磁共振功能成像评价恩度在乳腺癌中的抗血管生成及抗肿瘤作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是全世界女性肿瘤相关致死率第二高的恶性肿瘤,以手术切除为主,化疗、内分泌治疗为辅的综合治疗有效的提高了乳腺癌的5年生存率。手术前的新辅助化疗目前已经成为乳腺癌的标准治疗方案,新辅助化疗能降低肿瘤的级别、缩小肿瘤的体积,从而使更多的患者可行手术切除瘤灶,而且肿瘤对新辅助化疗的病理反应可以做为患者预后的指标。但新辅助化疗所使用的细胞毒性化疗药物引起的包括严重的过敏反应、周围神经病变等多种细胞毒副作用在临床应用中经常发生,因此临床上需要寻找降低新辅助化疗的细胞毒性药物剂量、提高新辅助化疗疗效的途经。
     自上世纪七十年代Folkman研究发现实体肿瘤包括乳腺癌必须建立新生血管网以获得生长和转移所需的营养,抗血管生成逐渐成为临床新兴的一种肿瘤治疗方法。而血管内皮抑素是一种内源性广谱血管生成抑制因子,能特异性的抑制内皮细胞增殖、迁移,从而抑制血管生成并抑制肿瘤生长。恩度(endostar)是重组人血管内皮抑制素注射液(recombinant humanendostatin injection, rh-endostatin),中国研究人员罗永章等在原始内皮抑素序列N端基础上添加了9个氨基酸,创造性解决了重组生产内皮抑素中蛋白质复性问题,并且通过大量实验研究证明了这一结构的改变并没有改变内皮抑素的生物效应。恩度已于2005年被中国国家药品食品监督局批准用于恶性肿瘤的治疗。恩度联合化疗治疗多种晚期肿瘤取得较好疗效已见较多报道,但在乳腺癌治疗中的应用尚未有相关报道。
     在本II期临床实验中,课题组使用恩度联合新辅助化疗治疗进展期乳腺癌病例,并使用磁共振成像技术观察在接受恩度联合新辅助化疗后乳腺癌的影像学变化,以研究恩度能否在乳腺癌中发挥其抗血管生成作用、恩度能否提高新辅助化疗的抗肿瘤效应,以及磁共振功能成像评价恩度联合新辅助化疗的抗血管生成作用与抗肿瘤作用的可行性。
     实验一MRI扩散加权成像评价恩度在乳腺癌中的抗血管生成与抗肿瘤作用
     目的:探讨MRI扩散加权成像评价恩度在乳腺癌中的抗血管生成与抗肿瘤作用的应用价值。方法:选取2008年3月~2010年8月60例乳腺癌作为研究对象,随机分为实验组与对照组,分别接受恩度联合新辅助化疗、单独新辅助化疗治疗3个周期,分别在治疗前、后使用SIEMENS公司MAGNETOM Trio Tim3.0T超导型磁共振进行扫描,成像方法包括常规SE序列和扩散加权成像,治疗结束后一周内行手术切除病灶或者乳腺癌改良根治术。比较两组病例治疗后瘤灶扩散加权成像的影像学改变,并将影像学结果与手术病理结果相对照。结果:根据肿瘤治疗组织反应标准,实验组即恩度联合新辅助化疗组治疗后组织学反应评分4级以上的为23例,而对照组即新辅助化疗组则仅为18例,实验组高于对照组。组织学显著反应率为77%,高于对照组的60%的反应率。治疗后两组病例的肿瘤MVD分别为(3.7±1.7)、(5.1±2.8),两者之间的差异具有统计学意义(P<0.05)。两组在治疗前ADC值无显著性差异(P=0.86),治疗后恩度组ADC值为(1.83±0.17)×10-3(mm2/s),较治疗前上升了42%(P<0.05)。而新辅助化疗组ADC值为(1.66±0.24)×10-3(mm2/s),较治疗前上升了39%(P<0.05)。治疗后恩度组ADC值上升了(0.62±0.21)×10-3(mm2/s),而新辅助化疗组ADC值上升了(0.47±0.15)×10-3(mm2/s),两者之间无显著性差异(P=0.45)。
     实验二MRI动态增强扫描评价恩度在乳腺癌中的抗血管生成与抗肿瘤作用
     目的:探讨MRI动态增强扫描评价恩度在乳腺癌中的抗血管生成与抗肿瘤作用的应用价值。方法:研究对象与治疗方案与实验一相同,分别在治疗前、后使用SIEMENS公司MAGNETOM Trio Tim3.0T超导型磁共振进行扫描,在常规成像的基础上进行动态增强扫描。并引入T1-FCM药物动力学模型,对动态增强的时间信号曲线进行定量分析,对比两组病例治疗前后瘤灶相应指标的变化,并将动态增强扫描结果与病理结果对照。结果:治疗前实验组与对照组之间的最大强化率ER无差异,治疗后两组病灶的信号强化率均下降,但实验组的ER为(0.93±0.35),低于对照组的(1.02±0.29)(P<0.05),治疗前后的ER降低量治疗组大于对照组(P<0.05)。且治疗后实验组的TIC曲线更加平滑,高度较对照组低,实验组的治疗后的最大线性斜率仅为(21.3±9.5),低于对照组的(34.0±7.3)(P<0.05)。反应肿瘤的血管通透性指标Ktrans在治疗后两组均较治疗前下降(P <0.05),实验组下降了(0.32±0.11)ml/min/100cm3,对照组下降了(0.14±0.08)ml/min/100cm3,实验组高于对照组(P<0.05)。两组肿瘤的血管外细胞外间隙Ve在治疗后均较治疗前缩小(P<0.05),但实验组缩小了(0.40±0.14),而对照组仅缩小(0.19±0.12),两者之间差异具有统计学意义(P<0.05)。
     结论:
     1、新辅助化疗的多西他赛、吡柔比星化疗药物通过细胞毒性作用的抑制肿瘤生长的同时也能抑制肿瘤血管内皮细胞的增生,使乳腺癌瘤灶体积缩小,肿瘤的微血管密度降低。
     2、恩度能抑制乳腺癌的血管生成,间接导致肿瘤休眠或退缩。与新辅助化疗联合治疗乳腺癌能增强新辅助化疗的抗肿瘤作用,加剧肿瘤的退缩。
     3、磁共振成像的多参数、任意角度成像在乳腺癌的诊断中能精确定位、准确定性,并且能观察恩度联合新辅助化疗治疗乳腺癌后肿瘤体积等形态学改变。DWI成像更能在肿瘤治疗发生形态学改变之前检测出瘤灶内细胞外水分子扩散运动、肿瘤的微循环灌注等肿瘤微环境的改变。能够更加早期准确的评价肿瘤对于治疗的反应,但对于恩度在乳腺癌中的抗血管作用的观察能力有限。
     4、DCE-MRI通过临床常用的对比剂与图像后处理获得的数据进行半定量分析,其最大强化率与最大线性斜率的改变与肿瘤治疗后的体积改变、肿瘤的MVD一致,能反映出恩度在乳腺癌中的抗血管作用与抗肿瘤作用。
     5、通过引入合适的药物动力学模型,对DCE-MRI所获得的数据定量分析,可以获得反应血管通透性的指标传输常数(Ktrans)和反应肿瘤内的渗漏空间的指标血管外细胞外间隙(Ve)。恩度、新辅助化疗后的乳腺癌瘤灶的Ktrans、Ve与肿瘤的MVD具有相关性,两者之间的改变具有一致性。说明DCE-MRI可以作为抗血管生成治疗药物的疗效评价手段,Ktrans与Ve可以作为肿瘤微血管密度、血管通透性的代替生物标志。
The use of neoadjuvant chemotherapy (NAC) has become the standardtreatment of breast cancer, especially locally advanced breast cancer. NAC maydownstage the tumor, decrease tumor size and render the tumor resectable. Inaddition, the pathological response of primary breast cancers to NAC is asurrogate biomarker for patient outcome; a major impact on survival is onlyobserved in the patients who achieve a pathologically complete response aftersurgery. So lots of explorations have been done by previous researchers toimprove the CR ratio of neoadjuvant chemotherapy.
     Antiangiogenesis targeting turmor became a novel frontier for the treatmentof malignant disease since1971when Judah Folkman hypothesized that tumorgrowth is angiogenesis dependent. Cell experiments and animal models havemanifested the antiangiogenic and antitumor effect of dozens of antiangiogenicagents such as avastin. Since reported for the first time in1997, Endostatin, a20 kDa C-terminal fragment of collagen XVIII, has been known as a broadspectrum antiangiogenic agent to inhibit vascular endothelial cell proliferationspecifically, thereby inhibiting endothelial cell proliferation, migration,angiogenesis and tumor growth. It has been demonstrated to be effective indifferent tumor models including breast cancer in vivo. endostar, a recombinanthuman Endostatin, was approved by the state food and drug administration ofChina. And it was proved to be at least twice as potent as endostatin in animaltumor models by Judah Folkman. It is hypothesized in our study that endostarcan exert antiangeiogenetic effect in local advanced breast tumor.
     To assess the tumour vascularity is a logical approach to evaluate the effectof angiogenesis inhibitors. Measurement of microvessel density (MVD) ontissue samples is the current gold standard technique to determine tumourvascularity. However, it is an invasive method and unsuitable for serialmeasurements. Dynamic contrast-enhanced MRI(DCE-MRI) has been proved tobe a noninvasive imaging technique that can be used to derive microcirculationproperties that mark tumour angiogenesis. Moreover, DCE-MRI can provideinformation on whole tumour volumes while MVD only assess focal regionswhereas tumour vasculature is heterogeneous. Implying a pharmacokinetictwo-compartment analysis, DCE-MRI can yield parameters, the tumor transfercoefficient (Ktrans) and the extravascular extracellulor volume (Ve), which can beused to evaluate microvascular density in tumour and the permeability of thevascular.
     Using endostar to treat patient with local advanced breast cancer in clinichas not been performed yet, though there were reports about treating patientswith endostar in NSCLC and other cases. Therefore in the context of a phase IItrial, we prospectively treated patients with local advanced breast cancer usingendostar combined with neochemothrapy, and used DCE-MRI to evaluate the Ktransand Ve of the tumour. The aim of our study is to determine whetherendostar can exert its ant-angiogenesis effect and synergy anti-tumour effect ofNAC in local advanced breast cancer, and investigate the feasibility offunctional MRI to evaluate the anti-angiogenesis effect and anti-tumour effect ofendostar.
     Experimental Ⅰ: Application of DWI in valuating anti-angiogenesisand anti-tumor effect of endostar in breast cancer
     Objective: To evaluate the application of DWI in valuating anti-angiogenesisand anti-tumor effect of endostar in breast cancer. Methods: From March2008to August2010,60cases of breast cancer were enrolled in as research subjectsand randomly divided into experimental and control group. These two groupswere treated with endostar combined with neoadjuvant chemotherapy andneoadjuvant chemotherapy for3cycles respectively. We scanned all patientswith MAGNETOM Trio Tim3.0T scanning system from SIEMENS companybefore and after the treatment. Imaging methods included conventional SEsequence and diffusion-weighted imaging. All patients received surgicalresection of lesions or modified radical mastectomy in one week after the end oftreatment. Afterward we compared two groups of patients’ diffusion-weightedimaging of tumors, and contrast imaging results with the pathological results.Results: According to tissue response to cancer therapy standard,23cases’histological response scored more than grade4in the experimental group, whileonly18cases in the control group scored beyond grade4. Major histologicalresponse rate was77%in the experimental group, significantly higher thanmajor histological response rate in the control group. After treatment, the MVDof tumor were (3.7±1.7) in the experiment group, and (5.1±2.8) in the controlgroup. The difference between these two groups was statistically significant(P<0.05). ADC values of the two groups before treatment had no significantdifference (P=0.86). After treatment, ADC values in the experiment group were (1.83±0.17)×10-3(mm2/s), increased by42%(P<0.05). ADC value in thecontol group were (1.66±0.24)×10-3(mm2/s), increased by39%. IncreasedADC value in the experiment group was (0.62±0.21)×10-3(mm2/s), and theincreased ADC value in the control was (0.47±0.15)×10-3(mm2/s), and therewas no significant difference between them (P=0.45).
     Experimental Ⅱ: Application of DCE-MRI in valuatinganti-angiogenesis and anti-tumor effect of endostar in breast cancer
     Objective: To evaluate the application of dynamic contrast-enhanced MRI inevaluating the anti-angiogenesis and anti-tumor effect of endostar in breastcancer. Methods: The patients and therapy regime were same as in experimentⅠ. All patients underwent MRI examination before and after treatment usingMAGNETOM Trio Tim3.0T superconductive MRI scanning system from theSIEMENS company. Dynamic contrast enhanced magnetic resonance imagingwas administered with Gd-DTPA on the basis of conventional imaging. T1-FCMpharmacokinetic model was introduced to make quantitative analysis of the timesignal enhancement curve. We compared the changes of tumors in the twogroups after treatment and compared dynamic enhanced MRI results withpathologic findings. Results: There was no difference in maximumenhancement rates between the experimental group and control group prior totreatment. ER in both groups declined after treatment, but ER in theexperimental group was (0.93±0.35), lower than the control group (P<0.05).Decrease of ER after treatment in the treatment group was significantly biggerthan the control group (P<0.05). After treatment, TIC curve in the experimentalgroup was more smooth, and lower than that in the control group. The maximumlinear slope in the experimental group after treatment was only (21.3±9.5),significantly lower than that in the control group (34.0±7.3)(P <0.05). Ktranswhich reflected vascular permeability of tumor after treatment was lower than that before in both groups (P<0.05). The experimental group decreased by(0.32±0.11)ml/min/100cm3, and the control group decreased by(0.14±0.08)ml/min/100cm3. The decrease in the experimental groupsignificantly was higher (P<0.05). Ve which reflected tumor extravascularextracellular space reduced after treatment (P<0.05), but the experimental groupreduced by (0.40±0.14), while the control group reduced (0.19±0.12), and thedifference was statistically significant (P<0.05).
     Conclusion:
     1. Because of cytotoxicity of the docetaxel and pirarubicin, neoadjuvantchemotherapy can reduce the volume of tumors of breast cancer, and decreasetumor microvessel density as well.
     2. Endostar inhibit angiogenesis and tumor growth by regulating vascularendothelial growth factor expression and activity of proteolytic enzymes andplay a multi-target anti-angiogenic effect resulting in hypoxic tumor cells,indirectly lead to tumor dormancy or withdrawal. And it can can enhance theantitumor effect when used together with neoadjuvant chemotherapy intreatment breast cancer.
     3. Magnetic resonance imaging which has the advantage of multi-parameter,arbitrary angle imaging has been proved to be useful in diagnoing breast cancerand monitoring the morphology change of the tumor after treatment. DWIimaging can detect the changes of the excellular water molecule diffusion withinthe cell, tumor microcirculation and other changes in the tumormicroenvironment prior to morphological changes occurred in the tumor aftertreatment. But it has limited capacity of observing anti-angiogenic effect ofendostatin in breast cancer.
     4. Semi-quantitative analysis of the DCE-MRI data can yield parameters including the maximum enhancement rate and the maximum linear slope ofchange and change in tumor volume after treatment. These parameters wereconsistent with tumor MVD, and can reflect antitumor effect and anti-angiogenesis effect of the endostar in breast cancer.
     5. By introducing a suitable pharmacokinetic model, We can get parametersincluding Ktransand Ve which can reflect the permeability of the vascular in thetumor through quantitative analyzing the DCE-MRI data. The changes of Ktransand Ve are consistent with MVD. So DCE-MRI can be used as anti-angiogenesistherapy efficacy evaluation tools. Moreover Ktransand Ve can be used assurrogate biomarkers for tumor microvessel density, vascular permeability.
引文
1. Schuetz F. Adjuvant Systemic Therapy of Breast Cancer[J]. Breast Care(Basel),2011,6(3):179-183.
    2. Sautter-Bihl ML, Souchon R, Gerber B. Adjuvant therapy for women overage65with breast cancer[J]. Dtsch Arztebl Int,2011,108(21):365-371.
    3. Santinelli A, De Nictolis M, Mambelli V, Ranaldi R, Bearzi I, Battellpi N,Mariotti C, Fabbietti L, Baldassarre S, Giuseppetti GM, Fabris G. Breastcancer and primary systemic therapy. Results of the Consensus Meeting onthe recommendations for pathological examination and histological reportof breast cancer specimens in the Marche Region[J]. Pathologica,2011,103(5):294-298.
    4. Takei H, Kurosumi M, Yoshida T, Hayashi Y, Higuchi T, Uchida S,Ninomiya J, Oba H, Inoue K, Nagai S, Tabei T. Neoadjuvant endocrinetherapy of breast cancer: which patients would benefit and what are theadvantages?[J]. Breast Cancer,2011,18(2):85-91.
    5. Nicolussi AC, Sawada NO.[Quality of life of breast cancer patients inadjuvant therapy][J]. Rev Gaucha Enferm,2011,32(4):759-766.
    6. Wheatley-Price P, Shepherd FA. Targeting angiogenesis in the treatment oflung cancer[J]. J Thorac Oncol,2008,3(10):1173-1184.
    7. Rhee J, Hoff PM. Angiogenesis inhibitors in the treatment of cancer[J].Expert Opin Pharmacother,2005,6(10):1701-1711.
    8. Lenz HJ. Antiangiogenic agents in cancer therapy[J]. Oncology (WillistonPark),2005,19(4Suppl3):17-25.
    9. Jackson EF, Barboriak DP, Bidaut LM, Meyer CR. Magnetic resonanceassessment of response to therapy: tumor change measurement, truth dataand error sources[J]. Transl Oncol,2009,2(4):211-215.
    10. Cyran CC, Sennino B, Chaopathomkul B, Fu Y, Rogut V, Shames DM,Wendland MF, McDonald DM, Brasch RC. Magnetic resonance imagingassays for dimethyl sulfoxide effect on cancer vasculature[J]. Invest Radiol,2008,43(5):298-305.
    11. Raatschen HJ, Simon GH, Fu Y, Sennino B, Shames DM, Wendland MF,McDonald DM, Brasch RC. Vascular permeability during antiangiogenesistreatment: MR imaging assay results as biomarker for subsequent tumorgrowth in rats[J]. Radiology,2008,247(2):391-399.
    12. Bossung V, Harbeck N. Angiogenesis inhibitors in the management ofbreast cancer[J]. Curr Opin Obstet Gynecol,2010,22(1):79-86.
    13. Yao L, Liu F, Hong L, Sun L, Liang S, Wu K, Fan D. The function andmechanism of COX-2in angiogenesis of gastric cancer cells[J]. J Exp ClinCancer Res,2011,30:13.
    14. Ribatti D, Crivellato E. Mast cells, angiogenesis and cancer[J]. Adv ExpMed Biol,2011,716:270-288.
    15. You WK, Sennino B, Williamson CW, Falcon B, Hashizume H, Yao LC,Aftab DT, McDonald DM. VEGF and c-Met blockade amplifyangiogenesis inhibition in pancreatic islet cancer[J]. Cancer Res,2011,71(14):4758-4768.
    16. Lin Z, Liu Y, Sun Y, He X. Expression of Ets-1, Ang-2and maspin inovarian cancer and their role in tumor angiogenesis[J]. J Exp Clin CancerRes,2011,30:31.
    17. Mikalsen LT, Dhakal HP, Bruland OS, Nesland JM, Olsen DR.Quantification of angiogenesis in breast cancer by automated vesselidentification in CD34immunohistochemical sections[J]. Anticancer Res,2011,31(12):4053-4060.
    18. Rykala J, Przybylowska K, Majsterek I, Pasz-Walczak G, Sygut A, Dziki A,Kruk-Jeromin J. Angiogenesis markers quantification in breast cancer andtheir correlation with clinicopathological prognostic variables[J]. PatholOncol Res,2011,17(4):809-817.
    19. Park Y, Kitahara T, Takagi R, Kato R. Does surgery for breast cancerinduce angiogenesis and thus promote metastasis?[J]. Oncology,2011,81(3-4):199-205.
    20. Napoli C, Giordano A, Casamassimi A, Pentimalli F, Ignarro LJ, De NigrisF. Directed in vivo angiogenesis assay and the study of systemicneoangiogenesis in cancer[J]. Int J Cancer,2011,128(7):1505-1508.
    21. Moncho-Amor V, Ibanez de Caceres I, Bandres E, Martinez-Poveda B,Orgaz JL, Sanchez-Perez I, Zazo S, Rovira A, Albanell J, Jimenez B, RojoF, Belda-Iniesta C, Garcia-Foncillas J, Perona R. DUSP1/MKP1promotesangiogenesis, invasion and metastasis in non-small-cell lung cancer[J].Oncogene,2011,30(6):668-678.
    22. Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z, Zhu B. IL-17isassociated with poor prognosis and promotes angiogenesis via stimulatingVEGF production of cancer cells in colorectal carcinoma[J]. BiochemBiophys Res Commun,2011,407(2):348-354.
    23. Kumar B, Chile SA, Ray KB, Reddy GE, Addepalli MK, Kumar AS,Ramana V, Rajagopal V. VEGF-C differentially regulates VEGF-Aexpression in ocular and cancer cells; promotes angiogenesis via RhoAmediated pathway[J]. Angiogenesis,2011,14(3):371-380.
    24. Kelly-Spratt KS, Pitteri SJ, Gurley KE, Liggitt D, Chin A, Kennedy J,Wong CH, Zhang Q, Buson TB, Wang H, Hanash SM, Kemp CJ. Plasmaproteome profiles associated with inflammation, angiogenesis, andcancer[J]. PLoS One,2011,6(5): e19721.
    25. Kim YH, Kim MA, Park IA, Park WY, Kim JW, Kim SC, Park NH, SongYS, Kang SB. VEGF polymorphisms in early cervical cancer susceptibility,angiogenesis, and survival[J]. Gynecol Oncol,2010,119(2):232-236.
    26. Zhang K, Hu S, Wu J, Chen L, Lu J, Wang X, Liu X, Zhou B, Yen Y.Overexpression of RRM2decreases thrombspondin-1and increases VEGFproduction in human cancer cells in vitro and in vivo: implication ofRRM2in angiogenesis[J]. Mol Cancer,2009,8:11.
    27. Vona-Davis L, Rose DP. Angiogenesis, adipokines and breast cancer[J].Cytokine Growth Factor Rev,2009,20(3):193-201.
    28. Treiber G, Wex T, Malfertheiner P. Impact of different anticancer regimenson biomarkers of angiogenesis in patients with advanced hepatocellularcancer[J]. J Cancer Res Clin Oncol,2009,135(2):271-281.
    29. Seavey MM, Maciag PC, Al-Rawi N, Sewell D, Paterson Y. Ananti-vascular endothelial growth factor receptor2/fetal liver kinase-1Listeria monocytogenes anti-angiogenesis cancer vaccine for the treatmentof primary and metastatic Her-2/neu+breast tumors in a mouse model[J]. JImmunol,2009,182(9):5537-5546.
    30. Sahin M, Sahin E, Gumuslu S. Cyclooxygenase-2in cancer andangiogenesis[J]. Angiology,2009,60(2):242-253.
    31. Kiluk J, Carter WB. Makers of angiogenesis in breast cancer[J]. MLO MedLab Obs,2006,38(8):10,12,16; quiz18-19.
    32. Chen L, Di D, Luo G, Zheng L, Tan Y, Zhang X, Xu N. Immunochemicalstaining of MT2-MMP correlates positively to angiogenesis of humanesophageal cancer[J]. Anticancer Res,2010,30(10):4363-4368.
    33. Faupel-Badger JM, Ginsburg E, Fleming JM, Susser L, Doucet T,Vonderhaar BK.16kDa prolactin reduces angiogenesis, but not growth ofhuman breast cancer tumors in vivo[J]. Horm Cancer,2010,1(2):71-79.
    34. Hwang C, Heath EI. Angiogenesis inhibitors in the treatment of prostatecancer[J]. J Hematol Oncol,2010,3:26.
    35. Kitadai Y. Angiogenesis and lymphangiogenesis of gastric cancer[J]. JOncol,2010,2010:468725.
    36. Lee SM, Baas P, Wakelee H. Anti-angiogenesis drugs in lung cancer[J].Respirology,2010,15(3):387-392.
    37. Medetoglu B, Gunluoglu MZ, Demir A, Melek H, Buyukpinarbasili N,Fener N, Dincer SI. Tumor angiogenesis in predicting the survival ofpatients with stage I lung cancer[J]. J Thorac Cardiovasc Surg,2010,140(5):996-1000.
    38. Yan K, He LJ, Cheng W, Ji ZZ, Zhao BX, Hui XL, Cao SS, Chen B, He L,Liang SH, Miao Y. Inhibiting gastric cancer-associated angiogenesis byCIAPIN1siRNA[J]. Cancer Biol Ther,2009,8(11):1058-1063.
    39. Taylor M, Geoerger B, Lagodny J, Farace F, Vassal G, Rossler J.[Potentialrole of antiangiogenic treatment in neuroblastoma][J]. Arch Pediatr,2009,16(5):457-467.
    40. Kramer I, Lipp HP.[Bevacizumab. Progress in cancer therapy byantiangiogenesis][J]. Med Monatsschr Pharm,2006,29(7):249-254; quiz255-246.
    41. Rohrberg KS, Skov BG, Lassen U, Christensen IJ, Hoyer-Hansen G,Buysschaert I, Pappot H. Markers of angiogenesis and epidermal growthfactor receptor signalling in patients with pancreatic and gastroesophagealjunction cancer[J]. Cancer Biomark,2010,7(3):141-151.
    42. Aragon-Ching JB, Madan RA, Dahut WL. Angiogenesis inhibition inprostate cancer: current uses and future promises[J]. J Oncol,2010,2010:361836.
    43. Blumenschein GR, Jr., Reckamp K, Stephenson GJ, O'Rourke T, Gladish G,McGreivy J, Sun YN, Ye Y, Parson M, Sandler A. Phase1b study ofmotesanib, an oral angiogenesis inhibitor, in combination withcarboplatin/paclitaxel and/or panitumumab for the treatment of advancednon-small cell lung cancer[J]. Clin Cancer Res,2010,16(1):279-290.
    44. Amir S, Golan M, Mabjeesh NJ. Targeted knockdown of SEPT9_v1inhibits tumor growth and angiogenesis of human prostate cancer cellsconcomitant with disruption of hypoxia-inducible factor-1pathway[J]. MolCancer Res,2010,8(5):643-652.
    45. Appelmann I, Liersch R, Kessler T, Mesters RM, Berdel WE.Angiogenesis inhibition in cancer therapy: platelet-derived growth factor(PDGF) and vascular endothelial growth factor (VEGF) and their receptors:biological functions and role in malignancy[J]. Recent Results Cancer Res,2010,180:51-81.
    46. Ling Y, Yang Y, Lu N, You QD, Wang S, Gao Y, Chen Y, Guo QL.Endostar, a novel recombinant human endostatin, exerts antiangiogeniceffect via blocking VEGF-induced tyrosine phosphorylation of KDR/Flk-1of endothelial cells[J]. Biochem Biophys Res Commun,2007,361(1):79-84.
    47. Prager GW, Poettler M. Angiogenesis in cancer. Basic mechanisms andtherapeutic advances[J]. Hamostaseologie,2011,32(2).
    48. Wang TB, Wei XQ, Lin WH, Shi HP, Dong WG. The inhibition ofEndostar on the angiogenesis and growth of gastrointestinal stromal tumorxenograft[J]. Clin Exp Med,2011.
    49. Li XQ, Shang BY, Wang DC, Zhang SH, Wu SY, Zhen YS. Endostar, amodified recombinant human endostatin, exhibits synergistic effects withdexamethasone on angiogenesis and hepatoma growth[J]. Cancer Lett,2011,301(2):212-220.
    50. Wei HM, Qin SK, Yin XJ, Chen YL.[Therapeutic features of endostar, amodified endostatin, on ascites tumor in mice][J]. Nan Fang Yi Ke Da XueXue Bao,2010,30(7):1509-1513.
    51. Lu N, Ling Y, Gao Y, Chen Y, Mu R, Qi Q, Liu W, Zhang H, Gu H, WangS, Yang Y, Guo Q. Endostar suppresses invasion through downregulatingthe expression of matrix metalloproteinase-2/9in MDA-MB-435humanbreast cancer cells[J]. Exp Biol Med (Maywood),2008,233(8):1013-1020.
    52. Wen QL, Meng MB, Yang B, Tu LL, Jia L, Zhou L, Xu Y, Lu Y. Endostar,a recombined humanized endostatin, enhances the radioresponse forhuman nasopharyngeal carcinoma and human lung adenocarcinomaxenografts in mice[J]. Cancer Sci,2009,100(8):1510-1519.
    53. Yang X, Wang D, Zhong Z, Jin F, Shan J, Wang G, Wang Z, Shen Y.[TheComparison of Clinical Effect of Rh-endostar on Retreated Non-Small CellLung Cancer and Colorectal Cancer.][J]. Zhongguo Fei Ai Za Zhi,2009,12(11):1184-1187.
    54. Wu J, Wu L, Xu X, Yin X, Chen Y, Hu Y. Microspheres made by w/o/oemulsion method with reduced initial burst for long-term delivery ofendostar, a novel recombinant human endostatin[J]. J Pharm Sci,2009,98(6):2051-2058.
    55. Ni Q, Ji H, Zhao Z, Fan X, Xu C. Endostar, a modified endostatin inhibitsnon small cell lung cancer cell in vitro invasion throughosteopontin-related mechanism[J]. Eur J Pharmacol,2009,614(1-3):1-6.
    56. Zhao C, Tang L, Yin J, Dai X, Zhou G.[Endostar Combined GC in theTreatment of Advanced Non-small Cell Lung Cancer.][J]. Zhongguo Fei AiZa Zhi,2009,12(5):460-462.
    57. Wu G, Zhang R, Ren J, Sun Y. Autophagic cell death of human hepatomacells induced by endostar, a recombinant human endostatin[J]. CancerBiother Radiopharm,2008,23(6):735-740.
    58. Meng B, Li L, Hua S, Wang Q, Liu C, Xu X, Yin X. Effect ofmedium-chain triglycerides on the release behavior of Endostarencapsulated PLGA microspheres[J]. Int J Pharm,2010,397(1-2):136-143.
    59. You ZY, Zhao Y, Liu F, Zhang YD, Wang JJ. The radiosensitization effectsof Endostar on human lung squamous cancer cells H-520[J]. Cancer CellInt,2010,10:17.
    60. Li Y, Huang XE, Yan PW, Jiang Y, Xiang J. Efficacy and safety of endostarcombined with chemotherapy in patients with advanced solid tumors[J].Asian Pac J Cancer Prev,2010,11(4):1119-1123.
    61. Xu HX, Huang XE, Qian ZY, Xu X, Li Y, Li CG. Clinical observation ofendostar(R) combined with chemotherapy in advanced colorectal cancerpatients[J]. Asian Pac J Cancer Prev,2011,12(11):3087-3090.
    62. Huber PE, Jenne JW, Rastert R, Simiantonakis I, Sinn HP, Strittmatter HJ,von Fournier D, Wannenmacher MF, Debus J. A new noninvasiveapproach in breast cancer therapy using magnetic resonanceimaging-guided focused ultrasound surgery[J]. Cancer Res,2001,61(23):8441-8447.
    63. Montemurro F, Russo F, Martincich L, Cirillo S, Gatti M, Aglietta M,Regge D. Dynamic contrast enhanced magnetic resonance imaging inmonitoring bone metastases in breast cancer patients receivingbisphosphonates and endocrine therapy[J]. Acta Radiol,2004,45(1):71-74.
    64. Craciunescu OI, Blackwell KL, Jones EL, Macfall JR, Yu D, Vujaskovic Z,Wong TZ, Liotcheva V, Rosen EL, Prosnitz LR, Samulski TV, DewhirstMW. DCE-MRI parameters have potential to predict response of locallyadvanced breast cancer patients to neoadjuvant chemotherapy andhyperthermia: a pilot study[J]. Int J Hyperthermia,2009,25(6):405-415.
    65. Pickles MD, Manton DJ, Lowry M, Turnbull LW. Prognostic value ofpre-treatment DCE-MRI parameters in predicting disease free and overallsurvival for breast cancer patients undergoing neoadjuvantchemotherapy[J]. Eur J Radiol,2009,71(3):498-505.
    66. Johansen R, Jensen LR, Rydland J, Goa PE, Kvistad KA, Bathen TF,Axelson DE, Lundgren S, Gribbestad IS. Predicting survival and earlyclinical response to primary chemotherapy for patients with locallyadvanced breast cancer using DCE-MRI[J]. J Magn Reson Imaging,2009,29(6):1300-1307.
    67. Carter T, Tanner C, Beechey-Newman N, Barratt D, Hawkes D. MRnavigated breast surgery: method and initial clinical experience[J]. MedImage Comput Comput Assist Interv,2008,11(Pt2):356-363.
    68. Yankeelov TE, Lepage M, Chakravarthy A, Broome EE, Niermann KJ,Kelley MC, Meszoely I, Mayer IA, Herman CR, McManus K, Price RR,Gore JC. Integration of quantitative DCE-MRI and ADC mapping tomonitor treatment response in human breast cancer: initial results[J]. MagnReson Imaging,2007,25(1):1-13.
    69. Umeda T, Abe H, Kurumi Y, Naka S, Shiomi H, Hanasawa K, Morikawa S,Tani T. Magnetic resonance-guided percutaneous microwave coagulationtherapy for liver metastases of breast cancer in a case[J]. Breast Cancer,2005,12(4):317-321.
    70. Wei W, Xu C, Wu H. Magnetic iron oxide nanoparticles mediated genetherapy for breast cancer--an in vitro study[J]. J Huazhong Univ SciTechnolog Med Sci,2006,26(6):728-730.
    71. Craciunescu OI, Thrall DE, Vujaskovic Z, Dewhirst MW. Magneticresonance imaging: a potential tool in assessing the addition ofhyperthermia to neoadjuvant therapy in patients with locally advancedbreast cancer[J]. Int J Hyperthermia,2010,26(7):625-637.
    72. Bauerle T, Hilbig H, Bartling S, Kiessling F, Kersten A, Schmitt-Graff A,Kauczor HU, Delorme S, Berger MR. Bevacizumab inhibits breastcancer-induced osteolysis, surrounding soft tissue metastasis, andangiogenesis in rats as visualized by VCT and MRI[J]. Neoplasia,2008,10(5):511-520.
    73. Bauerle T, Semmler W. Imaging response to systemic therapy for bonemetastases[J]. Eur Radiol,2009,19(10):2495-2507.
    74. Turnbull LW. Dynamic contrast-enhanced MRI in the diagnosis andmanagement of breast cancer[J]. NMR Biomed,2009,22(1):28-39.
    75. Nattkemper TW, Wismuller A. Tumor feature visualization withunsupervised learning[J]. Med Image Anal,2005,9(4):344-351.
    76. Semple SI, Staff RT, Heys SD, Redpath TW, Welch AE, Ahearn TS,Hutcheon A, Gilbert FJ. Baseline MRI delivery characteristics predictchange in invasive ductal breast carcinoma PET metabolism as a result ofprimary chemotherapy administration[J]. Ann Oncol,2006,17(9):1393-1398.
    77. Manton DJ, Chaturvedi A, Hubbard A, Lind MJ, Lowry M, Maraveyas A,Pickles MD, Tozer DJ, Turnbull LW. Neoadjuvant chemotherapy in breastcancer: early response prediction with quantitative MR imaging andspectroscopy[J]. Br J Cancer,2006,94(3):427-435.
    78. Pickles MD, Lowry M, Manton DJ, Gibbs P, Turnbull LW. Role ofdynamic contrast enhanced MRI in monitoring early response of locallyadvanced breast cancer to neoadjuvant chemotherapy[J]. Breast CancerRes Treat,2005,91(1):1-10.
    79. Shi J, Sahiner B, Chan HP, Paramagul C, Hadjiiski LM, Helvie M,Chenevert T. Treatment response assessment of breast masses on dynamiccontrast-enhanced magnetic resonance scans using fuzzy c-meansclustering and level set segmentation[J]. Med Phys,2009,36(11):5052-
    5063.
    80. Reynolds AR. Potential relevance of bell-shaped and u-shapeddose-responses for the therapeutic targeting of angiogenesis in cancer[J].Dose Response,2009,8(3):253-284.
    81. Raatschen HJ, Fu Y, Brasch RC, Pietsch H, Shames DM, Yeh BM. In vivomonitoring of angiogenesis inhibitory treatment effects by dynamiccontrast-enhanced computed tomography in a xenograft tumor model[J].Invest Radiol,2009,44(5):265-270.
    82. Kurz KD, Steinhaus D, Klar V, Cohnen M, Wittsack HJ, Saleh A, ModderU, Blondin D. Assessment of three different software systems in theevaluation of dynamic MRI of the breast[J]. Eur J Radiol,2009,69(2):300-307.
    83. Hsu JY, Wakelee HA. Monoclonal antibodies targeting vascularendothelial growth factor: current status and future challenges in cancertherapy[J]. BioDrugs,2009,23(5):289-304.
    84. Feng Y, Emerson L, Jeong EK, Parker DL, Lu ZR. Application of abiodegradable macromolecular contrast agent in dynamiccontrast-enhanced MRI for assessing the efficacy of indocyaninegreen-enhanced photothermal cancer therapy[J]. J Magn Reson Imaging,2009,30(2):401-406.
    85. Baar J, Silverman P, Lyons J, Fu P, Abdul-Karim F, Ziats N, Wasman J,Hartman P, Jesberger J, Dumadag L, Hohler E, Leeming R, Shenk R, ChenH, McCrae K, Dowlati A, Remick SC, Overmoyer B. Avasculature-targeting regimen of preoperative docetaxel with or withoutbevacizumab for locally advanced breast cancer: impact on angiogenicbiomarkers[J]. Clin Cancer Res,2009,15(10):3583-3590.
    86. Zhao D, Richer E, Antich PP, Mason RP. Antivascular effects ofcombretastatin A4phosphate in breast cancer xenograft assessed usingdynamic bioluminescence imaging and confirmed by MRI[J]. Faseb J,2008,22(7):2445-2451.
    87. Kumar P, Rehani MM, Kumar L, Sharma R, Bhatla N, Singh R, SundaramKR. Potential of CT-scan based tumor volume as a response indicator inchemotherapy of advanced epithelial ovarian cancer[J]. Med Sci Monit,2002,8(10): CR667-674.
    88. Werner-Wasik M, Xiao Y, Pequignot E, Curran WJ, Hauck W. Assessmentof lung cancer response after nonoperative therapy: tumor diameter,bidimensional product, and volume. A serial CT scan-based study[J]. Int JRadiat Oncol Biol Phys,2001,51(1):56-61.
    89. Ng VW, Husband JE, Nicolson VM, Minty I, Bamias A. CT evaluation oftreatment response in advanced gastric cancer[J]. Clin Radiol,1996,51(3):215-220.
    90. Wennberg B, Gagliardi G, Sundbom L, Svane G, Lind P. Early response oflung in breast cancer irradiation: radiologic density changes measured byCT and symptomatic radiation pneumonitis[J]. Int J Radiat Oncol BiolPhys,2002,52(5):1196-1206.
    91. Klug C, Keszthelyi D, Ploder O, Sulzbacher I, Voracek M, Wagner A,Millesi W, Kornek G, Kainberger F, Kermer C, Selzer E. Neoadjuvantradiochemotherapy of oral cavity and oropharyngeal cancer: evaluation oftumor response by CT differs from histopathologic response assessment ina significant fraction of patients[J]. Head Neck,2004,26(3):224-231.
    92. Munden RF, Macapinlac HA, Erasmus JJ. Esophageal cancer: the role ofintegrated CT-PET in initial staging and response assessment afterpreoperative therapy[J]. J Thorac Imaging,2006,21(2):137-145.
    93. Fischer BM, Mortensen J, Langer SW, Loft A, Berthelsen AK, Daugaard G,Lassen U, Hansen HH. PET/CT imaging in response evaluation of patientswith small cell lung cancer[J]. Lung Cancer,2006,54(1):41-49.
    94. Funaioli C, Pinto C, Di Fabio F, Santini D, Ceccarelli C, De Raffaele E,Fanti S, Castellucci P, Longobardi C, Buggi F, Martoni AA.18FDG-PETevaluation correlates better than CT with pathological response in ametastatic colon cancer patient treated with bevacizumab-based therapy[J].Tumori,2007,93(6):611-615.
    95. Aukema TS, Kappers I, Olmos RA, Codrington HE, van Tinteren H, vanPel R, Klomp HM. Is18F-FDG PET/CT useful for the early prediction ofhistopathologic response to neoadjuvant erlotinib in patients withnon-small cell lung cancer?[J]. J Nucl Med,2010,51(9):1344-1348.
    96. Straver ME, Aukema TS, Olmos RA, Rutgers EJ, Gilhuijs KG, Schot ME,Vogel WV, Peeters MJ. Feasibility of FDG PET/CT to monitor theresponse of axillary lymph node metastases to neoadjuvant chemotherapyin breast cancer patients[J]. Eur J Nucl Med Mol Imaging,2010,37(6):1069-1076.
    97. Grassetto G, Rubello D. Role of FDG-PET/CT in diagnosis, staging,response to treatment, and prognosis of pancreatic cancer[J]. Am J ClinOncol,2011,34(2):111-114.
    98. van Stiphout RG, Lammering G, Buijsen J, Janssen MH, Gambacorta MA,Slagmolen P, Lambrecht M, Rubello D, Gava M, Giordano A, Postma EO,Haustermans K, Capirci C, Valentini V, Lambin P. Development andexternal validation of a predictive model for pathological completeresponse of rectal cancer patients including sequential PET-CT imaging[J].Radiother Oncol,2011,98(1):126-133.
    99. Law A, Peters LJ, Dutu G, Rischin D, Lau E, Drummond E, Corry J. Theutility of PET/CT in staging and assessment of treatment response ofnasopharyngeal cancer[J]. J Med Imaging Radiat Oncol,2011,55(2):199-205.
    100. Minagawa Y, Shizukuishi K, Koike I, Horiuchi C, Watanuki K, Hata M,Omura M, Odagiri K, Tohnai I, Inoue T, Tateishi U. Assessment of tumorhypoxia by62Cu-ATSM PET/CT as a predictor of response in head andneck cancer: a pilot study[J]. Ann Nucl Med,2011,25(5):339-345.
    101. Keam B, Im SA, Koh Y, Han SW, Oh DY, Cho N, Kim JH, Han W, KangKW, Moon WK, Kim TY, Park IA, Noh DY, Chung JK, Bang YJ. Earlymetabolic response using FDG PET/CT and molecular phenotypes ofbreast cancer treated with neoadjuvant chemotherapy[J]. BMC Cancer,2011,11:452.
    102. Ueda S, Tsuda H, Saeki T, Osaki A, Shigekawa T, Ishida J, Tamura K, AbeY, Omata J, Moriya T, Fukatsu K, Yamamoto J. Early reduction instandardized uptake value after one cycle of neoadjuvant chemotherapymeasured by sequential FDG PET/CT is an independent predictor ofpathological response of primary breast cancer[J]. Breast J,2010,16(6):660-662.
    103. Capirci C, Rampin L, Erba PA, Galeotti F, Crepaldi G, Banti E, Gava M,Fanti S, Mariani G, Muzzio PC, Rubello D. Sequential FDG-PET/CTreliably predicts response of locally advanced rectal cancer to neo-adjuvantchemo-radiation therapy[J]. Eur J Nucl Med Mol Imaging,2007,34(10):1583-1593.
    104. McLarty K, Cornelissen B, Cai Z, Scollard DA, Costantini DL, Done SJ,Reilly RM. Micro-SPECT/CT with111In-DTPA-pertuzumab sensitivelydetects trastuzumab-mediated HER2downregulation and tumor responsein athymic mice bearing MDA-MB-361human breast cancer xenografts[J].J Nucl Med,2009,50(8):1340-1348.
    105. Lee HY, Lee KS, Hwang HS, Lee JW, Ahn MJ, Park K, Kim TS, Yi CA,Chung MJ. Molecularly targeted therapy using bevacizumab for non-smallcell lung cancer: a pilot study for the new CT response criteria[J]. Korean JRadiol,2010,11(6):618-626.
    106. Lambrecht M, Deroose C, Roels S, Vandecaveye V, Penninckx F, SagaertX, van Cutsem E, de Keyzer F, Haustermans K. The use of FDG-PET/CTand diffusion-weighted magnetic resonance imaging for responseprediction before, during and after preoperative chemoradiotherapy forrectal cancer[J]. Acta Oncol,2010,49(7):956-963.
    107. Shinya S, Sasaki T, Nakagawa Y, Guiquing Z, Yamamoto F, Yamashita Y.The usefulness of diffusion-weighted imaging (DWI) for the detection ofgastric cancer[J]. Hepatogastroenterology,2007,54(77):1378-1381.
    108. Tamura T, Usui S, Murakami S, Arihiro K, Fujimoto T, Yamada T, Naito K,Akiyama M. Comparisons of multi b-value DWI signal analysis withpathological specimen of breast cancer[J]. Magn Reson Med,2011.
    109. Eiber M, Holzapfel K, Ganter C, Epple K, Metz S, Geinitz H, Kubler H,Gaa J, Rummeny EJ, Beer AJ. Whole-body MRI includingdiffusion-weighted imaging (DWI) for patients with recurring prostatecancer: technical feasibility and assessment of lesion conspicuity inDWI[J]. J Magn Reson Imaging,2011,33(5):1160-1170.
    110. Scherr MK, Seitz M, Muller-Lisse UG, Ingrisch M, Reiser MF,Muller-Lisse UL. MR-perfusion (MRP) and diffusion-weighted imaging(DWI) in prostate cancer: quantitative and model-based gadobenatedimeglumine MRP parameters in detection of prostate cancer[J]. Eur JRadiol,2010,76(3):359-366.
    111. Heusner TA, Kuemmel S, Koeninger A, Hamami ME, Hahn S, Quinsten A,Bockisch A, Forsting M, Lauenstein T, Antoch G, Stahl A. Diagnosticvalue of diffusion-weighted magnetic resonance imaging (DWI) comparedto FDG PET/CT for whole-body breast cancer staging[J]. Eur J Nucl MedMol Imaging,2010,37(6):1077-1086.
    112. Bauerle T, Bartling S, Berger M, Schmitt-Graff A, Hilbig H, Kauczor HU,Delorme S, Kiessling F. Imaging anti-angiogenic treatment response withDCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bonemetastasis[J]. Eur J Radiol,2010,73(2):280-287.
    113. Sharma U, Danishad KK, Seenu V, Jagannathan NR. Longitudinal study ofthe assessment by MRI and diffusion-weighted imaging of tumor responsein patients with locally advanced breast cancer undergoing neoadjuvantchemotherapy[J]. NMR Biomed,2009,22(1):104-113.
    114. Tuncbilek N, Tokatli F, Altaner S, Sezer A, Ture M, Omurlu IK, TemizozO. Prognostic value DCE-MRI parameters in predicting factor disease freesurvival and overall survival for breast cancer patients[J]. Eur J Radiol,2011.
    115. Hirashima Y, Yamada Y, Tateishi U, Kato K, Miyake M, Horita Y, AkiyoshiK, Takashima A, Okita N, Takahari D, Nakajima T, Hamaguchi T, ShimadaY, Shirao K. Pharmacokinetic parameters from3-Tesla DCE-MRI assurrogate biomarkers of antitumor effects of bevacizumab plus FOLFIRI incolorectal cancer with liver metastasis[J]. Int J Cancer,2011.
    116. Ahn SJ, An CS, Koom WS, Song HT, Suh JS. Correlations of3TDCE-MRI quantitative parameters with microvessel density in ahuman-colorectal-cancer xenograft mouse model[J]. Korean J Radiol,2011,12(6):722-730.
    117. Castellani U, Cristiani M, Daducci A, Farace P, Marzola P, Murino V,Sbarbati A. DCE-MRI data analysis for cancer area classification[J].Methods Inf Med,2009,48(3):248-253.
    118. Hara N, Okuizumi M, Koike H, Kawaguchi M, Bilim V. Dynamiccontrast-enhanced magnetic resonance imaging (DCE-MRI) is a usefulmodality for the precise detection and staging of early prostate cancer[J].Prostate,2005,62(2):140-147.
    119. Montemurro F, Martincich L, Sarotto I, Bertotto I, Ponzone R, Cellini L,Redana S, Sismondi P, Aglietta M, Regge D. Relationship betweenDCE-MRI morphological and functional features and histopathologicalcharacteristics of breast cancer[J]. Eur Radiol,2007,17(6):1490-1497.
    120. Planey CR, Welch EB, Xu L, Chakravarthy AB, Gatenby JC, Freehardt D,Mayer I, Meszeoly I, Kelley M, Means-Powell J, Gore JC, Yankeelov TE.Temporal sampling requirements for reference region modeling ofDCE-MRI data in human breast cancer[J]. J Magn Reson Imaging,2009,30(1):121-134.