空间曲线啮合轮精密传动技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮传动是应用最广泛的机械传动技术,距今已有五百多年的历史。根切现象限制了齿轮的传动空间。为了避免齿轮的根切,就必须牺牲齿轮的传动空间。空间曲线啮合轮(Space Curve Meshing Wheel,SCMW)的产生,从根本上消除了齿轮的根切现象,推动了齿轮传动技术的发展。
     本文围绕如何提升SCMW传动精度做了相关的研究。首先,在激光熔融快速成型制造技术的基础之上,研究了SCMW钩杆表面质量改进技术,从而提高SCMW的传动精度。其次,在SCMW传动的过程中,由于装配误差和负载作用,其传动精度也会降低。本文研究了装配误差、负载以及重合度对传动精度的影响,并提出相应的解决方案来提高传动精度。
     具体来讲,本文进行了以下几个方面的工作:
     1.研究了电解擦削精加工技术,设计了SCMW的电解擦削的加工工具和加工设备,并设计相应的加工方案对SCMW的啮合钩杆进行精加工,通过提高其表面质量来提高传动精度。
     2.研究了装配误差对SCMW传动精度的影响。根据钩杆中心线方程,结合空间几何学知识,求出啮合钩杆的曲面方程。然后根据齿面接触分析理论,结合空间曲线啮合轮的装配误差模型,推导装配误差存在时的传动误差。从而计算出存在装配误差的情况下,SCMW的传动误差和重合度的变化。为控制和减少传动误差提供理论依据,并在实际的应用过程中,为控制传动误差提供相应的解决方案。
     3.研究了负载对SCMW传动精度的影响。分析其传动过程中的钩杆受力与变形情况,计算在啮合过程中钩杆的实际曲面方程。并根据齿面接触方程,计算运动过程中接触点的各个曲面参数与实际传动角度。运用MATLAB拟合出其传动误差曲线,从而计算传动负载对传动误差和重合度的影响。为了提高传动精度,根据计算出的传动误差曲线和各个接触点的变形情况,提出一种钩杆的修形方法对空间曲线啮合轮的钩杆修形。
     4.研究了重合度对传动精度的影响。首先,根据重合度的定义,计算出重合度对空间曲线啮合轮载荷分配的影响。其次,根据载荷分配规律,分析了重合度对钩杆变形的影响,并根据钩杆的变形情况,计算出实际的曲面方程,最后,计算运动过程中SCMW传动误差的变化情况,绘制传动误差曲线,分析重合度对传动精度的影响。从而为空间曲线啮合轮的重合度的设计提供理论依据。
     尽管本文围绕提升空间曲线啮合轮的传动精度做了以上研究,取得了一定的成果,但是仍然存在一些不足,如空间曲线啮合轮的摩擦与润滑并没有进行研究。齿轮副的磨损将是影响传动精度的重要因素,这些工作尚需后续研究。
Gear is widely used in mechanical transmission. It has been developed for more than500years. Undercutting restrict the gear size. Aiming to avoid undercutting of gears, bigger drivespace is required. Space curve meshing wheels (SCMW) overcomes undercutting, andpromotes the development of gear transmission technology.
     This dissertation is focused on enhancing SCMW’s transmission precision. Firstly, Basedon selective laser melting manufacturing technology, electrochemical brushing (ECB) hasbeen studied to improve the surface quality of SCMW for transmission precision. Secondly,during the meshing of SCMW, assembly errors and load will lead transmission error. Theinfluence of the assembly errors, load and contact ratio on the transmission precision werestudied. And then, appropriate solutions to improve transmission precision have beenproposed.
     The main content of this dissertation is as follows.
     1. The ECB manufacturing technology was studied. The cathode tools and finishingexperimental rigs were designed, and the finishing devices were designed to processSCMW samples. The transmission precision was improved by improving the surfacequality of SCMW.
     2. Effect of assembly errors on transmission precision was studied. Equations of SCMWsurfaces are obtained according to the space curve meshing theory. Based on the toothcontact analysis (TCA), parameters of the actual contact curve are solved, and thetransmission errors and the actual contact ratio are obtained. Investigation providestheoretical reference and measurements for controlling and reducing transmission errors.
     3. Effect of load on SCMW transmission precision was studied. During the SCMW meshingunder load, stress and deformation of the meshing tines were studied, and the actualsurface equations of the meshing tines were obtained. According to the TCA results, thetransmission errors were simulated by MATLAB. Aiming to improve the transmissionprecision, a modification program of the meshing tines was proposed relying on theresults of the deformation analysis.
     4. Effect of contact ratio on SCMW transmission precision was studied. Firstly, effect ofcontact ratio on load distribution was studied. Then, effect of contact ratio on deformationof meshing tines was studied according to the load distribution. Finally, the transmissionerrors were obtained by TCA. Investigation provides theoretical reference for designingcontact ratio.
     Although much work has been done on improving the transmission precision of SCMW,there are still some improvements needed to do. Such as friction and lubrication which areimportant factors of impacting on the transmission precision of SCMW.
引文
[1] Kahraman A, Blankenship G W. Effect of involute contact ratio on spur geardynamics[J]. Journal of Mechanical Design, Transactions of the ASME.1999,121(1):112-118.
    [2] Alipiev O. Geometric design of involute spur gear drives with symmetric andasymmetric teeth using the Realized Potential Method[J]. Mechanism and Machine Theory.2011,46(1):10-32.
    [3] Litvin F L, Fuentes A, Fan Q, et al. Computerized design, simulation of meshing, andcontact and stress analysis of face-milled formate generated spiral bevel gears[J]. Mechanismand Machine Theory.2002,37(5):441-459.
    [4] Argyris J, Fuentes A, Litvin F L. Computerized integrated approach for design andstress analysis of spiral bevel gears[J]. Computer Methods in Applied Mechanics andEngineering.2002,191(11–12):1057-1095.
    [5] Litvin F L, Fan Q, Vecchiato D, et al. Computerized generation and simulation ofmeshing of modified spur and helical gears manufactured by shaving[J]. Computer Methodsin Applied Mechanics and Engineering.2001,190(39):5037-5055.
    [6] Litvin F L, Gonzalez-Perez I, Fuentes A, et al. Generalized concept of meshing andcontact of involute crossed helical gears and its application[J]. Computer Methods in AppliedMechanics and Engineering.2005,194(34–35):3710-3745.
    [7] Seol I H, Litvin F L. Computerized design, generation and simulation of meshing andcontact of worm-gear drives with improved geometry[J]. Computer Methods in AppliedMechanics and Engineering.1996,138(1–4):73-103.
    [8] Litvin F L, Argentieri G, De Donno M, et al. Computerized design, generation andsimulation of meshing and contact of face worm-gear drives[J]. Computer Methods inApplied Mechanics and Engineering.2000,189(3):785-801.
    [9] Chen C K, Yang S C. Geometric modelling for cylindrical and helical gear pumps withcircular arc teeth[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journalof Mechanical Engineering.2000,214(4):599-607.
    [10] Litvin F L, Lu J. Computerized design and generation of double circular-arc helicalgears with low transmission errors[J]. Computer Methods in Applied Mechanics andEngineering.1995,127(1–4):57-86.
    [11] Litvin F L, Feng P. Computerized design and generation of cycloidal gearings[J].Mechanism and Machine Theory.1996,31(7):891-911.
    [12] Demenego A, Vecchiato D, Litvin F L, et al. Design and simulation of meshing of acycloidal pump[J]. Mechanism and Machine Theory.2002,37(3):311-332.
    [13] Guo Y, Parker R G. Dynamic modeling and analysis of a spur planetary gear involvingtooth wedging and bearing clearance nonlinearity[J]. European Journal of Mechanics-A/Solids.2010,29(6):1022-1033.
    [14] Eritenel T, Parker R G. Modal properties of three-dimensional helical planetary gears[J].Journal of Sound and Vibration.2009,325(1–2):397-420.
    [15] L L F F A. Gear Geometry and applied theory[M]. New York: Cambridge UniversityPress,2004.
    [16] L. L F. Theory of Gearing[M]. Washington D.C.: NASA Reference Publication1212,1989.
    [17] Litvin F L, Fuentes A, Howkins M. Design, generation and TCA of new type ofasymmetric face-gear drive with modified geometry[J]. Computer Methods in AppliedMechanics and Engineering.2001,190(43-44):5837-5865.
    [18] Litvin F L, Gonzalez-Perez I, Fuentes A, et al. Design, generation and stress analysis offace-gear drive with helical pinion[J]. Computer Methods in Applied Mechanics andEngineering.2005,194(36-38):3870-3901.
    [19] Litvin F L, Fuentes A, Zanzi C, et al. Design, generation, and stress analysis of twoversions of geometry of face-gear drives[J]. Mechanism and Machine Theory.2002,37(10):1179-1211.
    [20] Yang S. A rack-cutter surface used to generate a spherical gear with discretering-involute teeth[J]. International Journal of Advanced Manufacturing Technology.2005,27(1-2):14-20.
    [21] Chao L, Tsay C. Contact characteristics of spherical gears[J]. Mechanism and MachineTheory.2008,43(10):1317-1331.
    [22] Chao L, Tsay C. Tooth flank, undercutting and tooth pointing of spherical gears[J].Mechanism and Machine Theory.2011,46(4):534-543.
    [23] Xia J, Liu Y, Geng C, et al. Noncircular bevel gear transmission with intersectingaxes[J]. Journal of Mechanical Design, Transactions of the ASME.2008,130(5).
    [24] Litvin F L, Gonzalez-Perez I, Fuentes A, et al. Design and investigation of gear driveswith non-circular gears applied for speed variation and generation of functions[J]. ComputerMethods in Applied Mechanics and Engineering.2008,197(45–48):3783-3802.
    [25]任重义,段建中.四圆弧齿轮的啮合特性[J].机械传动.2010(1):5-8.
    [26]罗齐汉,厉海祥,张予川,等.点线啮合齿轮参数选择的封闭图[J].机械工程学报.2005(1):37-40.
    [27] Rasmussen P O, Andersen T O, Jrgensen F T, et al. Development of ahigh-performance magnetic gear[J]. IEEE Transactions on Industry Applications.2005,41(3):764-770.
    [28] Ikuta K, Makita S, Arimoto S. Non-contact magnetic gear for micro transmissionmechanism[C]. Nara, Jpn: Publ by IEEE,1991.
    [29] Yang P, Liao N. Surface sliding simulation in micro-gear train for adhesion problemand tribology design by using molecular dynamics model[J]. Computational MaterialsScience.2007,38(4):678-684.
    [30] Pham P H, Dao D V, Amaya S, et al. Straight movement of micro containers based onratchet mechanisms and electrostatic comb-drive actuators[J]. Journal of Micromechanics andMicroengineering.2006,16(12):2532-2538.
    [31] Kwak S S, Mou J I, Huang S R S. Kinematic and dynamic analyses of a microparallel-link mechanism[J]. Microsystem Technologies.2004,10(4):293-306.
    [32] Zhang X, Zhao Y, Li B, et al. Pumping capacity and reliability of cryogenicmicro-pump for micro-satellite applications[J]. Journal of Micromechanics andMicroengineering.2004,14(10):1421-1429.
    [33] Zhang Y, Pan W. Design and analysis of a MEMS horizontal torsion micro mirror withfolded springs[J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering.2005,13(SUPPL.):81-85.
    [34] Bae B, Han J, Masel R I, et al. A touch mode capacitance type injector valve for amicroscale gas chromatography system[C]. Cincinnati, OH, United states: American Instituteof Chemical Engineers,2005.
    [35] Mutzenich S, Vinay T, Rosengarten G. Analysis of a novel micro-hydraulic actuationfor MEMS[J]. Sensors and Actuators A: Physical.2004,116(3):525-529.
    [36] Que L, Park J S, Gianchandani Y B. Bent-beam electrothermal actuators-Part I: Singlebeam and cascaded devices[J]. Journal of Microelectromechanical Systems.2001,10(2):247-254.
    [37]胡志军,陈迪,黄闯,等.一种新型的电热驱动MEMS微继电器的研制[J].传感技术学报.2009(12):1696-1700.
    [38] Kim W J, Sadighi A. Design and relay-based control of a novel linear magnetostrictivemotor[C]. St. Louis, MO, United states: Institute of Electrical and Electronics Engineers Inc.,2009.
    [39]许文秉,杨斌堂,孟光,等.大负载精密驱动超磁致伸缩直线电机动力学建模与仿真[J].上海交通大学学报.2012(3):480-486.
    [40] Wu C, Tai W, Hsu C, et al. Design and fabrication of a three-dimensional long-stretchmicro drive by electroplating[C]. Maspalonas, Gran Canaria, Spain: SPIE,2003.
    [41]万凯,任建勋,过增元.热电控制记忆合金驱动元件的实验与数值研究[J].清华大学学报(自然科学版).2006(8):1478-1480.
    [42]方晔.形状记忆合金驱动的仿壁虎机器人的研制[D].中国科学技术大学,2009.
    [43] Greivell N E, Hannaford B. The design of a ferrofluid magnetic pipette[J]. IEEETransactions on Biomedical Engineering.1997,44(3):129-135.
    [44] Alexandrescu N, Udrea C, Comeaga D, et al. Piezo-electrically operated mini robot[C].2008.
    [45]马官营.人体肠道诊查微型机器人系统及其无线供能技术研究[D].上海交通大学,2008.
    [46] Jung K, Nam J, Lee Y, et al. Micro inchworm robot actuated by artificial muscleactuator based on non-prestrained dielectric elastomer[C]. San Diego, CA, United kingdom:SPIE,2004.
    [47] Ohmichi O, Yamagata Y, Higuchi T. Micro impact drive mechanisms using opticallyexcited thermal expansion[J]. Microelectromechanical Systems, Journal of.1997,6(3):200-207.
    [48]付国强,梅涛,孔德义,等.微型机器人外场驱动技术的研究现状与发展[J].光学精密工程.2003(4):333-337.
    [49] Khamesee M B, Kato N, Nomura Y, et al. Design and control of a microrobotic systemusing magnetic levitation[J]. Mechatronics, IEEE/ASME Transactions on.2002,7(1):1-14.
    [50] Mei T, Chen Y, Fu G, et al. Wireless drive and control of a swimming microrobot[C].Washington, DC, United states: Institute of Electrical and Electronics Engineers Inc.,2002.
    [51] Siotsu I, Matsumoto S, Tozaki Y, et al. Development of high speed rotation microtraction drive modified from angular ball bearing (1st report, experimental manufacture andevaluation)[J]. Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society ofMechanical Engineers, Part C.2006,72(4):1337-1344.
    [52] Luo Z, Xia Z. A novel valve-less synthetic-jet-based micro-pump[J]. Sensors andActuators, A: Physical.2005,122(1SPEC. ISS.):131-140.
    [53] M. R L. Machine Elements in Mechanical Design[M]. New York: Prentice-Hall,Inc,2002.
    [54]陈扬枝,邢广权,刘小康.微小弹性啮合轮传动方法及其装置[P].200510033981.0.
    [55]陈扬枝,罗亮,胡强.一种空间曲线啮合传动机构[P].200810029649.0.
    [56] Chen Y, Liu X, Chetwynd D G, et al. Investigation of a novel elastic-mechanical wheeltransmission under light duty conditions[J]. Mechanism and Machine Theory.2008,43(11):1462-1477.
    [57] Chen Y, Sun L, Wang D, et al. Investigation into the process of Selective Laser Meltingrapid prototyping manufacturing for Space-Curve-Meshing-Wheel[C]. Guangzhou, China:Trans Tech Publications,2010.
    [58] Chen Y, Xiao-Yong X, Liang L. A corrected equation of space curve meshing[J].Mechanism and Machine Theory.2009,44(7):1348-1359.
    [59] Chen Y, Luo L, Hu Q. The contact ratio of a space-curve meshing-wheel transmissionmechanism[J]. Journal of Mechanical Design, Transactions of the ASME.2009,131(7):745011-745015.
    [60]胡强.空间曲线啮合轮机构的弹性变形失效准则及强度设计公式[D].华南理工大学,2010.
    [61] Chen Z, Chen Y Z, Jiang D. A generalized space curve meshing equation for arbitraryintersecting gear[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journalof Mechanical Engineering Science.2012. Doi:10.1177/0954406212463310.
    [62] Ding J, Chen Y, Lv Y. Design of Space-Curve Meshing-Wheels with Unequal TineRadii[J]. Journal of Mechanical Engineering.2012,58(11):633-641.
    [63]孙磊厚.空间曲线啮合轮传动机构的制造工艺研究[D].华南理工大学,2011.
    [64]陈扬枝,孙磊厚,牟文杰.一种空间曲线啮合的齿轮机构及其靠模制造装置[P].201010164161.6.
    [65]沈连婠.超精密微细铣削加工技术[J].制造技术与机床.1996(10):10-12.
    [66]李宝明,邱复生,李涤尘,等.激光烧结金属粉末制造微型机械的研究[J].中国机械工程.2000(12):81-83.
    [67]沈连官,王翔,邓益民.激光光刻成型法在微型机械研究中的应用[J].光学精密工程.1995(2):11-15.
    [68]陈继民,左铁钏.微细金属粉末材料的激光快速微成型[J].微纳电子技术.2003(Z1):170-172.
    [69] Kruth J P, Froyen L, Van Vaerenbergh J, et al. Selective laser melting of iron-basedpowder[C]. Elsevier Ltd,2004.
    [70]杨永强,王迪,杨斌,等.激光快速成型技术在精密金属零件快速制造中的应用[J].航空制造技术.2010(16):48-52.
    [71] Wang K. Electrochemical micromachining using vibratile tungsten wire forhigh-aspect-ratio microstructures[J]. Surface Engineering and Applied Electrochemistry.2010,46(5):395-399.
    [72] Datta M, Shenoy R V, Romankiw L T. Recent advances in the study of electrochemicalmicromachining[J]. Journal of engineering for industry.1996,118(1):29-36.
    [73] De Silva A K M, Altena H S J, Mcgeough J A. Precision ECM by ProcessCharacteristic Modelling[J]. CIRP Annals-Manufacturing Technology.2000,49(1):151-155.
    [74] Phillips R E. ECG: COMBINING ELECTROCHEMICAL ATTACK ANDABRASION.[J]. Manufacturing Engineering.1986,97(6):46-48.
    [75]明平美,胡洋洋,朱健.微细电火花加工MEMS器件技术关键分析[J].微纳电子技术.2005(4):157-163.
    [76]陈文元,张卫平,范志荣.微3K-2型行星齿轮减速器中微齿轮啮合模型和参数计算[J].上海交通大学学报.2000(3):87-89.
    [77]张立勇,王长路,路明,等.基于准LIGA技术的微齿轮制作[J].机械传动.2010(6):36-38.
    [78] Heo S, Yoon G H, Kim Y Y. The robust design for micro electro-thermal actuators[C].San Diego, CA, United states: SPIE,2004.
    [79] Jakubenas K J, Sanchez J M, Marcus H L. Multiple material solid free-form fabricationby selective area laser deposition[J]. Materials&Design.1998,19(1–2):11-18.
    [80] Wallenberger F T. Rapid prototyping directly from the vapor phase[J]. Science.1995,267(5202):1274-1275.
    [81]北京齿轮厂.螺旋锥齿轮[M].北京:科学出版社,1974.
    [82]张瑞亮.双圆弧弧齿锥齿轮传动啮合特性的研究[D].太原理工大学,2010.
    [83] Litvin F L, Sheveleva G I, Vecchiato D, et al. Modified approach for tooth contactanalysis of gear drives and automatic determination of guess values[J]. Computer Methods inApplied Mechanics and Engineering.2005,194(27–29):2927-2946.
    [84] Litvin F L, Vecchiato D, Fuentes A, et al. Automatic determination of guess values forsimulation of meshing of gear drives[J]. Computer Methods in Applied Mechanics andEngineering.2004,193(33–35):3745-3758.
    [85] Litvin F L, Chen N X, Chen J S. Computerized determination of curvature relations andcontact ellipse for conjugate surfaces[J]. Computer Methods in Applied Mechanics andEngineering.1995,125(1–4):151-170.
    [86] Litvin F L, Fuentes A, Gonzalez-Perez I, et al. Modified involute helical gears:computerized design, simulation of meshing and stress analysis[J]. Computer Methods inApplied Mechanics and Engineering.2003,192(33–34):3619-3655.
    [87] Gosselin C, Cloutier L, Nguyen Q D. A general formulation for the calculation of theload sharing and transmission error under load of spiral bevel and hypoid gears[J].Mechanism and Machine Theory.1995,30(3):433-450.
    [88] Litvin F L, Chen J S, Lu J, et al. Application of finite element analysis fordetermination of load share, real contact ratio, precision of motion, and stress analysis[J].Journal of Mechanical Design, Transactions of the ASME.1996,118(4):561-567.
    [89] Gosselin C, Gagnon P, Cloutier L. Accurate tooth stiffness of spiral bevel gear teeth bythe finite strip method[J]. Journal of Mechanical Design, Transactions of the ASME.1998,120(4):599-605.
    [90] Sugimoto M, Maruyama N, Nakayama A, et al. Effect of tooth contact and geardimensions on transmission errors of loaded hypoid gears[J]. Journal of mechanisms,transmissions, and automation in design.1991,113(2):182-187.
    [91] Falah B, Gosselin C, Cloutier L. Experimental and numerical investigation of themeshing cycle and contact ratio in spiral bevel gears[J]. Mechanism and Machine Theory.1998,33(1-2):21-37.
    [92] Tsai M H, Tsai Y C. Design of high-contact-ratio spur gears using quadratic parametrictooth profiles[J]. Mechanism and Machine Theory.1998,33(5):551-564.
    [93]郑昌启.弧齿锥齿轮和准双曲面齿轮[M].北京:机械工业出版社,1988.
    [94]黄昌华,李润方,郑昌启.螺旋锥齿轮啮合轮齿应力场分析[J].机械传动.1992(2):9-13.
    [95]唐进元,卢延峰,周超.有误差的螺旋锥齿轮传动接触分析[J].机械工程学报.2008(7):16-23.
    [96]唐进元,杜晋.考虑安装误差敏感性的螺旋锥齿轮主动设计方法[J].中国机械工程.2009(10):1197-1202.
    [97]刘光磊,樊红卫,谷霁红,等.弧齿锥齿轮传动误差曲线优化的半变性法[J].航空动力学报.2010(8):1888-1893.
    [98]刘光磊,张瑞庭,赵宁,等.安装误差对航空弧齿锥齿轮传动误差曲线的影响分析[J].航空发动机.2012(2):32-35.
    [99]苏进展,方宗德,崔艳梅.弧线齿面齿轮齿面接触分析[J].航空学报.2011(3):546-551.
    [100]沈云波,方宗德,苏进展,等.弧线齿面齿轮传动承载接触分析[J].机械科学与技术.2012(1):44-48.
    [101]方宗德,刘涛,邓效忠.基于传动误差设计的弧齿锥齿轮啮合分析[J].航空学报.2002(3):226-230.
    [102]方宗德,田行斌.准双曲面齿轮有摩擦承载接触分析[J].汽车工程.1999(3):184-187.
    [103]方宗德,杨宏斌.用规划法的齿轮有摩擦三维连续弹性接触分析[J].机械工程学报.1999(6):98-101.
    [104]王成,方宗德,谷建功,等.人字齿轮承载接触分析与试验[J].航空动力学报.2010(3):718-722.
    [105]王成,方宗德,贾海涛,等.人字齿轮承载接触分析的模型和方法[J].热能动力工程.2009(4):519-522.
    [106]王成,方宗德,张墨林,等.人字齿轮传动的动态特性分析[J].哈尔滨工业大学学报.2011(7):122-126.
    [107]唐进元,蒲太平.基于有限元法的螺旋锥齿轮啮合刚度计算[J].机械工程学报.2011(11):23-29.
    [108]唐进元,蒲太平.弧齿锥齿轮动态啮合有限元数值分析[J].机械科学与技术.2009(8):981-985.
    [109]唐进元,陈嫦,蒲太平.考虑误差、轴变形和轴承刚度的弧齿锥齿轮LTCA[J].机械传动.2010(5):5-8.
    [110]李政民卿,朱如鹏.面齿轮传动的承载接触分析[J].南京航空航天大学学报.2010(2):219-223.
    [111]李政民卿,朱如鹏.装配偏置误差对正交面齿轮传动接触特性的影响[J].航空学报.2009(7):1353-1360.
    [112]王小椿,吴序堂.空间点啮合齿面的接触特性对安装误差的敏感性分析[J].西安交通大学学报.1990(6):45-58.
    [113]黄昌华,郑昌启,祖正华.准双曲面齿轮副的加载模型实验[J].重庆大学学报(自然科学版).1991(3):22-24.
    [114]黄昌华,温诗铸,李润方,等.弧齿锥齿轮和准双曲面齿轮润滑加载接触分析[J].清华大学学报(自然科学版).1996(4):48-53.
    [115]李莉,方世杰.圆锥齿轮的齿向载荷分布和重合度对传动的影响[J].煤矿机械.2002(4):34-35.
    [116]邓效忠,范明,杨宏斌.螺旋锥齿轮的重合度与承载量的关系[J].中国机械工程.2001(8):38-40.
    [117]毛建秋,干为民.用柔性阴极电解擦削不锈钢的试验研究[J].常州工学院学报.2006(3):12-14.
    [118] Takahata K, Aoki S, Sato T. Fine surface finishing method for3-dimensional microstructures[J]. IEICE Transactions on Electronics.1997, E80-C(2):291-296.
    [119] Lee E. Machining characteristics of the electropolishing of stainless steel (STS316L)[J].International Journal of Advanced Manufacturing Technology.2000,16(8):591-599.
    [120] Lee S, Lee Y, Chung M. Metal removal rate of the electrochemical mechanicalpolishing technology for stainless steel-The electrochemical characteristics[C].1BirdcageWalk, London, SW1H9JJ, United Kingdom: Professional Engineering Publishing Ltd.,2006.
    [121] Fadaie Tehrani A, Atkinson J. Overcut in pulsed electrochemical grinding[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal of EngineeringManufacture.2000,214(4):259-269.
    [122] Wang M, Peng W, Yao C, et al. Electrochemical machining of the spiral internalturbulator[J]. International Journal of Advanced Manufacturing Technology.2010,49(9-12):969-973.
    [123] Pa P S. Synchronous finishing processes using a combination of grinding andelectrochemical smoothing on end-turning surfaces[J]. International Journal of AdvancedManufacturing Technology.2009,40(3-4):277-285.
    [124]仇启贤,景兴斌,张晓东,等.不锈钢化学抛光工艺的研究[J].电镀与环保.2010(6):38-39.
    [125]贾鹏,许洪斌.齿轮齿面接触分析TCA技术及发展动态[J].长春大学学报.2006(4):39-41.
    [126]陈永波王新荣.有限元法基础及ANSYS应用[M].北京:科学出版社,2008.
    [127] Simon V. Optimal tooth modifications for spur and helical gears[J]. Journal ofmechanisms, transmissions, and automation in design.1989,111(4):611-615.
    [128]方宗德.修形斜齿轮的承载接触分析[J].航空动力学报.1997(3):28-31.
    [129]方宗德.修形斜齿轮的轮齿接触分析[J].航空动力学报.1997(3):24-27.
    [130]方宗德,蒋孝煜,宋镜瀛.大重合度齿轮的性能研究[J].齿轮.:27-32.
    [131] Liou C, Lin H H, Oswald F B, et al. Effect of contact ratio on spur gear dynamic loadwith no tooth profile modifications[J]. Journal of Mechanical Design, Transactions of theASME.1996,118(3):439-443.
    [132]邓效忠,方宗德,魏冰阳,等.高重合度弧齿锥齿轮加工参数设计与重合度测定[J].机械工程学报.2004(6):95-99.