99]Chareonpanich M, Zhang Z G, Nishijima A, et al. Effect of Catalysts on Yields of Monocyclic Aromatic Hydrocarbons in Hydrocracking of Coal Volatile Matter[J]. Fuel, 1995,74(11):1636-1640.
    [100]J. Miiller, G.Dongmann and C.G.B.Frischkorn. The effect of aluminium on the formation of PAH, Methyl-PAH and chlorinated aromatic compounds during thermal decomposition of PVC[J]. Journal of Analytical and Applied Pyrolysis,1997,43: 157-168.
    [101]杜淑凤,舒歌平,陈绍毅.依兰煤液化过程中天然矿物催化剂影响的研究[J].洁净煤技术,2000,6(2):32-34.
    [102]Yu-Ling Wei and Jen-Ho Lee. Manganese sulfate effect on PAH formation from polystyrene pyrolysis[J]. The Science of the Total Environment 1999,228:59-66.
    [103]申文琴,沙兴中,豆斌林,等.高温煤气中氨的脱除[J].煤气与热力,1999,5:3-7.
    [104]赵国靖,李海涛,豆斌林,等.高温煤气中焦油组分的催化裂解[J].煤气与热力,2001,21(1):3-6.
    [105]豆斌林,鲁军,申文琴,等.高温煤气中NH3、有机硫、HCl及焦油蒸气的同时脱除[J].华东理工大学学报,2001,27(2):177-180.
    [106]曹志勇,李晓东,王栋,等V2O5-WO3/TiO2催化分解多环芳烃的试验研究[J].浙江大学热能工程研究所,2003:277-283.
    [107]李雪玲,岳宝华,汪学广,等.NiO/Mgx-Sil-xOy催化剂的制备及其在高温焦炉煤气中焦油组分催化裂解中的应用[J].物理化学学报,2009,25(4):762-766.
    [108]艾馨鹏,岳宝华,汪学广,等.Ni/MgO-Al2O3催化剂上高温焦油组分的催化转化[J].物理化学学报,2009,25(8):1517-1522.
    [109]Asadullah M, Miyazawa T, Ito S, et al. A comparison of Rh/CeO2/SiO2 catalysts with steam reforming catalysts, dolomite and inert materials as bed materials in low throughput fluidized bed gasification systems[J]. Biomass and Bioenergy,2004,26: 269-279.
    [110]Feng-Yim Chang, Jyh-Cherng Chen, Ming-Yen Wey. The activity of Rh/Al2O3 and Rh-Na/Al2O3 catalysts for PAHs removal in the waste incineration processes:Effects of particulates, heavy metals, and acid gases[J]. Fuel 2009,88:1563-1571.
    [111]Asadullah M, Miyazawa T, Ito S, et al. Gasification of different biomasses in a dual-bed gasifier system combined with novel catalysts with high energy efficiency[J]. Applied Catalysis(A):General,2004,267:95-102.
    [1]A. M. Mastarl & M.Callean.A Review on polycyclic Aromatic Hydrocabron (PAH) Emissions form Energy Generation[J]. Envriomnent Scinece and Technology,2000, 34(15):3051-3057.
    [2]祁明峰.煤燃烧过程中多环芳烃生成机理和控制实验研究[D].浙江大学,2003.
    [3]范志威.煤燃烧过程中有机污染物的赋存及排放特性的研究[D].浙江大学,2005.
    [4]周宏仓.流化床煤部分气化/半焦燃烧多环芳烃生成与排放特性的研究[D].东南大学,2005.
    [5]张国安,王复,李桂贞,等.卷烟烟气中PAHs的分析方法[J].华东理工大学学报,2002,27(2):186-191.
    [6]李筱蕾.大气飘尘中PAHs的GC/MS研究[J].质谱学报,1995,16(4):40-43.
    [7]Stephen J. Harris, Anita M.Weiner and Richard J. Blini. Kinetic and Thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels [J], Combustion and Flame,1988,72:91-109.
    [8]谢重阁.环境中的BaP及其分析技术[M].北京:中国环境科学出版社,1991.
    [9]陈楚良.超临界流体萃取法[J].上海环境科学,1994,13(4):19-22.
    [10]H.B. Lee,翁建华,黄连芬.超临界二氧化碳萃取-GC/MS测定土壤中的PAHs[J]中国环境监测,1996,12(2):9-12.
    [11]张路,范成新.底泥中多环芳烃提取方法评析[J].土壤与环境,2001,10(3):242-245.
    [12]李凡,董洁,焦海丽,等.一种从固相样品中萃取多环芳烃的方法[P].中国专利:200910263915.0,2010,07.
    [13]庞国芳.农药兽药残留现代分析技术[M].北京:科学出版社,2007.
    [14]李春雷,郝永梅,盛国英.居室空气中PM2.5上PAHs的定量分析[J].复旦学报(自然科学版),2005,44(1):144-148.
    [15]罗孝俊.珠江三角洲河流、河口和邻近南海海域水体和沉积物中多环芳烃和有机氯农药研究[D].广州:中国科学院广州地球化学研究所,2004.
    [16]吕静.仪器分析新技术[M].哈尔滨:黑龙江人民出版社,2007.
    [17]钮志远.不同煤中多环芳烃的分布及环境意义[D].北京:中国科技大学,2008.
    [1]濮贵新,单忠健.不同煤中多环方烃的初步研究[J].环境科学,1986,5(5):12-23.
    [2]韩朔暌,王连生,杨志伟.原煤中多环方烃的分离与测定[J].环境科学学报,1986,6(1):96-106.
    [3]张丽珠.煤炭加工利用过程中的有机毒物污染[J].煤炭加工与综合利用,1995,(5):43-45.
    [4]张丽珠,刘永庆,陈文琳.原煤尾气和煤渣中多环芳烃相关性测定[J].岩矿测试,1996,15(4):268-273.
    [5]张丽珠,刘永庆,陈文琳.中国煤中多环芳烃的测定—氧化铝柱预分离高效液相色谱法[J].岩矿测试,1996,15(3):161-167.
    [6]晏蓉,朱丽华,朱海晶,等.原煤二氯甲烷浸取液中多环方烃分布特征[J].中国环境监测,1996,12(2):5-7.
    [7]晏蓉,唐忠汉.煤燃烧排放有机污染物的试验研究[J].华中理工大学学报,1996,24(1):4-7.
    [8]顾永达,相宏伟,肖贤明,等.伊敏煤田伍牧场矿区煤中多环芳烃分布特征[J].燃料化学学报,1996,24(4):335-340.
    [9]晏蓉,朱丽华,朱海晶,等.色谱-质谱-红外光谱联用系统研究原煤浸取液及燃煤烟气中环烃类有机污染物[J].色谱,1996,14(4):271-273.
    [10]徐明厚,晏蓉,龙昱宣,等.青山烟煤及其燃后飞灰中有机污染物分布的研究[J].热能动力工程,1997,12(4):281-284.
    [11]张丽珠,刘永庆,陈文琳.中国煤炭苯提取液中多环芳烃赋存规律研究[J].中国矿业大学学报,1997,26(3):32-35.
    [12]刘慧永,张爱云,姚强,等.燃煤过程中多环方烃污染物生成排放的影响因子研究[J].工程热物理学报,2001,22(6):759-762.
    [13]刘志华.煤及燃煤产物中多环方烃的分布赋存规律及其环境意义[D].武汉:中国地质大学,2001.
    [14]李晓东,姚艳,严建华,等.中国部分煤种二氯甲烷萃取液中极性和烃类有机物分布特性研究[J].燃料化学学报,2002,30(6):529-534.
    [15]刘大锰,刘志华,李运勇.煤中有害物质及其对环境的影响研究进展[J].地球科学进展,2002,17(6):840-847.
    [16]陆胜勇,王丽英,李晓东,等.烟煤中多环芳烃分布特征的初步研究[J].环境科学研究,2002,15(4):7-9.
    [17]刘振学,魏贤勇,宗志敏.东胜煤有机溶剂分级苯取物的GC/MS分析研究[J].煤炭转化,2003,18(2):37-40.
    [18]崔焕滨.淮南地区原煤及其燃烧产物中多环芳烃的研究[D].安徽:安徽理工大学.2009.
    [19]焦海丽.原煤中可抽提多环芳烃(PAHs)及其热解特性[D].太原:太原理工大学.2010.
    [20]上海化工学院编.煤化学和煤焦油化学[M].上海,上海人民出版社,1976.
    [21]尤孝方.燃烧过程中多环芳烃的生成与数值模拟[D].杭州:浙江大学.2006
    [22]傅刚.煤燃烧过程中多环芳烃类有机污染物排放特性的研究[D].杭州:浙江大学.2002.
    [23]周宏仓.流化床煤部分气化/半焦燃烧多环芳烃生成与排放特性的研究[D].杭州:浙江大学.005.
    [24]Dong J, Li F, Xie K. Study on the source of Polycyclic aromatic hydrocarbons (PAHs) during coal pyrolysis by PY-GC-MS[J]. Journal of hazardous materials,2012,243:80-85
    [25]Zhao Zhengbao, Liu Kunlei, Xie Wei, et al. Soluble polycyclic aromatic hydrocarbons in raw coal[J]. Journal of Hazardous Materials,2000, B73:77-85.
    [26]夏燕青,王春江,孟仟祥,等.稠环芳烃和多环芳烃成因模拟[J].沉积学报,1998,16(2):1-4.
    [1]2012年国民经济和社会发展统计公报.北京:国家统计局.
    [2]P. F. Nelson, I.W.Smith & R.J.Tyler et al. pyrolysis of Coal at High Temperatures[J]. Energy & Fuels,1988,2:391-400.
    [3]L. Bonfanti, G.D.Michele & J.Riccardi et al. Influence of coal tape and operating conditions on the formation of incomplete combustion porducts. Pilot Plant experiments[J]. Combustion Science and Technology,1994,101:505-525.
    [4]H. Mohammad, W. Burce, & K. Diane. Low temperature formation of aromatic hydrocarbon from pyrolysis of cellulosic materials[J]. Fuel,2001.80(12):1799-1807.
    [5]M. J. Wornat, E. B. Ledesma & N.D.Marsh.Polycyclic aromatic hydrocarbon from the pyrolysis of catechol (orhto-dihydrobenzene), a model fuel representative of entities in tobacco coal lignin.Fuel[J].2001,80:1711-1726.
    [6]尤孝方.燃烧过程中多环芳烃的生成与数值模拟[D].杭州.浙江大学.2006.
    [7]朱学栋,朱子彬,韩崇家等.煤的热解研究Ⅲ.煤中官能团与热解生成物[J].华东理工大学学报,2000,26(1):14-17.
    [8]孙庆雷,李文,李保庆.神木煤显微组分热解特性研究[J].中国矿业大学学报(自然科学版),2001,30(3):272-276.
    [9]朱学栋,朱子彬,张成芳等.煤的热解研究Ⅳ.官能团热解模型[J].华东理工大学学报,2001,27(2):113-126.
    [10]李文,王娜,李保庆.煤的多段加氢热解过程及机理分析[J].高等学校化学学报,2002,23:1767-1771.
    [11]Maria M. Gary L. Paul H. Use of controlled oxidation to increase the surface area of coal: Application to a bituminous and a semi-anthracite coal[J]. Fuel,1983,62(12): 1393-1396.
    [12]王俊琪,方梦祥,骆仲泱等.煤的快速热解动力学研究[J].中国电机工程学报,2007,27(17):18-22.
    [13]V.Seebauer, J.Petek, G.Staudinger. Effects of particle size, heating rate and pressure on measurement of pyrolysis kinetics by thermo gravimetric analysis[J]. Fuel,1997,76(13): 1277-1282.
    [14]李少华,柏静儒,孙佰仲等.升温速率对油页岩热解特性的影响[J].化学工程,2007, 35(1):64-67.
    [15]邢孟文.煤热解过程中噻吩类有机硫释放特性的研究[D].太原:太原理工大学,2011.
    [16]A Mitra, AF Sarofim, E Bar-Ziv. The influence of coal type on the evolution of polycyclic aromatic hydrocarbons during coal devolatilization[J]. Aerosol Science & Technology,1987,6:261-271.
    [17]程柱.煤热解过程多环芳烃(PAHs)生成规律研究[D].太原:太原理工大学,2010.
    [18]丁华.煤及其显微组分热解气化反应特性研究[D].北京:煤炭科学研究总院,2006.
    [1]H.-H. Yang, S.-O. Lai, L.-T. Hsieh, H.-J. Hsueh, T.-W. Chi, Profiles of PAH emission from steel and iron industries[J]. Chemosphere,2002,48:1061-1074.
    [2]H.-H. Mi, C.-F. Chiang, C.-C. Lai, L.-C. Wang, H.-H. Yang, Comparison of PAH emission from a municipal waste incinerator and mobile sources[J]. Aerosol Air Qual. Res.,2001, 1:83-90.
    [3]W.-J. Lee, W.-H. Chao, M. Shih, C.-H. Tsai, J.-H. Chen, P.-J. Tsai, Emissions of polycyclic aromatic hydrocarbons from batch hot mix asphalt plants[J]. Environ. Sci. Technol.2004, 38:5274-5280.
    [4]W.-J. Lee, M.-C. Liow, P.-J. Tsai, L.-T. Hsieh, Emission of polycyclic aromatic hydrocarbons from medical waste incinerators[J]. Atmos. Environ,2002,36:781-790.
    [5]S.-J. Chen, L.-T. Hsieh, S.-C. Chiu, Characteristics of the PAH emissions fromthe incineration of livestock wastes with/without APCD[J]. Environ International,2003,28: 659-668.
    [6]S.-J. Chen, L.-T.Hsieh, S.-C. Chiu, Emission of polycyclic aromatic hydrocarbons from animal carcass incinerators[J]. Sci. Total Environ,2003,313:61-76.
    [7]D.R. Nammari, W. Hogland, M. Marques, S. Nimmermark, V. Moutavchi, Emissions from a controlled fire in municipal solid waste bales[J]. Waste Manage,2004,24:9-18.
    [1]冉顺善,李生琳.试论分子间的作用力与烃类在色谱柱上的流出次序[J].河北工学院学报,1983,2:96-102
    [2]谢克昌著.煤的结构与反应性[M].北京:科学技术出版社,2002.
    [3]李保民.煤的极性溶剂萃取及SO42-/ZrO2催化解聚的研究[D].徐州,中国矿业大学,2008.
    [4]Korenaga T., Liu Xiaoxing, Huang Zuyun. The influence of moisture content on polycylic aromatic hydrocarbons emission during rice straw buring[J]. Chemosphere-Global Change Science,2001,3(1):117-122.
    [5]Richter H., Howard J.B.. Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways[J]. Progress in Energy and Combustion Science,2000,26(4-6):565-608.
    [6]徐寿昌主编.有机化学[M].北京:高等教育出版社,1993.
    [7]Catallo W.J. Polycyclic aromatic hydrocarbons in combustion residues from 1,3-butadiene[J].Chemosphere,1998,37(1):143-157.
    [8]岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2002.
    [9]Weber R., lion F., Imagawa T., et al. Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH:Mechanistic aspects and correlation to fluidized bed incinerators[J]. Chemosphere,2001,44:1429-1438.
    [10]鄂勇.宋国利.张颖.王旭梅.碳黑大气颗粒物的环境效应[J].地球与环境,2006,34(1):61-64.
    [1]曹志勇.燃烧过程中多环芳烃类污染物排放特性及其催化分解实验研究[D].杭州.浙江大学.2004.
    [2]Weber R.,SakuraiT., Hagenmaier H., Low temperatured ecomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts[J]. Applied Catalysis B: Environmental,1999,20:249-256.
    [3]Liljelind P., Unsworth J., Maaskant O., Marklund S., Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction[J]. Chemosphere,2001,42:615-623.
    [4]Mastral A.M., Garcia T., Callen M.S., et al. Sorbent characteristics influence on the adsorption of PAC:Ⅰ. PAH adsorption with the same number of rings[J]. Fuel Processing Technology,2002,77-78:373-379.
    [5]Mastral A.M., Garcia T., Callen M.S., et al. Influence of sorbent characteristics on the adsorption of PAC:Ⅱ. Adsorption of PAH with different numbers of rings [J]. Fuel Processing Technology,2002,77-78:365-372.
    [6]James. J. Cudahy, Riehard. W. Helsel. Removal of products of incomplete combustion with cathon[J]. WasteManagement,2000,20:339-345.
    [7]Siret, B., Gilman,K.. A survey of post-combustion PCDD/PCDF control technologies[C]. In:Proceedings of the international conference incineration and thermal treatment Technology.1996:583-586.
    [8]张京.金属氧化物对煤热解过程中多环芳烃排放的影响[D].太原:太原理工大学,2012.
    [9]贾永斌,黄戒介,程中虎,等.煤快速热解过程中氧化钙对焦油裂解的影响[J].煤炭转化,2001,24(2):53-57.
    [10]董瑞斌,许东风,刘雷,等.多环芳烃在环境中的行为[J].环境与开发,1999,14(2):10-11.
    [11]王桂山,仲兆庆,王福寿.PAH的危害及产生的途径[J].山东环境,2001,2:41.