栓皮栎种群实生苗定居过程及其对干旱胁迫的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了阐明栓皮栎种群实生苗定居生态学过程及其耐旱特性,本研究以陕西不同分布区域(黄土高原、秦岭北坡、秦岭南坡)、不同生境(坡向)的栓皮栎种群为研究对象,通过野外固定样地观测与室内控制试验,幵展种群及生理生态调查、测定,研究了栓皮栎种群从结实、种子扩散、幼苗定居的过程;以及栓皮栎实生苗对干旱环境的适应机制,分析了栓皮栎种子萌发与幼苗定居适宜的土壤水分条件,为栓皮栎次生林恢复或人工丰产林栽培提供了依据。研究结论如下:
     1、黄土高原、秦岭北坡、秦岭南坡栓皮栎个体结实数量、种子形态、质量(千粒重和生活力)均为阳坡大于阴坡;结实数量、种子形态和质量均为秦岭南坡〉秦岭北坡>黄土高原。栓皮栎坚果主要分布于树冠上层和树冠阳面。对林内17个环境因子多元回归分析表明:影响其结实、种子形态与质量的重要因子为母树冠幅面积、冠幅体积、以及林内的温度、光照条件、土壤速效氮和速效钾含量;其中林内温度、光照条件作用最大。
     2、不同分布区栓皮栎种子雨观测表明:黄土高原种子雨降落开始时间最晚,结束最早,持续时间约76天,其中高峰期约14天;而秦岭南坡种子雨开始最早,结束最晚,持续时间最长91天,高峰期长达33天。同一分布区,阳坡落种早于阴坡,而阴坡落种高峰期较集中。种子雨和种子库总密度均为秦岭南坡〉秦岭北坡〉黄土高原,且阳坡大于阴坡。种子雨降落均以成熟种子为主,主要集中在高峰期降落,成熟饱满种子比例最高为黄土高原阴坡(56.60%);败育、虫蛀和被动物哨食种子主要集中在种子雨起始期和末期,虫蛀和被啃食种子比例以秦岭南坡最高;败育种子比例以秦岭北坡的阴坡最高,达到33.34%。各分布区种子库数量组成随时间发展呈动态变化,阳坡成熟种子消失速度快于阴坡,动物取食和霉烂是导致栓皮栎土壤种子库种子减少的主要因素。
     3、三个分布区固定样地检测表明:实生苗随年龄增长密度下降;黄土高原实生苗通过降低茎叶生长,增加根系的生长适应不良生境;秦岭北坡实生苗随着年龄的增长,适应能力增强,逐渐将更多干物质累积在茎叶器官;秦岭南坡阳坡实生苗生长发育最好,主要通过提高叶面积指数,提高光竞争能力,促进其生长。通径分析表明,改善光照条件、土壤含水率、土壤速效氮的含量和枯落物层厚度,同时降低灌木层盖度和林分密度有利于栓皮栎林实生苗定居。
     4、PEG模拟干旱胁迫试验表明:干旱胁迫使栓皮栎种子萌发时间延缓,萌发活力指数(VI)下降;但轻度胁迫(-O.lMPa)使种子的萌发率(GP)和日平均萌发速度均提高9.81%,萌发势(GRI)提高4.58%,并促进种子胚根增长;在中、重度胁迫(-0.3?-1.5MPa)下,抑制种子萌发,且胚根和胚芽生长缓慢。种苗通过提高根芽比(R/P)适应环境水势的降低(-0.1~-1.2MPa),但重度胁迫(-1.5MPa)下,种子不能产生胚芽。随胁迫强度的增加,种子群体萌动、萌发和出苗达50%概率时间延长,各阶段环境临界水势依次为:-0.12MPa、-0.08MPa和-0.06MPa,说明种子出苗过程对环境水分胁迫较为敏感,耐旱能力最弱。当水势低于-0.6MPa时,种子的渗透调节物质(游离脯氨酸、可溶性糖和可溶性蛋白)积累降低、抗氧化保护酶(SOD、POD、CAT、APX)活性和抗氧化剂(ASA)含量显著下降,导致MDA大量积累,抑制种子萌发。
     5、长期干旱胁迫导致栓皮栎幼苗株高、基茎、健康叶片数量、叶面积和干物质累积减少;轻度干旱可增加幼苗不同直径等级根系数量、长度、表面积、体积。尽管栓皮栎幼苗通过增加叶面积比和比叶面积抵御干旱环境,但其作用效果并不显著;当胁迫程度超过中度时,幼苗长期水分利用效率下降。此外,栓皮栎幼苗可通过在叶片、小直径细根(0<D≤0.5mm)和大直径细根(0.5<D≤2mm)大量积累渗透调节物质、迅速降低渗透势、启动抗氧化保护系统抵御长期轻度干旱胁迫。而中度胁迫下,叶片和细根部分抗氧化保护酶活性和抗氧化剂含量均已发生下降,导致幼苗耐旱能力下降且生长缓慢。重度胁迫导致幼苗各器官可溶性蛋白含量、CAT、POD和APX的活性,以及ASA含量均迅速降低,而MDA含量迅速增加,细根活力下降,幼苗生长停滞。
     6、在轻度和中度胁迫下,幼苗叶片相对含水率(RWC)均保持在60%以上,在重度胁迫下,叶片RWC仅为42%,暗示叶片吸水保水能力下降。幼苗通过大幅度的降低饱和渗透势(Ψ100s)和初始质壁分离渗透势(Ψ0s),保持更多的非渗透水含量(RWCa)和更低的组织细胞弹性模量()适应轻度胁迫。然而在长期重度胁迫导致Ψ100s和Ψ0s升高,渗透调节作用受阻。栓皮栎幼苗日光合进程呈双峰型曲线,两次高峰分别出现在10:00~11:00和15:00~16:00之间;在中午13:00发生“午休”现象。干旱胁迫导致净光合速率(Pn)降低,其原因包括气孔因素和非气孔因素。轻度胁迫可以提高叶片瞬时水分利用效率;而重度导致其显著降低。干旱胁迫会引发叶片的光合色素含量降低,但Chla/Chlb和Car/Chla+b为升高趋势。
     7、栓皮栎次生林中应加强实生苗保护,使其顺利渡过不良环境;未来栓皮栎资源培育中,丰产林培育应该在种子雨高峰期时采种;培育丰产林地点应该选择在秦岭林区;在对次生林改造与丰产林培育中,应及时抚育间伐,控制林分郁闭度,保证林地充足的光照,土壤水分维持在21.1±0.6%~14.6±1.2%之间,促进种子萌发及实生苗生长发育。
In order to explain ecological processes of seedlings settlement of Quercus variabilis Blpopulation and their drought tolerance, different distribution regions(including Loess Plateau,Qinling north slope and Qinling south slope), and different slope aspect were taken as theobject of our study in Shaanxi province. By field investigation and controlled experiment inthe laboratory, methods of population and physiological ecology were applied to exploresystematically process from seed and to seedling establishment; meanwhile avoidance or/andtolerance mechanisms of Q. variabilis Bl was clarified in drought environment, and we foundsuitable soil moisture conditions for seed germination and seedling establishment.The resultsof the present study provide information for vegetation restoration with this species in aridand semi-arid regions of northwestern China. The main results were as follows:
     1.The sunny slope showed greater fruiting number, seed morphology and quality(including1000-seed mass and seed vitality) in parent tree individual of Q. variabilis Bl thanshady slope in Loess Plateau, Qinling north slope and Qinling south slope. The fruitingnumber from high to low was Qinling South Slope, Qinling North Slope and Loess Plateau,and the sunny side and upper canopy of parent tree produced relatively more fruits. Fruitingnumber maintained significant difference among different distribution, aspect and canopyposition. Stepwise multiple regression analysis for fruiting number, seed morphology andquality related17environmental factors, which showed that crown width area and volume ofparent tree individual, the temperature, light conditions, soil available nitrogen and potassiumin Q. variabilis Bl. forest were key factors, whereas the temperature and light conditionsalways play the greatest role in enhancement of fruiting number, seed morphology andquality.
     2. There were differences in the dissemination process, occurrence time, and composition ofseed rain among the three distribution regions. The lastest landing time and earliest endingtime were observed in Loess Plateau; seed rain lasted about76days, while peak time lastedabout14days. In contrast, the earliest landing time and lastest ending time was found inQinling South Slope. The whole seed rain lasted91days and the peak time lasted about33days. Seed rain in sunny slope started earlier than that in the shady slope in same distribution region, while apparent peak time was presented in shady slope. Total intensities of seed rainand soil seed bank was Qinling South Slope>Qinling North Slope>Loess Plateau, which insunny slope were greater than in shady slope in same distribution region. The process ofseed rain was dominated by mature seeds, and mature seeds mainly concentrated in the peakof the landing. The largest proportion of mature seeds was found in Loess Plateau, accountingfor56.60%. Immature, seeds eaten by insect pests and animals mainly landed in the startingand final phase of seed rain, the largest proportions of seeds eaten by insect pests and animalswere found in Qinling South Slope, while the largest proportion of immature seeds reaching33.34%, was observed in Qinling North Slope. The number of seed development changeddynamically in soil seed bank by time, and the speed of the disappearance of mature seeds insunny slope was faster than that in shady slope. The seed descreased by seeds eaten byanimals and moldy resulted in soil seed bank.
     3. The densities of seedlings decreased with age increasing in three distribution regions.In order to adapt to the Loess Plateau habitat, the seedlings increase root growth and decreasethe growth of leaves and stem. Northern slope of seedlings enhanced ability to adapt in theQinling North Slope with age increasing, more dry mass was gradually accumulated in leavesand stem. Seedling growth in sunny slope of Qinling South Slope was better than that inshady slope, and improvement of leaf area index and light competitiveness was adopted topromote seedling regeneration. Path analysis showed that improving lighting conditions, soilmoisture, soil available nitrogen content and the thickness of the litter layer, and reducing theshrub layer cover and forest stand density are conducive to the seedlings settement. Moreover,the best seedling growth was found in the sunny slope of Qinling South Slope, but the worstone was displayed in sunny slope of Loess Plateau.
     4. With decreasing water potential caused by increasing concentrations of PEG tosimulate different drought stress intensities, germination time delayed and germination vitalityindex(VI) decreased gradually. When compared to controlled treatment(0MPa), seedgermination percentage (GP) and daily average germination rate under light drought stress(-0.1MPa) both increased by9.81%, germination vigor (GRI) increased by4.58%, as well asthe growth of seed radicle promoted. The moderate and severe drought stress treatmentsinhibited seed germination, as well as slowed growth of the seed radicle and plumule.Germchit adapted to the decreasing environmental water potential (from-0.1to-1.2MPa) byincreasing the radicle to plumule ratio (R/P), whereas seed could not produce plumule undersevere drought treatment (-1.5MPa). It must take more time to finish50%seeds radicalemergence, plumule emergence and seedling establishment than that of controls underdrought stress. Critical water potential of50%seeds radical emergence, plumule emergence and seedling establishment was-0.12,-0.08and0.06MPa, respectively, which indicated thatseedling establishment was most sensitive to external water potential. When soilenvironmental water potential was below-0.6MPa, the contents of three osmoregulationsubstances (free proline, soluble sugar and protein), the activities of four protective enzymes[(superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbateperoxidase(APX)], and antioxidant content [ascorbic acid (ASA)] were significantlydecreased, and malondialdehyde (MDA) significantly increased, resulting in lipidperoxidation. Therefore seed germination was inhibited.
     5. The seedlings had optimal height, basal diameter, and healthy number of leaves, leafarea under controlled treatment. Afterwards, these parameters significantly decreased asdrought intensity increased. The number, length, surface area, volume of different diameterclass root under light drought treatment significantly increased compared with those atcontrolled treatment, whereas these parameters decreased at moderate and severe droughtstress. Leaf area ratio (LAR) and specific leaf area (SLA) increased to withstand progressivedrought stress, but their effects were not significant. The long-term water-use efficiency(WUEL) started to decline at moderate drought stress, resulting seedling slow growth.Increasing accumulation of osmoregulation substances, decreasing osmotic potential anddeveloping antioxidant defense system of leaf, thin fine root (0     6. Q. variabilis Bl seedlings still were able to maintain an adequate leaf water status(RWC>60%) at light and moderate drought treatment. The deficient leaf water status (RWC<42%) was observed at severe drought resulting in serious leaf wilting. Exposure to lightdrought resulted in quickly significant reductions in the saturated osmotic potential (Ψ100s) andinitial plasmolysis osmotic potential (Ψ0s), meanwhile seedling maintained a relatively highernon-permeate water content (RWCa) and lower bulk modulus of elasticity (). However, Ψ100sand Ψ0swere improved at prolonged severe drought stress, leading to an inhibitedosmoregulation. The photosynthesis diurnal courses of Q. variabilis Bl seedlings werebimodal curve during clear days of the growing season. Peak value appeared at10:00to11:00and15:00to16:00, having a significant photosynthetic midday depression phenomenon at13:00. Drought stress induced significant decline in net photosynthetic rate (Pn), and the main reason for this depression of seedling included stomatal factor and non-stomatal factor.Leaves instantaneous water use efficiency (WUEI) was improved at light drought, butsignificantly decrease at severe drought. Drought stress led to a reduced photosyntheticpigment content, while Chla/Chlband Car/Chla+benhanced.
     7. Seedlings should be protected in Q. variabilis Bl secondary forests to adapt adverseenvironmental. Cultivation of high-yield Q. variabilis Bl forest should collectes in peak timeof seed rain, and the location should be selected at Qinling forest area. In addtion, thinningwas suitable for cultivation and management to provide the favorable light conditions and soilwater contents keep being between21.1±0.6%to14.6±1.2%for Q. variabilis Bl seedgermination and seedlings growth.
引文
安玉艳,梁宗锁,郝文芳.2011.杠柳幼苗对不同强度干旱胁迫的生长与生理响应.生态学报,31(3):716~725
    安玉艳.2011.杠柳适应黄土丘陵干旱环境的生理生态策略.[博士学位论文].陕西杨陵:中国科学院研究生院(教育部水土保持与生态环境研究中心)
    曹生奎,冯起,司建华,常宗强,卓玛错,席海洋,苏永红.2009.植物叶片水分利用效率研究综述.生态学报,29(7):3882~3892
    鲍士旦.2000.土壤农化分析.北京:中国农业出版社.
    蔡海霞,吴福忠,杨万勤.2011.干旱胁迫对高山柳和沙棘幼苗光合生理特征的影响.生态学报,31(9):2430~2436
    蔡年辉,许玉兰,张瑞丽,赵丽芝,李根前.2012.云南松种子萌发及芽苗生长对干旱胁迫的响应.种子,31(7):44~46
    陈智平,王辉,袁宏波.2005.子午岭辽东栎林土壤种子库及种子命运研究.甘肃农业大学学报,40(1):7~12
    陈莉,程积民,万惠娥,韩天丰.2009.子午岭辽东栎天然林土壤种子库研究.水土保持研究,16(4):150~155
    陈芳,周志翔,王鹏程,李海防,钟颖飞.2006.武汉钢铁公司厂区绿地绿量的定量研究.应用生态学报,17(4):592~596
    陈明涛,赵忠.2011.干旱对4种苗木根系特征及各部分物质分配的影响.北京林业大学学报,33(1):16~22
    陈志刚,樊大勇,张旺锋,谢宗强.2005.林隙与林下环境对锐齿槲栎和米心水青冈种群更新的影响.植物生态学报,29(3):354~360
    陈志刚.2004.神农架锐齿槲栎种群更新与区域生物多样性保护对策.[博士学位论文].北京:中国科学院研究生院(植物研究所)
    曾彦军,王彦荣,萨仁,田雪梅.2002.几种旱生灌木种子萌发对干旱胁迫的响应.应用生态学报,13(8):953~956
    杜家菊,陈志伟.2010.使用SPSS线性回归实现通径分析的方法.生物学通报,45(2):4~6
    范苏鲁,苑兆和,冯立娟.2011.干旱胁迫对大丽花生理生化指标的影响.应用生态学报,22(3):651~657
    符婵娟,刘艳红,赵本元.2009.神农架巴山冷杉群落更新特点及影响因素.生态学报,29(8):4179~4186
    傅焕光.1986.栓皮栎栽培与利用.北京:中国林业出版社
    高贤明,杜晓军,王中磊.2003.北京东灵山区两种生境条件下辽东幼苗补充与建立的比较.植物生态学报,27(3):404~411
    郭连生,田有亮.1990.压力~容积分析法在植物水分生理与抗旱性研究中的应用进展.内蒙古林学院学报,12(1):37~43
    郭彦军,倪郁,吕俊,张家骅.2003.豆科牧草种子萌发特性与其抗旱性差异的研究.中国草地,25(3):24~27
    韩刚.2010.六种旱生灌木抗旱生理基础研究.[博士学位论文].陕西杨陵:西北农林科技大学
    韩照祥,张文辉,山仑.2005.栓皮栎种群的性状分化与地理变异性研究.西北植物学报,25(9):1848~1853
    韩照祥,山仑.2005.栓皮栎种群变异与适应对策研究.林业科学,41(6):16~22
    胡婉仪,涂炳坤.1992.栓皮栎,麻栎,小叶栎,苦槠,石栎扦插繁殖简报.湖北林业科技,85(2):35~36
    季孔庶,孙志勇,方彦.2006.林木抗旱性研究进展.南京林业大学学报(自然科学版),30(6):123~128
    康冰,王得祥,李刚,高妍夏,张莹,杜焰玲.2012.秦岭山地锐齿栎次生林幼苗更新特征.生态学报,32(9):2738~2747
    赖江山,李庆梅,谢宗强.2003.濒危植物秦岭冷杉种子萌发特性的研究.植物生态学报,27(5):661~666
    李荣.2012.近自然经营强度对辽东栎种群与群落恢复影响.[博士学位论文].陕西杨陵:西北农林科技大学
    李凯辉,胡玉昆,王鑫,范永刚,吾买尔·吾守.2007.不同海拔梯度高寒草地地上生物量与环境因子关系.应用生态学报,18(9):2019~2024
    李潮海,赵亚丽,杨国航,栾丽敏,王群,李宁.2007.遮光对不同基因型玉米光合特性的影响米.应用生态学报,18(6):1259~1264
    李博,詹亚光,徐云刚,曾凡锁,张桂芹.2012.干旱胁迫下水曲柳×大叶白蜡F1的光合特性研究.西北植物学报,32(11):2313~2320
    李芳兰,包维楷,吴宁.2009.白刺花幼苗对不同强度干旱胁迫的形态与生理响应.生态学报,29(10):5406~5416
    李妮亚,高俊凤,汪沛洪.1998.小麦幼芽水分胁迫诱导蛋白的特征.植物生理学报,24(1):65~71
    李合生.2000.植物生理生化实验原理和技术.北京:高等教育出版社
    李文娆,张岁岐,山仑.2009.水分胁迫下紫花苜蓿和高梁种子萌发特性及幼苗耐旱性.生态学报,29(6):3066~3074
    李文娆,张岁岐,丁圣彦,山仑.2010.干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系.生态学报,30(19):5140~5150
    刘长利,王文全,崔俊茹,李帅英.2006.干旱胁迫对甘草光合特性与生物量分配的影响.中国沙漠,26(1):142~145
    刘足根,朱教君,袁小兰,王贺新,谭辉.2007.辽东山区长白落叶松种子雨和种子库.生态学报,27(2):579~587
    刘彤,周志强.2007.蒙古栎种群种子雨与地表种子库.东北林业大学学报,35(5):22~23
    刘文静,汪广垠,牛可坤,焦广强,于飞,易现峰.2010.槲栎种子雨进程中昆虫的捕食特征.昆虫学报,53(4):436~441
    卢志军.2002.栓皮栎种群生殖生态学研究[硕士学位论文].西北农林科技大学.杨凌:西北农林科技大学
    罗大庆,王军辉,任毅华,朱登强.2010.西藏色季拉山东坡急尖长苞冷杉林的结实特性.林业科学,46(7):30~35
    马闯,张文辉,薛瑶芹,马莉薇,吴敏,周建云.2011.邻体竞争和环境因子对栓皮栎伐桩萌苗表型特征的影响.西北农林科技大学学报(自然科学版),39(10):71~80
    马莉薇,张文辉,薛瑶芹,马闯,周建云.2010.秦岭北坡不同生境栓皮栎实生苗生长及其影响因素.生态学报,30(23):6512~6520
    马姜明,刘世荣,史作民,张远东,缪宁.2009.川西亚高山暗针叶林恢复过程中岷江冷杉天然更新状况及其影响因子.植物生态学报,33(4):646~657
    麦苗苗,石大兴,王米力,李伟.2009. PEG处理对连香树种子萌发与芽苗生长的影响.林业科学,45(10):94~99
    卯霞,陆伟东,刘潮,王海波,施晓东.2010.濒危植物三棱栎生殖生态学特征.江苏农业科学,4:352~354
    莫惠栋.1984.农业试验统计.上海:上海科学技术出版社
    潘瑞炽,王小著,李娘辉.2001.植物生理学(第四版).北京:高等教育出版社.
    漆民楷,陈红.1992.栓皮栎薪炭林研究.四川林业科技,13(1):72~76
    秦景,贺康宁,谭国栋,王占林,陈静.2009. NaCl胁迫对沙棘和银水牛果幼苗生长及光合特性的影响.应用生态学报,20(4):791~797
    曲秋玲,王国梁,刘国彬,刘涛,曹艳春,袁子成.2012.施氮对白羊草细根形态和生长的影响.水土保持通报,32(2):74~79
    芮雯奕,田云录,张纪林,李淑琴.2012.干旱胁迫对6个树种叶片光合特性的影响.南京林业大学学报(自然科学版),36(1):68~72
    邵泽坦.1992.刺槐栓皮栎混交林调查报告.山东林业科技,3:33~35
    施积炎,丁贵杰,袁小凤.2004.不同家系马尾松苗木水分参数的研究.林业科学,40(3):51~55
    史薇,徐海量,赵新风,凌红波,李媛.2010.胀果甘草种子萌发对干旱胁迫的生理响应.生态学报,30(8):2112~2117
    宋纯鹏.1998.植物衰老生物学.北京:北京大学出版社
    苏佩,山仑.1996.玉米种子萌发成苗不同阶段需水阈值的研究.西北植物学报16(1):34~37
    孙书存,陈灵芝.2001.动物搬运与地表覆盖物对辽东栎种子命运的影响.生态学报,21(1):80~85
    孙书存,陈灵芝.2000a.东灵山地区辽东栎种子库统计.植物生态学报,24(2):215~221.
    孙书存,陈灵芝.2000b.东灵山地区辽东栎叶的生长及其光合作用.生态学,20(2):212~217
    孙书存,陈灵芝.2000c.辽东栎幼苗对干旱和去叶的生态反应的初步研究.生态学报,20(5):893~897
    孙存华,李扬,贺鸿雁,孙东旭,杜伟,郑曦.2005.藜对干旱胁迫的生理生化反应.生态学报,25(10):2556~2561
    孙玉玲,李庆梅,杨敬元,谢宗强.2005.秦岭冷杉球果与种子的形态变异.生态学报,25(1):176~181
    谭永芹,柏新富,朱建军,王仲礼,刘林德.2011.干旱区五种木本植物枝叶水分状况与其抗旱性能.生态学报,31:6815~6823
    唐宇丹,韩亚琦,石雷.2007.北京槲栎和锐齿槲栎幼苗水分适应性研究.北京市“建设节约型园林绿化”论文集:84~88
    王海珍,梁宗锁,韩蕊莲,韩路.2005.辽东栎幼苗对土壤干旱的生理生态适应性研究.植物研究,25(3):311~316
    王海珍,梁宗锁,韩蕊莲,韩路.2004.土壤干旱对黄土高原乡土树种水分代谢与渗透调节物质的影响.西北植物学报,24(10):1822~1827
    王娟,李德全.2002.水分胁迫下植物体内的抗氧化剂及其作用.生物学通报,37(10):22~23
    王梅,张文辉.2009.陕北黄土高原油松人工种群结实与更新.兰州大学学报(自然科学版),45(5):88~93
    王宁宁,胡增辉,沈应柏.2011.珙桐苗木叶片光合特性对土壤干旱胁迫的响应.西北植物学报,31(1):101~108
    王树凤,陈益泰,孙海菁,胡韵雪.2008.盐胁迫下弗吉尼亚栎生长和生理生化变化.生态环境,17(2):747~750
    王巍,马克平,刘灿然.2000.北京东灵山落叶阔叶林中辽东栎种子雨.植物学报,42(2):195~202
    王晓江.2007.库布齐沙漠几种沙生灌木光合、耗水及耐旱生理生态特性研究.[博士学位论文].北京:北京林业大学
    王学,肖治术,张知彬,潘红春.2008.昆虫种子捕食与蒙古栎种子产量和种子大小的关系.昆虫学报,51(2):161~165
    魏林.1960.栓皮栎分布的初步调查.林业科学,1:70~71
    魏良民.1991.几种旱生植物碳水化合物和蛋白质变化的研究.干旱区研究,8(4):38~41
    卫星,王政权,张国珍,陈海波,王婧.2009.水曲柳苗木不同根序对干旱胁迫的生理生化反应.林业科学,45(6):16~21
    闻天声.1991.栓皮栎的培育与用途.中国林副特产,2:29
    吴敏,张文辉,周建云,马闯,马莉薇.2011.秦岭北坡不同生境栓皮栎种子雨和土壤种子库动态.应用生态学报,22(11):2807~2814
    吴明作,刘玉萃,杨玉珍,李战军.1999.河南省栓皮栎林主要种群的生态位研究.西北植物学报,19(3):511~518
    吴征镒,中国植被编辑委员会.1980.中国植被.北京:科学出版社
    伍泽堂.1991.超氧自由基与叶片衰老时叶绿素破坏的关系(简报).植物生理学通讯,27(4):277~279
    肖冬梅,王淼,姬兰柱.2004.水分胁迫对长白山阔叶红松林主要树种生长及生物量分配的影响.生态学杂志,23(5):93~97
    许浩,张希明,闰海龙,孙红叶,单立山.2008.塔克拉玛干沙漠腹地梭梭蒸腾耗水规律.生态学报,28(8):3713~3720
    薛瑶芹,张文辉,马莉薇,马闯,周建云.2012.不同生境下栓皮栎伐桩萌苗的生长特征及在种群更新中的作用.林业科学,48(7):23~29
    闫兴富,周立彪,张靠稳,周云锋.2012.不同密度下辽东栎幼苗子叶丢失及其对幼苗存活和生长的影响.植物生态学报,36(8):831~840
    姚增玉,张存旭,张文辉.2006.栓皮栎核型及体胚发生的细胞学特性研究.植物研究,26(1):58~62
    尹丽,刘永安,谢财永,江雪,王永杰,李银华,颜震,胡庭兴.2012.干旱胁迫与施氮对麻疯树幼苗渗透调节物质积累的影响.应用生态学报,23(3):632~638
    岳红娟,仝川,朱锦懋,黄佳芳.2010.濒危植物南方红豆杉种子雨和土壤种子库特征.生态学报,30(16):4389~4400
    臧润国.1998.林隙(gap)更新动态研究进展.生态学杂志,17(2):50~58
    张焕玲,张存旭,贾小明.2005.栓皮栎胚性愈伤组织诱导及增殖体系的建立.西北林学院学报,20(1):74~77
    张秀亮,许建伟,沈海龙,黄剑,张鹏.2010.动物对花楸树种实的取食与传播.应用生态学报,21(10):2677~268
    张存旭,姚增玉,赵忠.2005.栓皮栎体胚诱导关键影响因素研究.林业科学,41(2):174~177
    张文辉,卢志军,李景侠,刘国彬.2002.陕西不同林区栓皮栎种群空间分布格局及动态的比较研究.西北植物学报,22(3):476~483
    张文辉,卢志军.2002.栓皮栎种群的生物学生态学特性和地理分布研究.西北植物学报,22(5):1093~1101
    张文辉,段宝利,周建云,刘国彬.2003.不同种源栓皮栎幼苗水分适应及耐旱特性比较研究.西北植物学报,23(5):728~734
    张文辉,段宝利,周建云,刘祥君.2004.不同种源栓皮栎幼苗叶片水分关系和保护酶活性对干旱胁迫的响应.植物生态学报,28(4):483~490
    赵可夫.1993.植物耐盐生理.北京:中国科学技术出版社
    郑均宝,于力,王德艺.1990.影响栓皮栎等造林成活因素的研究.河北林学院学报,5(1):33~38
    郑万钧.1983.中国树木志.北京:中国林业出版社
    中国森林编辑委员会.2000.中国森林.第三卷.北京:中国林业出版社,1190~1198
    周玲,王乃江,张丽楠.2012. PEG胁迫对文冠果种子萌发和幼苗生理特性的影响.西北植物学报,32(11):2293~2298
    周民建,张文辉,周建云.2010.秦岭北坡不同林龄栓皮栎种子雨与种子库动态.安徽农业科学,38(26):14374~14376
    Ackerly D, Knight C, Weiss S, Barton K, Starmer K.2002. Leaf size, specific leaf area and microhabitatdistribution of chaparral woody plants: contrasting patterns in species level and community levelanalyses. Oecologia,130(3):449~457
    Ahmed C B, Rouina B B, Sensoy S, Boukhris M, Abdallah F B.2009. Changes in gas exchange, prolineaccumulation and antioxidative enzyme activities in three olive cultivars under contrasting wateravailability regimes. Environmental and Experimental Botany,67(2):345~352
    Anyia A, Herzog H.2004. Water-use efficiency, leaf area and leaf gas exchange of cowpeas undermid-season drought. European Journal of Agronomy,20(4):327~339
    Antonino D I, Antonio M, Gabriella S S.2011. Donato C. Fine root growth of Quercus pubescens seedlingsafter drought stress and fire disturbance. Environmental and Experimental Botany,74(2):272~279.
    Arakawa N, Tsutsumi K, Sanceda N G, Kurata T I C.1981. A Rapid and Sensitive Method for theDetermination of Ascorbic Acid Using4,7-Diphenyl-1,10-Phenanthroline. AgriculturalBiological Chemistry,45(4):1289~1290
    Arriaga L, Mercado C.2004. Seed bank dynamics and tree-fall gaps in a northwestern MexicanQuercus-Pinus forest. Journal of Vegetation Science,15(5):661~668
    Asada K.1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation ofexcess photons. Annual review of plant biology,50:601~639
    Asbjornsen H, Vogt K A, Ashton M S.2004. Synergistic responses of oak, pine and shrub seedlings to edgeenvironments and drought in a fragmented tropical highland oak forest, Oaxaca, Mexico. ForestEcology and Management,192(2-3):313~334
    Augusto L, Dupouey J L, Picard J F, Ranger J.2001. Potential contribution of the seed bank in coniferousplantations to the restoration of native deciduous forest vegetation. Acta Oecologica,22(2):87~98
    Bacelar E A, Moutinho Pereira J M, Gon alves B C, Ferreira H F, Correia C M.2007a. Changes in growth,gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars undercontrasting water availability regimes. Environmental and Experimental Botany,60(2):183~192
    Bacelar E A, Santos D L, Moutinho Pereira J M, Lopes J I, Gon alves B C, Ferreira T C, Correia C M.2007b. Physiological behaviour, oxidative damage and antioxidative protection of olive treesgrown under different irrigation regimes. Plant and Soil,292(1-2):1~12
    Baquedano F, Castillo F.2006. Comparative ecophysiological effects of drought on seedlings of theMediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercusilex. Trees,20(6):689~700
    Bargali K, Tewari A.2004. Growth and water relation parameters in drought-stressed Coriaria nepalensisseedlings. Journal of arid environments,58(4):505~512
    Blanch J S, Pe uelas J, Sardans J, Llusia J.2009. Drought, warming and soil fertilization effects on leafvolatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiologiae Plantarum,31(1):207~218
    Boscagli A, Sette B.2001. Seed germination enhancement in Satureja montana L. ssp. montana. Seedscience and technology,29(2):347~355
    Bossuyt B, Heyn M, Hermy M.2002. Seed bank and vegetation composition of forest stands of varying agein central Belgium: consequences for regeneration of ancient forest vegetation. Plant Ecology,162(1):33~48
    Bungard R A, Zipperlen S A, Press M C, Scholes J D.2002. The influence of nutrients on growth andphotosynthesis of seedlings of two rainforest dipterocarp species. Functional Plant Biology,29(4):505~515
    Burghardt M, Burghardt A, Gall J, Rosenberger C, Riederer M.2008. Ecophysiological adaptations ofwater relations of Teucrium chamaedrys L. to the hot and dry climate of xeric limestone sites inFranconia (Southern Germany). Flora-Morphology, Distribution, Functional Ecology of Plants,203(1):3~13
    Cavender Bares J, Bazzaz F.2000. Changes in drought response strategies with ontogeny in Quercus rubra:implications for scaling from seedlings to mature trees. Oecologia,124(1):8~18
    Chen J W, Cao K F.2008. Changes in activities of antioxidative system and monoterpene andphotochemical efficiency during seasonal leaf senescence in Hevea brasiliensis trees. ActaPhysiologiae Plantarum,30(1):1~9
    Chesnoiu E N, Sofletea N, Curtu A L, Toader A, Radu R, Enescu M.2009. Bud burst and floweringphenology in a mixed oak forest from Eastern Romania. Annals of Forest Research,52:199~206
    Chiatante D, Iorio A D, Scippa G.2005. Root responses of Quercus ilex L. seedlings to drought and fire.Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology,139(2):198~208
    Cho D, Boerner R.1991. Canopy disturbance patterns and regeneration of Quercus species in two Ohioold-growth forests. Vegetatio,93(1):9~18
    Collins B, Battaglia L.2002. Microenvironmental heterogeneity and Quercus michauxii regeneration inexperimental gaps. Forest Ecology and Management,155(1-3):279~290
    Curt T, Prévosto B.2003. Rooting strategy of naturally regenerated beech in Silver birch and Scots pinewoodlands. Plant and Soil,255(1):265~279
    Danner B T, Knapp A K.2001. Growth dynamics of oak seedlings (Quercus macrocarpa Michx. andQuercus muhlenbergii Engelm.) from gallery forests: implications for forest expansion intograsslands. Trees,15(5):271~277
    Denslow J S, Newell E, M. Ellison A.1991. The effect of understory palms and cyclanths on the growthand survival of Inga seedlings. Biotropica,23(3):225~234
    Dey D C, Parker W. C.1997. Overstory density affects field performance of underplanted red oak (Quercusrubra L.) in Ontario. Northern journal of applied forestry,14(3):120~125
    Di Iorio A, Montagnoli A, Scippa G S, Chiatante D.2011. Fine root growth of Quercus pubescensseedlings after drought stress and fire disturbance. Environmental and Experimental Botany,74:272~279
    Dias P C, Araujo W L, Moraes G A, Barros R S, DaMatta F M.2007. Morphological and physiologicalresponses of two coffee progenies to soil water availability. Journal of plant physiology,164(12):1639~1647
    Diaz Lopez L, Gimeno V, Simon I, Martinez V, Rodriguez Ortega W, García Sánchez F.2012. Jatrophacurcas seedlings show a water conservation strategy under drought conditions based on decreasingleaf growth and stomatal conductance. Agricultural Water Management,105:48~56
    Dichio B, Margiotta G, Xiloyannis C, Bufo S A, Sofo A, Cataldi T R.2009. Changes in water status andosmolyte contents in leaves and roots of olive plants (Olea europaea L.) subjected to water deficit.Trees,23(2):247~256
    Du N, Guo W, Zhang X, Wang R.2010. Morphological and physiological responses of Vitex negundo L.var. heterophylla (Franch.) Rehd. to drought stress. Acta Physiologiae Plantarum,32(5):839~848
    Eissenstat D, Yanai R.1997. The ecology of root lifespan. Advances in ecological research,27:1~60
    Enquist B J, Niklas K J.2002. Global allocation rules for patterns of biomass partitioning in seed plants.Science,295(5559):1517~1520
    Espelta J M, Cortés P, Molowny Horas R, Retana J.2009. Acorn crop size and pre-dispersal predationdetermine inter-specific differences in the recruitment of co-occurring oaks. Oecologia,161(3):559~568
    Finér L, Ohashi M, Noguchi K, Hirano Y.2011. Factors causing variation in fine root biomass in forestecosystems. Forest Ecology and Management,261(2):265~277
    Fricke W, Pahlich E.1990. The effect of water stress on the vacuole-extravacuole compartmentation ofproline in potato cell suspension cultures. Physiologia Plantarum,78(3):374~378
    Fuchsa M A, Krannitzb PG, Harestad AS.2000. Factors affecting emergence and First-year survival ofseedlings of Garry oaks (Quercus garryana) in British Columbia, Canada. Forest Ecology andManagement,137:209~219
    Gómez J M.2004. Importance of microhabitat and acorn burial on Quercus ilex early recruitment:non-additive effects on multiple demographic processes. Plant Ecology,172(2):287~297
    Hadas A.1976. Water uptake and germination of leguniinous seeds under changing external water potentialin osmotic solutions. Journal of Experimental Botany,27(3):480~489
    Hamada H, Kuramoto N.1994. A study of seed bank in Quercus serrata forest by surveying seedlingemergence and its application to forest management. Journal of the Japanese Institute ofLandscape Architects,58(1):76~82
    Harper J L.1977. Population biology of plants. New York: Academic
    Hessini K, Ghandour M, Albouchi A, Soltani A, Werner K H, Abdelly C.2008. Biomass production,photosynthesis, and leaf water relations of Spartina alterniflora under moderate water stress.Journal of plant research,121(3):311~318
    Hishi T.2007. Heterogeneity of individual roots within the fine root architecture: causal links betweenphysiological and ecosystem functions. Journal of Forest Research,12(2):126~133
    Huang X, Xiao X, Zhang S, Korpelainen H, Li C.2009. Leaf morphological and physiological responses todrought and shade in two Populus cathayana populations. Biologia Plantarum,53(3):588~592
    Hubick K, Farquhar G, Shorter R.1986. Correlation between water-use efficiency and carbon isotopediscrimination in diverse peanut (Arachis) germplasm. Functional Plant Biology,13(6):803~816
    Hund A, Ruta N, Liedgens M.2009. Rooting depth and water use efficiency of tropical maize inbred lines,differing in drought tolerance. Plant and Soil,318(1-2):311~325
    Jacobs D F, Salifu K F, Davis A S.2009. Drought susceptibility and recovery of transplanted Quercus rubraseedlings in relation to root system morphology. Annals of forest science,66(5):504~504
    Kü ner R.2003. Mortality patterns of Quercus, Tilia, and Fraxinus germinants in a floodplain forest on theriver Elbe, Germany. Forest Ecology and Management,173(1-3):37~48
    Koenig W D, Mumme R L, Carmen W J, Stanback M T.1994. Acorn production by oaks in central coastalCalifornia: variation within and among years. Ecology,75(1):99~109
    Koutecká E, Lep J.2009. Effect of light and moisture conditions and seed age on germination of threeclosely related Myosotis species. Folia Geobotanica,44(2):109~130
    Kozlowski T.2002. Physiological ecology of natural regeneration of harvested and disturbed forest stands:implications for forest management. Forest Ecology and Management,158(1-3):195~221
    Kwon K W, Pallardy S G.1989. Temporal changes in tissue water relations of seedlings of Quercusacutissima, Q. alba, and Q. stellata subjected to chronic water stress. Canadian Journal of ForestResearch,19(5):622~626
    Kyparissis A, Petropoulou Y, Manetas Y.1995. Summer survival of leaves in a soft~leaved shrub (Phlomisfruticosa L., Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damagethrough decreased chlorophyll contents. Journal of Experimental Botany,46(12):1825~1831
    Levassor C, Ortega M, Peco B.1990. Seed bank dynamics of Mediterranean pastures subjected tomechanical disturbance. Journal of Vegetation Science,1(3):339~344
    Li F L, Bao W K, Wu N.2011. Morphological, anatomical and physiological responses of Campylotropispolyantha(Franch.) Schindl. seedlings to progressive water stress. Scientia Horticulturae,127(3):436~443
    Li F, Bao W, Wu N, You C.2008. Growth, biomass partitioning, and water-use efficiency of a leguminousshrub (Bauhinia faberi var. microphylla) in response to various water availabilities. New Forests,36(1):53~65
    Li Q, Ma K.2003. Factors affecting establishment of Quercus liaotungensis Koidz. under mature mixedoak forest overstory and in shrubland. Forest Ecology and Management,176(1-3):133~146
    Lima A L S, DaMatta F M, Pinheiro H A, Totola M R, Loureiro M E.2002. Photochemical responses andoxidative stress in two clones of Coffea canephora under water deficit conditions. Environmentaland Experimental Botany,47(3):239~247
    Liu B, Cheng L, Ma F, Zou Y, Liang D.2012. Growth, biomass allocation, and water use efficiency of31apple cultivars grown under two water regimes. Agroforestry systems,84(2):117~129
    Liu C, Liu Y, Guo K, Fan D, Li G, Zheng Y, Yu L, Yang R.2011. Effect of drought on pigments, osmoticadjustment and antioxidant enzymes in six woody plant species in karst habitats of southwesternChina. Environmental and Experimental Botany,71(2):174~183
    Liu G, Mao P, Wang Y, Han J.2008. Effects of adult neighbour and gap size on seedling emergence andearly growth of Bromus inermis Leyss. Ecological research23(1):197~205
    Majdi H, Andersson P.2005. Fine root production and turnover in a Norway spruce stand in northernSweden: effects of nitrogen and water manipulation. Ecosystems8(2):191~199
    Meinen C, Hertel D, Leuschner C.2009. Biomass and morphology of fine roots in temperate broad~leavedforests differing in tree species diversity: is there evidence of below~ground overyielding?Oecologia,161(1):99~111
    Michel B E, Kaufmann M R.1973. The osmotic potential of polyethylene glycol6000. Plant physiology,51(5):914~916
    Midgley G F, Aranibar J N, Mantlana K B, Macko S.2004. Photosynthetic and gas exchange characteristicsof dominant woody plants on a moisture gradient in an African savanna. Global Change Biology,10(3):309~317
    Nadelhoffer K J.2000. The potential effects of nitrogen deposition on fine‐root production in forestecosystems. New Phytologist,147(1):131~139
    Nardini A, Salleo S, Gullo M L, Pitt F.2000. Different responses to drought and freeze stress of Quercusilex L. growing along a latitudinal gradient. Plant Ecology,148(2):139~147
    Negi A, Negi G, Singh S.1996. Establishment and growth of Quercus floribunda seedlings after a mastyear. Journal of Vegetation Science,7(4):559~564
    Noctor G, Foyer C H.1998. Ascorbate and glutathione: keeping active oxygen under control. Annualreview of plant biology,49:249~279
    Ogbonnaya C, Nwalozie M, Roy Macauley H, Annerose D.1998. Growth and water relations of Kenaf(Hibiscus cannabinus L.) under water deficit on a sandy soil. Industrial Crops and Products,8(1):65~76
    Owen P.1952. The relation of germination of wheat to water potential. Journal of Experimental Botany,3(2):188~203
    Pardos M, Dolores Jiménez M, Aranda I, Puértolas J, Pardos J. A.2005. Water relations of cork oak(Quercus suber L.) seedlings in response to shading and moderate drought. Annals of forest science,62(5):377~384
    Patakas A, Nikolaou N, Zioziou E, Radoglou K, Noitsakis B.2002. The role of organic solute and ionaccumulation in osmotic adjustment in drought-stressed grapevines. Plant Science,163(2):361~367
    Patakas A, Noitsakis B.1999. Osmotic adjustment and partitioning of turgor responses to drought ingrapevines leaves. American journal of enology and viticulture,50(1):76~80
    Pierret A, Doussan C, Capowiez Y, Bastardie F, Pagès L.2007. Root functional architecture: a frameworkfor modeling the interplay between roots and soil. Vadose Zone Journal,6(2):269~281
    Ponton S, Dupouey J L, Bréda N, Dreyer E.2002. Comparison of water~use efficiency of seedlings fromtwo sympatric oak species: genotype×environment interactions. Tree Physiology,22(6):413~422
    Pregitzer K S, DeForest J L, Burton A J, Allen M F, Ruess R W, Hendrick R L.2002. Fine root architectureof nine North American trees. Ecological Monographs,72(2):293~309
    Pugnaire F I, Lázaro R.2000. Seed bank and understorey species composition in a semi-arid environment:the effect of shrub age and rainfall. Annals of botany,86(4):807~813
    Ramachandra Reddy A, Chaitanya K, Jutur P, Sumithra K.2004. Differential antioxidative responses towater stress among five mulberry (Morus alba L.) cultivars. Environmental and ExperimentalBotany,52(1):33~42
    Ranney T G, Bassuk N L, Whitlow T H.1991. Osmotic adjustment and solute constituents in leaves androots of water-stressed cherry (Prunus) trees. Journal of the American Society for HorticulturalScience,116(4):684~688
    Rodrigues M, Chaves M, Wendler R, David M, Quick W, Leegood R, Stitt M, Pereira J.1993. Osmoticadjustment in water stressed grapevine leaves in relation to carbon assimilation. Functional PlantBiology,20(3):309~321
    Sánchez Coronado M E, Coates R, Castro Colina L, de Buen A G, Paez Valencia J, Barradas V L, Huante P,Orozco Segovia A.2007. Improving seed germination and seedling growth of Omphaleaoleifera(Euphorbiaceae) for restoration projects in tropical rain forests. Forest Ecology andManagement,243(1):144~155
    Sánchez F, De Andres E, Tenorio J, Ayerbe L.2004. Growth of epicotyls, turgor maintenance and osmoticadjustment in pea plants (Pisum sativum L.) subjected to water stress. Field crops research,86(1):81~90
    Schupp E W, Fuentes M.1995. Spatial patterns of seed dispersal and the unification of plant populationecology. Ecoscience,2:267~275
    Schwanz P, Picon C, Vivin P, Dreyer E, Guehl J M, Polle A.1996. Responses of antioxidative systems todrought stress in pendunculate oak and maritime pine as modulated by elevated CO2. Plantphysiology,110(2):393~402
    Scott S, Jones R, Williams W.1984. Review of data analysis methods for seed germination. Crop Science24(6):1192~1199
    Silva E N, Ferreira Silva S, Viégas R A, Silveira J A G.2010. The role of organic and inorganic solutes inthe osmotic adjustment of drought-stressed Jatropha curcas plants. Environmental andExperimental Botany,69(3):279~285
    Silvertown J W.1980. The evolutionary ecology of mast seedling in trees. Journal of the Linnean Soeiety,14(2):235~250
    Singh B, Singh G.2006. Effects of controlled irrigation on water potential, nitrogen uptake and biomassproduction in Dalbergia sissoo seedlings. Environmental and Experimental Botany,55(1-2):209~219
    Smith C C, Hamrick J, Kramer C. L.1990. The advantage of mast years for wind pollination. Americannaturalist,136(2):154~166
    Sobrado M.2000. Relation of water transport to leaf gas exchange properties in three mangrove species.Trees,14(5):258~262
    Sork V L, Davis F W, Smouse P E, Apsit V J, Dyer R J, Fernandez J M, Kuhn B.2002. Pollen movement indeclining populations of California Valley oak, Quercus lobata: where have all the fathers gone?Molecular Ecology,11(9):1657~1668
    Spie N, Oufir M, Matu íková I, Stierschneider M, Kopecky D, Homolka A, Burg K, Fluch S, Hausman J F,Wilhelm E.2012. Ecophysiological and transcriptomic responses of oak (Quercus robur) tolong-term drought exposure and rewatering. Environmental and Experimental Botany,77:117~126
    Stoehr M U.2000. Seed production of western larch in seed-tree systems in the southern interior of BritishColumbia. Forest Ecology and Management,130(1-3):7~15
    Streiff, R., A. Ducousso, C. Lexer, H. Steinkellner, J. Gloessl, and A. Kremer.1999. Pollen dispersalinferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea(Matt.)Liebl. Molecular Ecology,8(5):831~841
    Türkan, Bor M, zdemir F, Koca H.2005. Differential responses of lipid peroxidation and antioxidants inthe leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected topolyethylene glycol mediated water stress. Plant Science,168(1):223~231
    Thomas F M, Gausling T.2000. Morphological and physiological responses of oak seedlings (Quercuspetraea and Q. robur) to moderate drought. Annals of forest science,57(4):325~333
    Valbuena L D, Trabaud L.1995. Comparison between the soil seed banks of a burnt and an unburntQuercus pyrenaica Willd. forest. Vegetatio,119(1):81~90
    Van Hees A.1997. Growth and morphology of pedunculate oak (Quercus robur L) and beech (Fagussylvatica L) seedlings in relation to shading and drought. Ann For Sci,54(1):9-18
    Verdaguer D, Vilagran J, Lloansi S, Fleck I.2011. Morphological and physiological acclimation of Quercuscoccifera L. seedlings to water availability and growing medium. New Forests,42(3):363~381
    Voetberg G S, Sharp R. E.1991. Growth of the maize primary root at low water potentials III. Role ofincreased proline deposition in osmotic adjustment. Plant physiology,96(4):1125~1130
    Vonlanthen B, Zhang X, Bruelheide H.2010. On the run for water-Root growth of two phreatophytes in theTaklamakan Desert. Journal of arid environments,74(12):1604~1615
    Weiner J.2004. Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution andSystematics,6(4):207~215
    Welander N, Ottosson B.2000. The influence of low light, drought and fertilization on transpiration andgrowth in young seedlings of Quercus robur L. Forest Ecology and Management,127(1-3):139~151
    Wheeler N C, Guries R P.1982. Population structure, genic diversity, and morphological variation in Pinuscontorta Dougl. Canadian Journal of Forest Research,12(3):595~606
    William M, Healya A M, Emery F B.1998. Variation of red oak acorn production. Forest Ecology andManagement,116:1~11
    Willson M F.1983. Plant reproductive ecology. John Wiley&Sons
    Wise R R, Naylor A W.1987. Chilling~enhanced photooxidation evidence for the role of singlet oxygenand superoxide in the breakdown of pigments and endogenous antioxidants. Plant physiology,83(2):278~282
    Wu F, Bao W, Li F, Wu N.2008a. Effects of drought stress and N supply on the growth, biomasspartitioning and water-use efficiency of Sophora davidii seedlings. Environmental andExperimental Botany,63(1-3):248~255
    Wu F, Bao W, Li F, Wu N.2008b. Effects of water stress and nitrogen supply on leaf gas exchange andfluorescence parameters of Sophora davidii seedlings. Photosynthetica,46(1):40~48
    Xu B C, Xu W Z, Huang J, Shan L, Li F M.2011. Biomass allocation, relative competitive ability andwater use efficiency of two dominant species in semiarid Loess Plateau under water stress. PlantScience,181(6):644~651
    Yang Y, Liu Q, Wang G, Wang X, Guo J.2010. Germination, osmotic adjustment, and antioxidant enzymeactivities of gibberellin-pretreated Picea asperata seeds under water stress. New Forests,39(2):231~243
    Yin C, Wang X, Duan B, Luo J, Li C.2005. Early growth, dry matter allocation and water use efficiency oftwo sympatric Populus species as affected by water stress. Environmental and ExperimentalBotany,53(3):315~322
    Zhao B, Kondo M, Maeda M, Ozaki Y, Zhang J.2004. Water-use efficiency and carbon isotopediscrimination in two cultivars of upland rice during different developmental stages under threewater regimes. Plant and Soil,261(1-2):61~75