基于功能核酸与等温信号放大技术的生物传感新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,生物传感技术的发展大大推动了分析化学在生命科学领域中的应用。由于生物传感技术具有灵敏度高、选择性好、成本较低、分析速度快以及能够进行连续监测等优点,在化学、生物、医学、食品、环境、医药等领域有很高的应用价值。为了进一步提高生物传感技术的性能,使其能够得到更广泛的应用,本研究论文综合文献报道,利用功能核酸与细胞、蛋白质、小分子和离子等的特异性的结合能力,并基于核酸分子的等温信号放大技术在提高生物传感方法的检测灵敏度和检测范围方面,以及在简化实验操作,降低成本,实际样品的应用等方面做了一些工作,具体内容分别如下:
     第2章中,构建了一种基于核酸杂交链式反应及酶催化信号放大的电化学适配体传感方法,对干扰素-γ进行了检测。在方法设计中,含有干扰素的核酸适配体序列的识别探针首先与目标蛋白结合,未被结合的识别探针会被捕获到金电极表面,从而启动杂交链式反应。两个分别标记有生物素的发夹型核酸探针将与电极表面的识别探针杂交并且会相互杂交,依次在电极表面打开,形成双链结构。作为报告分子的标记有碱性磷酸酯酶的亲和素与生物素结合后,碱性磷酸酯酶将非电活性物质1-萘磷酸盐转化为具有电活性的1-萘酚,通过电化学方法进行信号放大检测。检测到的电信号与干扰素-γ的浓度呈反向线性相关,该方法具有较高的灵敏度和良好的选择性,其检测范围为0.5-300nM,检测下限为0.3nM。在复杂体系中,该方法也表现出良好的分析性能。
     第3章中,设计了一种基于氧化石墨烯的荧光淬灭功能及核酸外切酶III辅助的核酸等温信号放大技术的信号增强型荧光适配体传感策略,用于溶菌酶的识别检测。该体系中设计了一条含有溶菌酶核酸适配体序列的发夹探针和一条荧光素标记的信号探针。当发夹探针与目标蛋白结合后,其茎-环结构打开,露出的茎端部分可以和信号探针杂交。于是开始启动核酸外切酶III的循环酶切功能,从而将标记在信号探针上的荧光基团释放到溶液中,成为自由状态。再加入氧化石墨烯后,自由的荧光素分子不能吸附在石墨烯表面,荧光信号不会被淬灭。相反,没有目标蛋白时,信号探针吸附到氧化石墨烯表面上,检测不到荧光信号。在溶菌酶浓度从0.125μg/ml到1μg/ml范围内,荧光强度与溶菌酶浓度呈线性关系,检测下限为0.08μg/ml。该方法具有检测灵敏度高,成本低,易操作等优点。
     第4章中,为了实现对癌症疾病的尽早检测和治疗,提出了一种基于RNA聚合酶的等温信号放大荧光检测方法,对乳腺癌细胞进行了检测。该方法利用含有核酸适配体序列的捕获探针去识别和结合细胞表面的癌症标志物,从而在微孔板内形成夹心结构用于目标细胞的固定。随后结合在细胞表面上的含有T7RNA聚合酶单链启动子序列的识别探针与含有另一半单链启动子序列的模板序列杂交,于是形成了能被RNA聚合酶识别的完整双链启动子序列。最后在RNA聚合酶的转录作用下产生大量的单链RNA分子,再嵌入荧光染料后产生增强的荧光信号。我们以MCF-7乳腺癌细胞为模型,利用提出的方法进行了定量分析检测。在5.0×102到5.0×106cells mL-1的浓度范围内,癌细胞的浓度与荧光信号强度呈线性关系,检测下限为5.0×102cells mL-1。该方法利用基于RNA聚合酶的信号放大技术结合核酸适配体的识别功能,在癌细胞检测方面具有较高的灵敏度和良好的选择性,并初步用于实际样品中的分析。
     第5章中,设计了一种基于核酸切刻内切酶的链置换放大荧光传感策略用于磷酸酶活性的检测。该方法以T4PNK酶为模型,设计了一条含有3’端磷酸基团修饰的发夹结构的核酸探针。T4PNK酶的磷酸酶活性能够将该核酸探针的3’端磷酸基团转化成3’端的羟基,之后DNA聚合酶识别此羟基端并进行聚合延伸从而启动核酸切刻内切酶的链置换放大反应。经过不断的循环酶切再聚合延伸进行链置换放大后,产生的大量单链核酸分子与分子信标杂交,将分子信标打开产生荧光信号。通过检测荧光强度的大小达到间接检测磷酸酶活性的目的。当没有磷酸酶作用时,聚合酶和切刻内切酶都不能工作,连置换放大过程就不能发生。该方法操作简单,分析快速并且灵敏度高,检测下限为0.017U/mL。
     第6章中,基于DNA连接反应及核酸分子内的G-四链体结构,设计了一种非标记的荧光探针,对辅酶烟酰胺腺嘌呤二核苷酸(NAD+)进行了高灵敏、高选择性的检测。该体系利用DNA聚合酶进行聚合延伸来控制背景信号,利用荧光染料N-甲基卟啉二丙酸IX(NMM)作为信号报告基团。我们注意到NAD+是DNA连接酶的辅酶,NAD+的存在影响着连接酶是否能起到正常的催化作用。所以本章中设计了一条能够自身形成双发夹二级结构的杠铃形DNA探针,其5’端的环结构由富G序列构成,5’端修饰有磷酸基团,与3’端靠近。当目标NAD+分子存在时,加入E.coli DNA连接酶后使核酸探针的末端连接起来,封闭住3’端。阻止聚合酶的延伸作用,之后在一价离子作用下形成G-四链体结构,嵌入染料后产生增强的荧光信号。而没有目标分子时,连接反应不能发生,聚合延伸作用发生后使核酸探针的5’端部分形成完整的双链结构,没有荧光信号生成。该方法具有良好的选择性和灵敏度,其检测下限为0.5nM。
     第7章中,提出了一种基于“T-Hg2+-T”特异性结合的非标记荧光传感策略分别对谷胱甘肽(GSH)和半胱氨酸(Cys)进行了检测。该方法设计了两条含有T-T错配碱基的互补DNA链,利用汞离子作为中间调控分子,并利用荧光染料NMM作为信号报告基团。当GSH或Cys存在时,目标分子能够特异性地与Hg2+结合,使DNA双链保持原有的自由状态。其中一条较长的含有富G序列的单链DNA在一价离子作用下形成G-四链体结构,之后荧光染料NMM嵌入到此结构中产生增强的荧光信号。而当没有目标分子时,溶液中有Hg2+存在,通过“T-Hg2+-T”特异性结合作用能够形成稳定的DNA双链结构,从而抑制G-四链体结构形成,于是就没有增强的荧光信号。该方法对GSH的线性检测范围是10-400nM,检测下限为9.6nM,对Cys的线性检测范围是10-500nM,检测下限为10nM。
In recent years, the development of biological sensing technology has greatlypromoted the application of analytical chemistry in life science field. Due to manyadvantages such as high sensitivity, good selectivity, low cost, fast analysis speed,continuous on-line monitoring in complex system and so on, the biological sensingtechnology has a high application value in the chemistry, biology, food, environment,medicine and other fields. In order to further improve the performance of thebiological sensing technology, this doctotal thesis uses the specific combining abilityof functional nucleic acid with cells, proteins, small molecules and ions, based onisothermal signal amplification technology of nucleic acid to develop several bioassaysystems for enhancing the detection sensitivity, broadering the assay concentrationrange of biosensors, simplifying experimental operation, and reducing the cost andusing in actual samples. The detailed contents are described as follows.
     (1) In chapter2,a novel electrochemical aptasensor based on hybridization chainreaction (HCR) with enzyme-signal amplification was constructed for the detection ofinterferon-gamma (IFN-γ). In this aptasensor, the recognition probes which containedthe sequence of IFN-γ aptamer were initially binded to IFN-γ, and the unboundrecognition probes were captured on the electrode as an initiator to trigger the HCR.The two DNA hairpins bio-H1and bio-H2were opened by the recognition probe, andbound one by one on the electrode. The biotin was used as a tracer in the hairpins andstreptavidin-alkaline phosphatase (SA-ALP) as a reporter molecule. Then, SA-ALPconverted its electro-inactive substrate1-naphthyl phosphate into an electroactivederivative1-naphthol generating amplified electrochemical signal by differential pulsevoltammetry (DPV). The activity of the immobilized enzyme was voltammetricallydetermined by measuring the amount of1-naphthol generated for enzymaticdephosphorylation of1-naphthyl phosphate. The electrochemical signal observed wasinversely related to the concentration of IFN-γ. The proposed approach showed a highsensitivity for IFN-γ in a concentration range of0.5-300nM with a detection limit of0.3nM. The sensing system also provided satisfactory results for the detection ofIFN-γ in the cell media.
     (2) In chapter3, based on exonuclease III (Exo III) aided amplification andgraphene oxide (GO) platform for fluorescence quenching, a novel, turn-on fluorescent aptasensor for lysozyme (Lys) protein was constructed. The system contains a hairpinprobe (HP) and a signal probe (SP) labeled with carboxylfluorescein (FAM) at its5'end. HP, which consists of the aptamer sequence of Lys, is partially complementary toSP. Lys can bind with the aptamer region of the HP and facilitated the opening of thehairpin structure of HP, exposing a single-stranded sequence to hybridize with SP. Thistriggered the Exo III aided amplification and caused the degradation of SP, whichliberated the free fluorophore labels. Upon the addition of GO, the releasedfluorophore could not be adsorbed and no fluorescence quenching occured, while theintact SPs could be adsorbed on GO surface with the fluorescence substantiallyquenched. The results revealed that the proposed method displayed fluorescenceresponses in a linear correlation to the concentrations of Lys within the range from0.125μg/ml to1μg/ml and the detection limit is0.08μg/ml. Besides such sensitivity,the proposed strategy is also low-cost and simple due to its homogeneous andfluorescence-based detection format.
     (3) Cancer is one of the most serious and lethal diseases around the world. Itsearly detection has become a challenging goal. To address this challenge, in chapter4,we developed a novel sensing platform using aptamer and RNA polymerase-basedamplification for the detection of cancer cells. The assay uses the aptamer as a captureprobe to recognise and bind the tumor marker on the surface of the cancer cells, andform an aptamer-based sandwich structure for collection of the cells in the microplatewells, then it uses SYBR Green II dye as a tracer to produce strong fluorescence signal.The tumor marker interacts first with the recognition probes which were composed ofthe aptamer and single-stranded T7RNA polymerase promoter. Then, the recognitionprobe hybridized with template probes to form a double-stranded T7RNA polymerasepromoter. This dsDNA region is extensively transcribed by T7RNA polymerase toproduce large amounts of RNAs, which are easily monitored using the SYBR Green IIdye and a fluorometer, resulting in the amplification of the fluorescence signal. UsingMCF-7breast cancer cell as the model cell, the present sensing platform showed alinear range from5.0×102to5.0×106cells mL-1with a detection limit of5.0×102cellsmL-1. This work suggested a strategy to use RNA signal amplification combiningaptamer recognition to develop a highly sensitive and selective method for cancer cellsdetection.
     (4) In chapter5, we developed a novel fluorescence assay for DNA phosphataseactivity based on the strand displacement amplification of nicking enzyme. Thismethod took T4polynucleotide kinase phosphatase (PNKP) as the model analyte and aimed at the detection of DNA3'-phosphatase activity. The designed3'-phosphoryl ofhairpin probe could be dephosphorylated by T4PNKP into a3'-hydroxyl end, leadingto the initiation of DNA polymerase extension and triggering the strand displacementamplification of nicking enzyme. The process resulted in many“polymerization-nicking” cycles and displaced plenty of single strand DNA. Afterhybridizing with molecular beacons, the single strand DNA opened the loop struactureof molecular beacons and yielded significant fluorescence signal. The detection ofDNA phosphatase activity can be accomplished by monitoring the fluorescenceintensity change. This proposed assay is convenient, fast and highly sensitive with thelimit of detection of0.17U/mL.
     (5) In chapter6, a simple lable-free fluorescent sensing scheme for sensitive andselective detection of nicotinamide adenine dinucleotide (NAD+) has been developedbased on DNA ligation reaction with ligand-responsive quadruplex formation. Wenoticed that the E. coli ligase specifically employed NAD+as cofactor and its catalyticactivity is cofactor-dependent. We employed Klenow fragment (exo-) which couldsuppress the blank signal and N-methyl mesoporphyrin IX (NMM) as the signalreporter. The DNA probe was designed as a single-strand molecule that formedself-complementary structure at both ends and a quadruplex-forming sequence wasdesigned as the loop close to5’-end. The5’-end was modified with a phosphate groupand the3’-end was exposed. In the presence of E. coli DNA ligase, together with thecofactor NAD+, the ends of DNA probe can be ligated to block the extension reactionfrom the3’-end and ensure the quadruplex-forming sequence reserved. This G-richoligomer fold into a quadruplex structure with monovalent ions. The strong interactionbetween the “activated” quadruplex and NMM, brings about a great fluorescenceenhancement. This approach can detect0.5nM NAD+with high selectivity againstother NAD+analogs.
     (6) In chapter7, we designed a novel lable-free fluorescent strategy for detectionof glutathione (GSH) and cysteine (Cys). The system consisted of two single strandDNA (ssDNA) containing thymine-thymine (T-T) mismatches and used Hg2+as amediator, N-Methyl mesoporphyrin IX (NMM) as the signal reporter. The assay isbased on a competitive reaction of Hg2+by GSH/Cys and by T-Hg2+-T double strandDNA (dsDNA) complexes. In the abcence of target, two ssDNA containing T-Tmismatches react with Hg2+to form a T-Hg2+-T dsDNA structure in the solution, whichhampers the formation of G-quadruplex structure. However, in the presence of target,GSH/Cys react with Hg2+to keep DNA probes in a free single state. This process results in the effective formation of G-quadruplex structure of DNA probe (GP).Subsequently, because of the strong interaction between the “activated” G-quadruplexand NMM, a great fluorescence enhancement was obtained. The concentration rangesof the strategy are10-400nM for GSH detection and10-500nM for Cys detection withthe limit of detection (LOD) of9.6nM for GSH and10nM for Cys.
引文
[1] Wang J, Tian B, Rogers K R. Thick-film electrochemical immunosensor based onstripping potentiometric detection of a metal ion label. Analytical Chemistry,1998,70(9):1682-1685
    [2] Niwa O, Xu Y, Halsall H B, et al. Small-volume voltammetric detection of4-aminophenol with interdigitated array electrodes and its application toelectrochemical enzyme immunoassay. Analytical Chemistry,1993,65(11):1559-1563
    [3] Kaláb T, Skládal P. Disposable multichannel immunosensors for2,4-dichlorophenoxyacetic acid using acetylcholinesterase as an enzyme label.Electroanalysis,1997,9(2):293-297
    [4] Wang J, Chen L, Hocevar S B, et al. One-step electropolymericco-immobilization of glucose oxidase and heparin for amperometric biosensingof glucose. Analyst,2000,125(8):1431-1434
    [5] Hedenmo M, Narváez A, Domínguez E, et al. Improved mediated tyrosinaseamperometric enzyme electrode. Journal of Electroanalytical Chemistry,1997,425(1):1-11
    [6] Vanderlaan M, Watkins B E, Stanker L. Environmental monitoriby immunoassar.Environmental Science and Technology,1998,22(2):247-254
    [7] Clark L C, Lyons C. Electrode systems for continuous monitoring incardiovascular surgey. Annals of the New York Academy of Sciences,1962,102:29-45
    [8] Hicks G P, Updike S J. The preparation and characterization of lyophilizedpolyacrylamide enzyme gels for chemical analysis. Analytical Chemistry,1966,38(6):726–730
    [9] Campanella L, Pacifici F, Sammartino M P, et al. A new organic phasebienzymatic electrode for lecithin analysis in food products. Bioelectrochemistryand Bioenergetics,1998,47(1):25-38
    [10] Oungpipat W, Alexander P W, Southwell-Keely P. A reagentless amperometricbiosensor for hydrogen peroxide determination based on asparagus tissue andferrocene mediation. Analytica Chimica Acta,1995,309(1-3):35-45
    [11] Lee T, Tsuzuki M, Takeuchi T, et al. Quantitative determination of cyanobacteriain mixed phytoplankton assemblages by an in vivo fluorimetric method.Analytica Chimica Acta,1995,302(1):81-87
    [12] Blackburn G F, Talley D B, Booth P M, et al. Potentiometric biosensoremploying catalytic antibodies as the molecular recognition element. AnalyticalChemistry,1990,62(20):2211-2216
    [13] Tombelli S, Mascini M, Braccini L, et al. Coupling of a DNA piezoelectricbiosensor and polymerase chain reaction to detect apolipoprotein Epoly-morphisms. Biosensors and Bioelectronics,2000,15(7-8):363-370
    [14] Ferguson J A, Boles T C, Adams C P, et al. A fiber-optic DNA biosensormicroarray for the analysis of gene expression. Nature Biotechnology,1996,14(13):1681-1684
    [15] Sun X Y, He P G, Liu S H, et al. Immobilization of single-strandeddeoxyribonucleic acid on gold electrode with self-assembled aminoethanethiolmonolayer for DNA electrochemical sensor applications. Talanta,1998,47(2):487-495
    [16] Patolsky F, Katz E, Willner I. Amplified DNA detection by electrogeneratedbiochemiluminescence and by the catalyzed precipitation of an insoluble producton electrodes in the presence of the doxorubicin intercalator. AngewandteChemie International Edition,2002,41(18):3398-3402
    [17] Kelley S O, Barton J K, Jackson N. M, et al. Electrochemistry of methylene bluebound to a DNA-modified electrode. Bioconjugate Chemistry,1997,8(1):31-37
    [18] Kara P, Meric B, Zeytinoglu A, et al. Electrochemical DNA biosensor for thedetection and discrimination of herpes simplex Type I and Type II viruses fromPCR amplified real samples. Analytica Chimica Acta,2004,518(1-2):69-76
    [19] Liu S H, Ye J N, He P G, et al. Voltammetric determination of sequence-specificDNA by electroactive intercalator on graphite electrode. Analytica Chimica Acta,1996,335(3):239-243
    [20] Choi Y S, Lee K S, Park D H. Gene detection using Hoechst33258on a biochip.Current Applied Physics,2006,6(4):777-780
    [21] Millan K M, Mikkelsen S R. Sequence-selective biosensor for DNA based onelectroactive hybridization indicators. Analytical Chemistry,1993,65(17):2317-2323
    [22] Yan F, Erdem A, Meric B, et al. Electrochemical DNA biosensor for thedetection of specific gene related to Microcystis species. ElectrochemistryCommunications,2001,3(5):224-228
    [23] Kong R M, Zhang X B, Zhang L L, et al. An ultrasensitive electrochemical“turn-on” label-free biosensor for Hg2+with AuNP-functionalized reporter DNAas a signal amplifier. Chemical Communications,2009,(37):5633-5635.
    [24] Fan C H, Plaxco K W, Heeger A J. Electrochemical interrogation ofconformational changes as a reagentless method for the sequence-specificdetection of DNA. Proceedings of the National Academy of Sciences of theUnited States of America,2003,100(16):9134-9137
    [25] Liu S J, Nie H G, Jiang J H, et al. Electrochemical sensor for mercury(II) basedon conformational switch mediated by interstrand cooperative coordination.Analytical Chemistry,2009,81(14):5724-5730
    [26] Miranda-Castro R, de-los-Santos-Alvarez P, Lobo-Castanon M J, et al.Hairpin-DNA probe forenzyme-amplified electrochemical detection of legionellapneumophila. Analytical Chemistry,2007,79(11):4050-4055
    [27] de-los-Santos-Alvarez N, Lobo-Castanon M J, Mirando-Ordieres A J, et al.Modified-RNA aptamer-based sensor for competitive impedimetric assay ofneomycin B. Journal of the American Chemical Society,2007,129(13):3808-3809
    [28] So H M, Won K, Kim Y H, et al. Single-walled carbon nanotube biosensorsusing aptamers as molecular recognition elements. Journal of the AmericanChemical Society,2005,127(34):11906-11907
    [29] Zhang P, Chu X, Xu X M, et al. Electrochemical detection of point mutationbased on surface ligation reaction and biometallization. Biosensors andBioelectronics,2008,23(10):1435-1441
    [30] Wu Z, Zhen Z, Jiang J H, et al. Terminal protection of small-molecule-linkedDNA for sensitive electrochemical detection of protein binding via selectivecarbon nanotube assembly. Journal of the American Chemical Society,2009,131(34):12325-12332
    [31] Li J S, Schachermeyer S, Wang Y, et al. Detection of microrna by fluorescenceamplification based on cation-exchange in nanocrystals. Analytical Chemistry,2009,81(23):9723-9729
    [32] Wang J, Xu D, Kawde A-N, et al. Metal nanoparticle-based electrochemicalstripping potentiometric detection of DNA hybridization. Analytical Chemistry,2001,73(22):5576-5581
    [33] Cai H, Wang Y, He P, et al. Electrochemical detection of DNA hybridizationbased on silver-enhanced gold nanoparticle label. Analytica Chimica Acta,2002,469(2):165-172
    [34] Cai H, Shang C, Hsing I M. Sequence-specific electrochemical recognition ofmultiple species using nanoparticle labels. Analytica Chimica Acta,2004,523(1):61-68
    [35] Kerman K, Morita Y, Takamura Y, et al. Modification of Escherichia colisingle-stranded DNA binding protein with gold nanoparticles for electrochemicaldetection of DNA hybridization. Analytica Chimica Acta,2004,510(2):169-174
    [36] Zhang J, Song S P, Zhang L Y, et al. Sequence-specific detection of femtomolarDNA via a chronocoulometric DNA sensor (CDS): Effects ofnanoparticle-mediated amplification and nanoscale control of DNA assembly atelectrodes. Journal of the American Chemical Society,2006,128(26):8575-8580
    [37] Kerman K, Saito M, Morita Y, et al. Electrochemical coding of single-nucleotidepolymorphisms by monobase-modified gold nanoparticles. Analytical Chemistry,2004,76(7):1877-1884
    [38] Ozsoz M, Erdem A, Kerman K, et al. Electrochemical genosensor based oncolloidal gold nanoparticles for the detection of Factor V Leiden mutation usingdisposable pencil graphite electrodes. Analytical Chemistry,2003,75(9):2181-2187
    [39] Gilardi G, Zhou L Q, Hibbert L, et al. Engineering the maltose binding proteinfor reagentless fluorescence sensing. Analytical Chemistry,1994,66(21):3840-3847
    [40] Stojanovic M N, Prada P, Landry D W. Aptamer-based folding fluorescent sensorfor cocaine. Journal of the American Chemical Society,2001,123(21):4928-4931
    [41] Xu W C, Lu Y. Label-free fluorescent aptamer sensor based on regulation ofmalachite green fluorescence. Analytical Chemistry,2010,82(2):574-578
    [42] Wei Q D, Lee M, Yu X B, et al. Development of an open sandwichfluoroimmunoassay based on fluorescence resonance energy transfer. AnalyticalBiochemistry,2006,358(1):31-37
    [43] Breunig M, Lungwitz U, Liebl R, et al. Fluorescence resonance energy transfer:evaluation of the intracellular stability of polyplexes. European Journal ofPharmaceutics and Biopharmaceutics,2006,63(2):156-165
    [44] Martin S F, Neil H A, Samuel D W, et al. A fluorescence resonance energytransfer based protease activity assay and its use to monitor paralog-specificsmall ubiquitin-like modifier processing. Analytical Biochemistry,2007,363(1):83-90
    [45] Allen M D, Zhang J. Subcellular dynamics of protein kinase A activity visualizedby FRET-based reporters. Biochemical and Biophysical ResearchCommunications,2006,348(2):716-721
    [46] Bu P C, Zhuang J, Feng J, et al. Visualization of CD146dimerization and itsregulation in living cells. Biochimica Et Biophysica Acta,2007,1773(4):513-520
    [47] Rega M F, Reed J C, Pellecchia M. Robust lanthanide-based assays for thedetection of anti-apoptotic Bcl-2-family protein antagonists. BioorganicChemistry,2007,35(2):113-120
    [48] Gregan B, Schaefer M, Rosenthal W, et al. Fluorescence resonance energytransfer analysis reveals the existence of endothelin-A and endothelin-B receptorhomodimers. Journal of Cardiovascular Pharmacology,2004,44: S30-S33
    [49] Das P, Mallick A, Purkayastha P, et al. Fluorescence resonance energy transferfrom TX-100to3-acetyl-4-oxo-6,7-dihydro-12H-indolo-[2,3-a]quinolizine inpremicellar and micellar environments. Journal of Molecular Liquids,2007,130(1-3):48-51
    [50] Wu L X, Loudet A, Rola B, et al. Fluorescent cassettes for monitoringthree-component interactions in Vitro and in Living Cells. Journal of theAmerican Chemical society,2009,131(26):9156-9157
    [51] Brustad E M, Lemke E A, Schultz P G, et al. A general and efficient method forthe site-specific dual-labeling of proteins for single molecule fluorescenceresonance energy transfer. Journal of the American Chemical society,2008,130(52):17664-17665
    [52] Bharill S, Chen C, Stevents B, et al. Enhancement of single-moleculefluorescence signals by colloidal silver nanoparticles in studies of proteintranslation. ACS Nano,2011,5(1):399-407
    [53] Gu J Q, Shen J, Sun L D, et al. Resonance energy transfer in steady-state andtime-decay fluoro-immunoassays for lanthanide nanoparticles based on biotinand avidin affinity. Journal of Physical Chemistry C,2008,112(17):6589-6593
    [54] Lao U L, Mulchandani A, Chen W. Simple conjugation and purification ofquantum dot-antibody complexes using a thermally responsive elastin-proteinlscaffold as immunofluoresecent agents. Journal of the American Chemicalsociety,2008,128(46):14756-14757
    [55] Kerman K, Endo T, Tsukamoto M, et al. Quantum dot-based immunosensor forthe detection of prostate-specific antigen using fluorescence microscopy. Talanta,2007,71(4):1494-1499
    [56] Zhang C Y, Yeh H C, Kuroki M T, et al. Single-quantum-dot-based DNAnanosensor. Nature materials,2005,4(1):826-831
    [57] Wigenius J A, Magnusson K, Bjork P, et al. DNA chips with conjugatedpolyelectrolytes in resonance energy transfer mode. Langmuir,2010,26(5):3753-3759
    [58] Peng H, Zhang L J, Kj llman T H M, et al. DNA hybridization detection withblue Luminescent quantum dots and dye-labeled single-stranded DNA. Journalof the American Chemical society,2007,129(11):3048-3049
    [59] Martí A A, Puckett C A, Dyer J, et al. Inorganic organic hybrid luminescentbinary probe for DNA detection based on spin-forbidden resonance energytransfer. Journal of the American Chemical society,2007,129(28):8680-8681
    [60] Green J J, Ying L M, Klenerman D, et al. Kinetics of unfolding the humantelomeric DNA quadruplex using a PNA trap. Journal of the American Chemicalsociety,2003,125(13):3763-3767
    [61] Hicks S, Case J, Jofre A. Conformational diversity of short DNA duplex.Journal of Physical Chemistry B,2010,114(46):15134-15140
    [62] Owicki J C. Fluorescence polarization and anisotropy in high throughputscreening: Perspectives and primer. Journal of Biomolecular Screening,2000,5(5):297-306
    [63] Riechers A, Schmidt J, Konig B, et al. Heterogeneous transition metal-basedfluorescence polarization (HTFP) assay for probing protein interactions.Biotechniques,2009,47(4):837-841
    [64] Tong C L, Hu Z, Wu J M. Interaction between eethylene blue and calf thymusdeoxyribonucleic acid by spectroscopic technologies. Journal of Fluorescence,2010,20(1):261-267
    [65] Cui L, Zou Y, Lin N H, et al. Mass amplifying probe for sensitive fluorescenceanisotropy detection of small molecules in complex biological samples.Analytical Chemistry,2012,84(13):5535-5541
    [66] Tanaka T, Matsunaga T. Fully Automated chemiluminescence immunoassay ofinsulin using antibody-protein a-bacterial magnetic particle complexes.Analytical Chemistry,2000,72(15):3518-3522
    [67] Yakovleva J, Davidsson R, Lobanova A, et al. Microfluidic enzymeimmunoassay using silicon microchip with immobilized antibodies andchemiluminescence detection. Analytical Chemistry,2002,74(13):2994-3004
    [68] Pavlov V, Xiao Y, Gill R, et al. Amplified chemiluminescence surface detectionof dna and telomerase activity using catalytic nucleic acid labels. AnalyticalChemistry,2004,76(7):2152-2156
    [69] Roda A, Pasini P, Mirasoli M, et al. Biotechnological applications ofbioluminescence and chemiluminescence. Trends in Biotechnology,2004,22(6):295-303
    [70] Frundgian V G, Ugarova N N. Bioluminescent determination of total bacterialcontamination of raw milk. Moscow University Chemistry Bulletin,2000,55(6):62–65
    [71] Niza-Ribeiro J, Louza A C, Santos P, et al. Monitoring the microbiologicalquality of raw milk through the use of an ATP bioluminescence method. FoodControl,2000,11(3):209–216
    [72] Samkutty P J, Gough R H, Adkinson R W, et al. Rapid assessment of thebacteriological quality of raw milk using ATP bioluminescence. Journal of FoodProtection,2001,64(2):208–212
    [73] Irina I, Vlasova T. New approach for specific determination of antibiotics by useof luminescent escherichia coli and immune serum. Applied and EnvironmentalMicrobiology,2004,70(2):1245–1248
    [74] Richter M M. Electrochemiluminescence (ECL), Chemical Reviews,2004,104(6):3003-3036.
    [75] Jie G, Liu B, Pan H, et al. CdS nanocrystal-based electrochemiluminescencebiosensor for the detection of low-density lipoprotein by increasing sensitivitywith gold nanoparticle amplification. Analytical Biochemistry,2007,79(15):5574-5581
    [76] Lin X, Zheng L, Gao G, et al. Electrochemiluminescence imaging-basedhigh-throughput screening platform for electrocatalysts used in fuel cells.Analytical Biochemistry,2012,84(18):7700-7707
    [77] Saha K, Agasti S S, Kim C, et al. Gold nanoparticles in chemical and biologicalsensing. Chemical Reviews,2012,112(5):2739-2779.
    [78] Xu W, Xue X J, Li T H, et al. Ultrasensitive and selective colorimetric DNAdetection by nicking endonuclease assisted nanoparticle amplification.Angewandte Chemie International Edition,2008,48(37):6849-6852
    [79] Li W, Liu Z, Lin H, et al. Label-free colorimetric assay for methyltransferaseactivity based on a novel methylation-responsive dnazyme strategy. AnalyticalBiochemistry,2010,82(5):1935-1941
    [80] Wang H Q, Liu W Y, Wu Z, et al. Homogeneous label-free genotyping of singlenucleotide polymorphism using ligation-mediated strand displacementamplification with dnazyme-based chemiluminescence detection. AnalyticalChemistry,2011,83(6):1883-1889
    [81] Zhang J, Wang L H, Pan D, et al. Visual cocaine detection with goldnanoparticles and rationally engineered aptamer structures. Small,2008,4(8):1196-1200
    [82] Li T, Shi L, Wang E, et al. Silver-ion-mediated DNAzyme switch for theultrasensitive and selective colorimetric detection of aqueous Ag+and cysteine.Chemistry-A European Journal,2009,15(14):3347-3350
    [83] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bindspecific ligands. Nature,1990,346(6287):818-822
    [84] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4DNA polymerase. Science,1990,249(4968):505-510
    [85] Silverman S K. In vitro selection, characterization, and application ofdeoxyribozymes that cleave RNA. Nucleic Acids Research,2005,33(19):6151-6163
    [86] Wilson D S, Szostak J W. In vitro selection of functional nucleic acids. AnnualReview of Biochemistry,1999,68:611-647
    [87] Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury (II)in aqueous solutions. Angewandte Chemie International Edition,2004,43(33):4300-4302
    [88] Ono A, Cao S, Togashi H, et al.2008. Specific interactions between silver (I)ions and cytosine-cytosine pairs in DNA duplexes. Chemical Communications,2008,(39):4825-4827
    [89] Guschlbauer W, Chantot J F, Thiele D. Four-stranded nucleic acid structures25years later: from guanosine gels to telomere DNA. Journal of BiomolecularStructure and Dynamics,1990,8(3):491-511
    [90] Smirnov I, Shafer R H. Lead is unusually effective in sequence-specific foldingof DNA. Journal of Molecular Biology,2000,296(1):1-5
    [91] Tyagi S, Bratu D P, Kramer F R. Multicolor molecular beacons for allelediscrimination. Nature Biotechnology,1998,16(1):49-53
    [92] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce uponhybridization. Nature Biotechnology,1996,14(3):303-308
    [93] Tyagi S, Marras S A, Kramer F R. Wavelength-shifting molecular beacons.Nature Biotechnology,2000,18(11):1191-1196
    [94] Song S, Wang L, Li J, et al. Aptamer-based biosensors. Trends in AnalyticalChemistry,2008,27(2):108-117
    [95] Lu Y. New transition-metal-dependent DNAzymes as efficient endonucleases andas selective metal biosensors. Chemistry-A European Journal,2002,8(20):4589-4596
    [96] Jhaveri S D, Kirby R, Conrad R, et al. Designed signaling aptamers thattransduce molecular recognition to changes in fluorescence intensity. Journal ofthe American Chemical Society,2000,122(11):2469-2473
    [97] Navani N K, Li Y. Nucleic acid aptamers and enzymes as sensors. CurrentOpinion in Chemical Biology,2006,10(3):272-281
    [98] O’Sullivan C K. Aptasensors-the future of biosensing?. Analytical andBioanalytical Chemistry,2002,372(1):44-48
    [99] Kruger K, Grabowski P J, Zaug A J, et al. Self-splicing RNA: autoexcision andautocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell,1982,31:147-157
    [100] Guerrier-Takada C, Gardiner K, Marsh T, et al. The RNA moiety of ribonucleaseP is the catalytic subunit of the enzyme. Cell,1983,35:849-857
    [101] Symons, R H. Small catalytic RNAs. Annual Review of Biochemistry,1992,61:641-671
    [102] Cech T R. RNA splicing: three themes with variations. Cell,1983,34:713-716
    [103] Ban N, Nissen P, Hansen J, et al. The complete atomic structure of the largeribosomal subunit at2.4resolution. Science,2000,289(5481):902-921
    [104] Pan T, Uhlenbeck O C. A small metalloribozyme with a two-step mechanism.Nature,1992,358(6387):560-563
    [105] Ekland E H, Szostak J W, Bartel D P. Structurally complex and highly activeRNA ligases derived from random RNA sequences. Science,1995,269(5222):364-370
    [106] Curtis E A, Bartel D P. New catalytic atructures from an existinh ribozyme.Nature Structural and Molecular Biology,2005,12,994-1000
    [107] Ekland E H, Bartel D P. RNA-catalysed RNA polymerization using nucleosidetriphosphates. Nature1996,382:373-376
    [108] Sun L L, Cui Z Y, Gottlieb R L, et al. A selected ribozyme catalyzing diversedipeptide synthesis. Chemistry&Biology,2002,9:619-628
    [109] Tsukiji S, Pattnaik S B, Suga H. Reduction of an aldehyde by aNADH/Zn2+-dependent redox active ribozyme. Journal of the AmericanChemical Society,2004,126(16):5044-5045
    [110] Tsukiji S, Pattnaik S B, Suga H. An alcohol dehydrogenase ribozyme. NatureStructural Biology,2003,10:713-717
    [111] Agresti J J, Kelly B T, Jaschke A, et al. Selection of ribozymes that catalysemultiple-turnover Diels–Alder cycloadditions by using in vitrocompartmentalization. Proceedings of the National Academy of Sciences of theUnited States of America,2005,102(45):16170-16175
    [112] Sengle G, Eisenfuhr A, Arora P S, et al. Novel RNA catalysts for the Michaelreaction. Chemistry&Biology,2001,8:459-473
    [113] Conn M M, Prudent J R, Schultz P G. Porphyrin metalation catalyzed by a smallRNA molecule. Journal of the American Chemical Society,1996,118(29):7012-7013
    [114] Lohse P A, Szostak J W. Ribozyme-catalysed amino-acid transfer reactions.Nature,1996,381:442-444
    [115] Lau M W L, Cadieux K E C, Unrau P J. Isolation of fast purine nucleotidesynthase ribozymes. Journal of the American Chemical Society,2004,126(48):15686-15693
    [116] Willner I, Shlyahovsky B, Zayats M, et al. DNAzymes for sensing,nanobiotechnology and logic gate applications. Chemical Society Reviews,2008,37(6):1153-1165
    [117] Lu Y, Liu J. Smart nanomaterials inspired by biology: dynamic assembly oferror-free nanomaterials in response to multiple chemical and biological stimuli.Accounts of Chemical Research,2007,40(5):315-323
    [118] Navani N K, Li Y. Nucleic acid aptamers and enzymes as sensors. CurrentOpinion in Chemical Biology,2006,10(3):272-281
    [119] Sigel R K O, Pyle A M. Alternative roles for metal ions in enzyme catalysis andthe implications for ribozyme chemistry. Chemical Reviews2007,107(1):97-113
    [120] Lu Y, Liu, J. Functional DNA nanotechnology: emerging applications ofDNAzymes and aptamers. Current Opinion in Biotechnology,2006,17(6):580-588
    [121] Li, J, Lu, Y. A Highly Sensitive and selective catalytic DNA biosensor for leadions. Journal of the American Chemical Society,2000,122(42):10466-1046
    [122] Sando S, Sasaki T, Kanatani K, et al. Amplified nucleic acid sensing usingprogrammed self-cleaving DNAzyme. Journal of the American Chemical Society,2003,125(51):15720-15721
    [123] Shen L, Chen Z, Li Y, et al. Electrochemical DNAzyme sensor for lead based onamplification of DNA-Au bio-bar codes. Analytical Chemistry,2008,80(16):6323-6328
    [124] Lee J H, Wang Z, Liu J, et al. Highly sensitive and selective colorimetric sensorsfor uranyl (UO22+): development and comparison of labeled and label-freeDNAzyme-gold nanoparticle systems. Journal of the American Chemical Society,2008,130(43):14217-14226
    [125] Hermann T, Patel D J. Adaptive recognition by nucleic acid aptamers. Science,2000,287(5454):820-825
    [126] Willner I, Zayats M. Electronic aptamer-based sensors. Angewandte ChemieInternational Edition,2007,46(34):6408-6418
    [127] Elbaz J, Shlyahovsky B, Li D, et al. Parallel analysis of two analytes in solutionsor on surfaces by using a bifunctional aptamer: applications for biosensing andlogic gate operations. ChemBioChem,2008,9(2):232-239
    [128] Citartan M, Gopinath S C B, Tominaga J, et al. Assays for aptamer-basedplatforms. Biosensors and Bioelectronics,2012,34(1):1-11
    [129] Kong R M, Zhang X B, Chen Z, et al. Aptamer-assembled nanomaterials forbiosensing and biomedical applications. Small,2011,7(17):2428-2436
    [130] Ho Y M, D’Souza N, Migliorato P. Electrochemical aptamer-based sandwichassays for the detection of explosives. Analytical Chemistry,2012,84(10):4245-4247
    [131] Chang H, Tang L, Wang Y, et al. Graphene fluorescence resonance energytransfer aptasensor for the thrombin detection. Analytical Chemistry,2010,82(6):2341-2346
    [132] Zhou Z, Du Y, Dong S. Double-strand DNA-templated formation of coppernanoparticles as fluorescent probe for label-free aptamer sensor. AnalyticalChemistry,2011,83(13):5122-5127
    [133] Li M, Zhang J, Suri S, et al. Detection of adenosine triphosphate with an aptamerbiosensor based on surface-enhanced raman scattering. Analytical Chemistry,2012,84(6):2837-2842
    [134] Labib M, Zamay A S, Muharemagic D, et al. Electrochemical sensing ofaptamer-facilitated virus immunoshielding. Analytical Chemistry,2012,84(3):1677-1686
    [135] Wang Z, Lee J H, Lu Y. Highly sensitive “turn–on” fluorescent sensor for Hg2+in aqueoussolution based on structure-switching DNA. ChemicalCommunications,2008,(45):6005-6007
    [136] Zhang L, Li T, Li B, et al. Carbon nanotube–DNA hybrid fluorescent sensor forsensitive and selective detection of mercury(II) ion. Chemical Communications,2010,46(9):1476-1478
    [137] Wen Y, Xing F, He S, et al. A graphene-based fluorescent nanoprobe for silver(I)ions detection by using graphene oxide and a silver-specific oligonucleotide.Chemical Communications,2010,46(15):2596-2598
    [138] Chang C K, Huang C C, Liu C W, et al. Oligonucleotidebased fluorescence probefor sensitive and selective detection of mercury(II) in aqueous solution.Analytical Chemistry,2008,80(10):3716-3721.
    [139] Lin Y H, Tseng W L. Highly sensitive and selective detection of silver ions andsilver nanoparticles in aqueous solution using an oligonucleotide-basedfluorogenic probe. Chemical Communications,2009,(43):6619-6621.
    [140] Chan D S H, Lee H M, Che C M, et al. A selective oligonucleotide-basedluminescent switch-on probe for the detection of nanomolar mercury(II) ion inaqueous solution. Chemical Communications,2009,(48):7479-7481.
    [141] Wang J, Liu B. Highly sensitive and selective detection of Hg2+in aqueoussolution with mercury-specific DNA and Sybr Green. Chemical Communications,2008,(39):4759-4761.
    [142] Zhang X, Li Y, Su H, et al. Highly sensitive and selective detection of Hg2+usingmismatched DNA and a molecular light switch complex in aqueous solution.Biosensors and Bioelectronics,2010,25(6):1338-1343.
    [143] Wu H, Zhu H, Zhuang J, et al. Water-soluble nanocrystals throughdual-interaction ligand. Angewandte Chemie International Edition,2008,47(20):3730-3734
    [144] Wang Y, Yang F, Yang X R. Colorimetric biosensing of mercury(II) ion usingunmodified gold nanoparticle probes and thrombin-binding aptamer. Biosensorsand Bioelectronics,2010,25(8):1994-1998
    [145] Wang H, Wang Y X, Jin J Y, et al. Gold nanoparticlebased colorimetric and'turn-on' fluorescent probe for mercury (II) ions in aqueous solution. AnalyticalChemistry,2008,80(23):9021-9028
    [146] Ye B C, Yin B C. Highly sensitive detection of mercury (II) ions by fluorescencepolarization enhanced by gold nanoparticles. Angewandte Chemie InternationalEdition,2008,47(44):8386-8389
    [147] Jiang Z, Fan Y, Chen M, et al. Resonance scattering spectral detection of traceHg2+using aptamer-modified nanogold as probe and nanocatalyst. AnalyticalChemistry,2009,81(13):5439-5445.
    [148] Li B L, Du Y, Dong S J. DNA based gold nanoparticles colorimetric sensors forsensitive and selective detection of Ag (I) ions. Analytica Chimica Acta,2009,644(1-2):78-82
    [149] Huy G D, Zhang M, Zuo P, et al. Multiplexed analysis of silver(I) and mercury(II)ions using oligonucletide–metal nanoparticle conjugates. Analyst,2011,136(16):3289-3294
    [150] Cai S, Lao K, Lau C, et al.“Turn-on” chemiluminescence sensor for the highlyselective and ultrasensitive detection of Hg2+ions based on interstrandcooperative coordination and catalytic formation of gold nanoparticles.Analytical Chemistry,2011,83(24):9702-9708
    [151] Wu D, Zhang Q, Chu X, et al. Ultrasensitive electrochemical sensor for mercury(II) based on targetinduced structure-switching DNA. Biosensors andBioelectronics,2010,25(5):1025-1031.
    [152] Han D, Kim Y R, Oh J W, et al. A regenerative electrochemical sensor based onoligonucleotide for the selective determination of mercury (II). Analyst,2009,134(9):1857-1862.
    [153] Zhu Z, Su Y, Li J, et al. Highly sensitive electrochemical sensor for mercury(II)ions by using a mercury-specific oligonucleotide probe and goldnanoparticle-based amplification. Analytical Chemistry,2009,81(18):7660-7666.
    [154] Guschlbauer W, Chantot J F, Thiele D. Four-stranded nucleic acid structures25years later: from guanosine gels to telomer DNA. Journal Biomolecular Structureand Dynamics,1990,8(3):491-511
    [155] Nikan M, Sherman J C. Cation-complexation behavior of template-assembledsynthetic G-quartets. The Journal of Organic Chemistry,2009,74(15):5211-5218
    [156] Ueyama H, Takagi M, Takenaka S. A novel potassium sensing with a syntheticoligonucleotide derivative. Journal of the American Chemical Society,2002,124(48):14286-14287
    [157] Nagatoishi S, Nojima T, Juskowiak B, et al. A pyrenelabeled G-quadruplexoligonucleotide as a fluorescent probe for potassium ion detection in biologicalapplication. Angewandte Chemie International Edition,2005,44(32):5067-5070
    [158] Kong D M, Guo J H, Yang W, et al. Crystal violet-Gquadruplex complexes asfluorescent sensors for homogeneous detection of potassium ion. Biosensors andBioelectronics,2009,25(1):88-93
    [159] Kong D, Ma Y, Guo J, et al. Fluorescent sensor for monitoring structural changesof G-quadruplexes and detection of potassium ion. Analytical Chemistry,2009,81(7):2678-2684
    [160] Li T, Wang E, Dong S. G-Quadruplex-based DNAzyme as a sensing platform forultrasensitive colorimetric potassium detection. Chemical Communications,2009,(5):580-582
    [161] Wang L H, Liu X F, Hu X F, et al. Unmodified gold nanoparticles as acolorimetric probe for potassium DNA aptamers. Chemical Communications,2006,(36):3780-3782
    [162] Zhang H X, Jiang B Y, Xing Y, et al. Label-free and amplified electrochemicaldetection of cytokine based on hairpin aptamer and catalytic DNAzyme. Analyst,2012,137(4):1020-1023
    [163] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce uponhybridization. Nature Biotechnology,1996,14(12):303-308
    [164] Liu X, Tan W. A fiber-optic evanescent wave DNA biosensor based on novelmolecular beacons. Analytical Chemistry,1999,71(22):5054-5059
    [165] Steemers F J, Ferguson J A, Walt D R. Screening unlabeled DNA targets withrandomly ordered fiber-optic gene arrays. Nature Biotechnology,2000,18:91-94
    [166] Maxwell D J, Taylor J R, Nie S M. Self-assembled nanopaticle probes forrecognition and detection of biomolecules. Journal of the American ChemicalSociety,2002,124(32):9606-9612
    [167] Jin Y, Yao X, Liu Q, et al. Hairpin DNA probe based electrochemical biosensorusing methylene blue as hybridization indicator. Biosensors and Bioelectronics,2007,22(6):1126-1130
    [168] Santangelo P J, Nix B, Tsourkas A, et al. Dual FRET molecular beacons formRNA detection in living cells. Nucleic Acids Research,2004,32(6): e57
    [169] Tan W, Wang K, Drake T J. Molecular beacons. Current Opinion in ChemicalBiology,2004,8(5):547-553
    [170] Du H, Disney M D, Miller B L, et al. Hybridization-based unquenching of DNAhairpins on Au surfaces: prototypical “molecular beacon” biosensors. Journalof the American Chemical Society,2003,125(14):4012-4013
    [171] Conlon P, Yang J C, Wu Y, et al. Pyrene excimer signaling molecular beacons forprobing nucleic acids. Journal of the American Chemical Society,2008,130(1):336-342
    [172] Wang L, Yang J C, Medley C D, et al. Locked nucleic acid molecular beacons.Journal of the American Chemical Society,2005,127(45):15664-15665
    [173] Song S, Qin Y, He Y, et al. Functional nanoprobes for ultrasensitive detection ofbiomolecules. Chemical Society Reviews,2010,39(11):4234-4243
    [174] Yao G, Wang L, Wu Y, et al. FloDots: luminescent nanoparticles. Analytical andBioanalytical Chemistry,2006,385(3):518-524
    [175] Centi S, Tombelli S, Minunni M, et al. Aptamer-based detection of plasmaproteins by an electrochemical assay coupled to magnetic beads. AnalyticalChemistry2007,79(4):1466-1473
    [176] Yan J, Hu M, Li D, et al. A nano-and micro-integrated protein chip based onquantum dot probes and a microfluidic network. Nano Research,2008,1(6):490-496
    [177] Yang R H, Tang Z W, Yan J L, et al. Noncovalent assembly of carbon nanotubesand single-stranded DNA: An effective sensing platform for probingbiomolecular interactions. Analytical Chemistry,2008,80(19):7408-7413
    [178] Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules.Angewandte Chemie International Edition,2009,48(26):4785-4787
    [179] Ou L J, Liu S J, Chu X, et al. DNA encapsulating liposome based rolling circleamplification immunoassay as a versatile platform for ultrasensitive detection ofprotein. Analytical Chemistry,2009,81(23):9664-9673
    [180] Dirks R M, Pierce N A. Triggered amplification by hybridization chain reaction.Proceedings of the National Academy of Sciences of the United States ofAmerica,2004,101(43):15275-15278
    [181] Zhang B, Liu B Q, Tang D P, et al. DNA-based hybridization chain reaction foramplified bioelectronic signal and ultrasensitive detection of proteins. AnalyticalChemistry,2012,84(12):5392-5399
    [182] Chen Y, Xu J, Su J, et al. In situ hybridization chain reaction amplification foruniversal and highly sensitive electrochemiluminescent detection of DNA.Analytical Chemistry,2012,84(18):7750-7755
    [183] Dong J, Cui X, Deng Y, et al. Amplified detection of nucleic acid byG-quadruplex based hybridization chain reaction. Biosensors and Bioelectronics,2012,38(1):258-263
    [184] Song W Q, Zhu K L, Cao Z J, et al. Hybridization chain reaction-based aptamericsystem for the highly selective and sensitive detection of protein. Analyst,2012,137(6):1396-1401
    [185] Simison W B, Lindberg D R, Boore J L. Rolling circle amplification of metazoanmitochondrial genomes. Molecular Phylogenetics and Evolution,2006,39(2):562-567
    [186] Qi X, Bakht S, Devos K M, et al. L-RCA (ligation-rolling circle amplification):A general method for genotyping of single nucleotide polymorphisms (SNPs).Nucleic Acids Research,2001,29(22): e116
    [187] Li J, Deng T, Chu X, et al. Rolling circle amplification combined with goldnanoparticle aggregates for highly sensitive identification of single-nucleotidepolymorphisms. Analytical Chemistry2010,82(7):2811-2816
    [188] Li J, Zhong W. Typing of multiple single-nucleotide polymorphisms by amicrosphere-based rolling circle amplification assay. Analytical Chemistry2007,79(23):9030-9038
    [189] Li Z, Li W, Cheng Y, et al. Chemiluminescent detection of DNA hybridizationand single-nucleotide polymorphisms on a solid surface using target-primedrolling circle amplification. Analyst,2008,(133):1164-1168
    [190] Cheng Y, Zhang X, Li Z, et al. Highly sensitive determination of microRNAusing target-primed and branched rolling-circle amplification. AngewandteChemie International Edition,2009,121(18):3318-3322
    [191] Wen Y, Xu Y, Mao X, et al. DNAzyme-based rolling-circle amplification DNAmachine for ultrasensitive analysis of microRNA in drosophila larva. AnalyticalChemistry,2012,84(18):7664-7669
    [192] Yang L, Fung C W, Cho E J, et al. Real-time rolling circle amplification forprotein detection. Analytical Chemistry,2007,79(9):3320-3329
    [193] Giusto D A D, Wlassoff W A, Gooding J J, et al. Proximity extension of circularDNA aptamers with real-time protein detection. Nucleic Acids Research,2005,33(6): e64
    [194] Compton J. Nucleic acid sequence-based amplification. Nature,1991,350(6313):91-92.
    [195] Wharam S D, Marsh P, Lloyd J S, et al. Specific detection of DNA and RNAtargets using a novel isothermal nucleic acid amplification assay based on theformation of a three-way junction structure. Nucleic Acids Research,2001,29(11): e54.
    [196] Yang Y, Zhang C Y. Sensitive detection of intracellular sumoylation via SNAPtag-mediated translation and RNA polymerase-based amplification. AnalyticalChemistry,2012,84(3):1229-1234
    [197] Zuo X, Xia F, XiaoY, et al. Sensitive and selective amplified fluorescence DNAdetection based on exonuclease III-aided target recycling. Journal of theAmerican Chemical Society,2010,132(6):1816-1818
    [198] Hsieh K, Xiao Y, Soh H T. Electrochemical DNA detection via exonuclease andtarget-catalyzed transformation of surface-bound probes. Langmuir,2010,26(12):10392-10396
    [199] Zhao C, Wu L, Ren J, et al. A label-free fluorescent turn-on enzymaticamplification assay for DNA detection using ligand-responsive G-quadruplexformation. Chemical Communications,2011,47(19):5461-5463
    [200] Xuan F, Luo X, Hsing I-M. Ultrasensitive solution-Phase electrochemicalmolecular beacon-based DNA detection with signal amplification by exonucleaseIII assisted target recycling. Analytical Chemistry,2012,84(12):5216-5220
    [201] Zhang M, Guan Y M, Ye B C. Ultrasensitive fluorescence polarization DNAdetection by target assisted exonuclease III-catalyzed signal amplification.Chemical Communications,2011,47(12):3478-3480
    [202] Dougan J A, MacRae D, Graham D, et al. DNA detection using enzymatic signalproduction and SERS. Chemical Communications,2011,47(16):4649-4651
    [203] Xiao X, Zhang C, Su X, et al. A universal mismatch-directed signalamplification platform for ultra-selective and sensitive DNA detection undermild isothermal conditions. Chemical Science,2012,3(7):2257-2261
    [204] Walker G T, Little M C, Nadeau J G, et al. Isothermal in vitro amplification ofDNA by a restriction enzyme/DNA polymerase system. Proceedings of theNational Academy of Sciences of the United States of America,1992,89(1):392-396
    [205] Weizmann Y, Beissenhirtz M K, Cheglakov Z, et al. A virus spotlighted by anautonomous DNA machine. Angewandte Chemie International Edition,2006,45(44):7384-7388
    [206] Beissenhirtz M K, Elnathan R, Weizmann Y, et al. The aggregation of AuNanoparticles by an Autonomous DNA machine detects viruses. Small2007,3(3):375-379
    [207] Shlyahovsky B, Li D, Weizmann Y, et al. Spotlighting of cocaine by anautonomous aptamer-based machine. Journal of the American Chemical Society,2007,129(13):3814-3815
    [208] Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ions byoligonucleotide–gold-nanoparticle hybrids and DNA-based machines.Angewandte Chemie International Edition,2008,47(21):3927-3931
    [209] Connolly A R, Trau M. Isothermal detection of DNA by beacon-assisteddetection amplification. Angewandte Chemie International Edition,2010,49(15):2720-2723
    [210] Zhou H, Liu J, Xu J J, et al. Ultrasensitive DNA detection based on Aunanoparticles and isothermal circular double-assisted electrochemiluminescencesignal amplification. Chemical Communications,2011,47(29):8358-8360
    [211] Wang G L, Zhang C Y. Sensitive detection of microRNAs with hairpinprobe-based circular exponential amplification assay. Analytical Chemistry,2012,84(16):7037-7042
    [212] Liu Y Q, Zhang M, Yin B C, et al. Attomolar ultrasensitive microRNA detectionby DNA-scaffolded silver-nanocluster probe based on isothermal amplification.Analytical Chemistry,2012,84(12):5165-5169
    [213] Wang H Q, Liu W Y, Wu Z, et al. Homogeneous label-free genotyping of singlenucleotide polymorphism using ligation-mediated strand displacementamplification with DNAzyme-based chemiluminescence detection. AnalyticalChemistry,2011,83(6):1883-1889
    [214] Boehm U, Klamp T, Groot M, et al. Cellular responses to interferon-γ. AnnualReview of Immunology,1997,15(1):749-795
    [215] Binder G K, Griffin D E. Interferon-γ-mediated site-specific clearance ofalphavirus from CNS neurons. Science,2001,293(5528):303-306
    [216] Wongtim S, Silachamroon U, Ruxrungtham K, et al. Interferon gamma fordiagnosing tuberculous pleural effusions. Thorax,1999,54(10):921-924
    [217] Aoe K, Hiraki A, Murakami T, et al. Diagnostic significance of interferon-γ intuberculous pleural effusions. Chest,2003,123(3):740-744
    [218] Pantaleo G, Koup R A. Correlates of immune protection in HIV-1infection: whatwe know, what we don't know, what we should know. Nature Medicine,2004,10:806-810
    [219] Dijksma M, Kamp B J, Hoogvliet C, et al. Development of an electrochemicalimmunosensor for direct detection of interferon-γ at the attomolar level.Analytical Chemistry,2001,73(5):901-907
    [220] Bart M, Stigter E C, Stapert H R, et al. On the response of a label-freeinterferon-γ immunosensor utilizing electrochemical impedance spectroscopy.Biosensors and Bioelectronics,2005,21(1):49-59
    [221] Zhu H, Stybayeva G, Silangcruz J, et al. Detecting cytokine release from singlehuman T-cells. Analytical Chemistry,2009,81(19):8150-8156
    [222] Jayasena S D. Aptamers: an emerging class of molecules that rival antibodies indiagnostics. Clinical Chemistry,1999,45(9):1628-1650
    [223] Feigon J, Dieckmann T, Smith F W. Aptamer structures from A to ζ. Chemistry&Biology,1996,3(8):611-617
    [224] Strehlitz B, Nikolaus N, Stoltenburg R. Protein detection with aptamerbiosensors. Sensors,2008,8(7):4296-4307
    [225] Qiu L P, Wu Z S, Shen G L, et al. Highly sensitive and selective bifunctionaloligonucleotide probe for homogeneous parallel fluorescence detection ofprotein and nucleotide sequence. Analytical Chemistry,2010,83(8):3050-3057
    [226] Min K, Cho M, Han, S Y, et al. A simple and direct electrochemical detection ofinterferon-γ using its RNA and DNA aptamers. Biosensors and Bioelectronics,2008,23(12):1819-1824
    [227] Tuleuova N, Jones C N, Yan J, et al. Development of an aptamer beacon fordetection of interferon-gamma. Analytical Chemistry,2010,82(5):1851-1857
    [228] Chemeris D A, Nikonorov Yu M, Vakhitov V A. Doklady Biochemistry andBiophysics,2008,419(1):53-55
    [229] Huang J, Wu Y R, Chen Y, et al. Pyrene-excimer probes based on thehybridization chain reaction for the detection of nucleic acids in complexbiological fluids. Angewandte Chemie International Edition,2011,50(2):401-404
    [230] Lin C X, Nangreave, J K, Li Z, et al. Special focus: nanomaterials for biomedicaldiagnosis-research article. Nanomedicine,2008,3(4):521-528
    [231] Ramanathan M, Lantz M, MacGregor R D, et al. Inhibition of interferon-gamma-induced major histocompatibility complex class I expression by certainoligodeoxynucleotides. Transplantation,1994,57(4):612-615
    [232] Zhang S S, Xia J P, Li X M. Electrochemical biosensor for detection ofadenosine based on structure-switching aptamer and amplification with reporterprobe DNA modified au nanoparticles. Analytical Chemistry,2008,80(22):8382-8288
    [233] Liu Y, Tuleouva N, Ramanculov E, et al. Aptamer-based electrochemicalbiosensor for interferon gamma detection. Analytical Chemistry,2010,82(19):8131-8136
    [234] Zhang H, Jiang B, Xiang Y, et al. Label-free and amplified electrochemicaldetection of cytokine based on hairpin aptamer and catalytic DNAzyme. Analyst,2012,137(4):1020-1023
    [235] Gorbenko G P, Loffe V M, Kinnunen P K J. Binding of lysozyme to phospholipidbilayers: evidence for protein aggregation upon membrane association.Biophysical Journal,2007,93(1):140-153
    [236] Chen Z B, Li L D, Zhao H T, et al. Electrochemical impedance spectroscopydetection of lysozyme based on electrodeposited gold nanoparticles. Talanta,2011,83(5):1501-1506
    [237] Levinson S S, Elin R J, Yam L, et al. Light chain proteinuria and lysozymuria ina patient with acute monocytic leukemia. Clincal Chemistry,2002,48(7):1131-1132
    [238] Harrison J F, Lunt G S, Scott P, et al. Urinary lysozume, ribinuclease, andlow-molecular-weight protein in renal disease. The Lancet,1968,291(7539):371-375
    [239] Klockars M, Reitamo S, Weber. T, et al. Cerebrospinal fluid lysozyme inbacterial and viral meningitis. Acta Medica Scandinavica,1978,203(1-6):71-74
    [240] Smolelis A N, Hartsell S E. The determination of lysozyme. Journal ofBacteriology,1949,58(6):731-736
    [241] Litwack G. Photometric determination of lysozyme activity. Proceedings ofSociety for Experimental Biology and Medicine,1955,89(3):401-403
    [242] Vera F L, Ferguson J D, Alvarez J C, et al. Real time detection of lysozyme bypulsed streaming potentials using polyclonal antibodies immobilized on arenewable nonfouling surface inside plastic microfluidic channels. AnalyticalChemistry,2011,83(6):2012-2019
    [243] Cheng A K H, Ge B X, Yu H Z, et al. Aptamer-based biosensors for label-freevoltammetric detection of lysozyme. Analytical Chemistry,2007,79(14):5158-5164
    [244] Huang H P, Jie G F, Cui R J, et al. DNA aptamer-based detection of lysozyme byan electrochemiluminescence assay coupled to quantum dots. ElectrochemistryCommunications.2009,11(4):816-818
    [245] Wang Y Y, Pu K Y, Liu B. Anionic conjugated polymer withaptamer-functionalized silica nanoparticle for label-free naked-eye detection oflysozyme in protein mixtures. Langmuir,2010,26(12):10025-10030
    [246] Chen Y M, Yu C J, Cheng T L, et al. Colorimetric detection of lysozyme basedon electrostatic interaction with human serum albumin-modified goldnanoparticles. Langmuir,2008,24(7):3654-3660
    [247] Brutlag D, Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. TheJounal of Biology Chemistry,1972,247:241-248
    [248] Linxweiler W, Horz W. Sequence specificity of exonuclease III from E.coli.Nucleic Acids Research,1982,10(16):4845-4859
    [249] Okano K, Kambarai H. DNA probe assay based on exonuclease III digestion ofprobes hybridized on target DNA. Analytical Biochemistry,1995,228(1):101-108
    [250] Chen H, Wang J Q, Liang G H, et al. A novel exonuclease III aided amplificationmethod for sensitive nucleic acid detection based on single walled carbonnanotube induced quenching. Chemical Communication,2012,48(2):269-271
    [251] Wu D, Yin B C, Ye B C. A label-free electrochemical DNA sensor based onexonuclease III-aided target recycling strategy for sequence-specific detection offemtomolar DNA. Biosensors and Bioelectronics,2011,28(1):232-238
    [252] Teller C, Shimron S, Willner I. Aptamer DNAzyme hairpins for amplifiedbiosensing. Analytical Chemistry,2009,81(21):9114-9119
    [253] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide. Journal of theAmerican Chemical Society,1958,80(6):1339-1339
    [254] Kovtyukhova P J, Martin B R, Mallouk T E, et al. Layer-by-layer assembly ofultrathin composite films from micron-sized graphite oxide sheets andpolycations. Chemistry of Materials,1999,11(3):771-778
    [255] Zuo X L, Xia F, Xiao Y, et al. Sensitive and selective amplified fluorescenceDNA detection based on exonuclease III-aided target recycling. Journal of theAmerican Chemical Society,2010,132(6):1816-1818
    [256] Zhao C Q, Wu L, Ren J S, et al. A label-free fluorescent turn-on enzymaticamplification assay for DNA detection using ligand-responsive G-quadruplexformation. Chemical Communication,2011,47(19):5461-5643
    [257] Yeung M C L, Wong K M C, Tsang Y K T, et al. Aptamer-induced self-assemblyof a NIR-emissive platinum(II) terpyridyl complex for label-andimmobilization-free detection of lysozyme and thrombin. ChemicalCommunication,2010,469(41),7709-7711
    [258] Kawde A N, Rodriguez M C, Lee T M H, et al. Label-free bioelectronic detectionof aptamer–protein interactions. Electrochemistry Communications,2005,7(5):537-540
    [259] Bamrungsap S, Shukoor M I, Chen T, et al. Detection of lysozyme magneticrelaxation switches based on aptamer-functionalized superparamagneticnanoparticles. Analytical Chemistry,2011,83(20):7795-7799
    [260] Yucai X, Yin T, Wiegraebe W, et al. Detection of functional haematopoietic stemcell niche using real-time imaging. Nature,2009,457:97-101
    [261] Savage P A, Vosseller K, Kang C, et al. Recognition of a ubiquitous self antigenby prostate cancer-infiltrating CD8+T lymphocytes. Science,2008,319(5860):215-220
    [262] Manganas L N, Zhang X, Li Y, et al. Magnetic resonance spectroscopy identifiesneural progenitor cells in the live human brain. Science,2007,318(5852):980-985
    [263] Medley C D, Smith J E, Tang Z, et al. Gold nanoparticle-based colorimetricassay for the direct detection of cancerous cells. Analytical Chemistry,2008,80(4):1067-1072
    [264] Chen H Z, Tsai S Y, Leone G. Emerging roles of E2Fs in cancer: an exit from cellcycle control. Nature Reviews Cancer,2009,9:785-797
    [265] Sarkar B, Dosch J, Simeone D M. Cancer stem cells: a new theory regarding atimeless disease. Chemical Reviews,2009,109(7):3200-3208
    [266] Ljungman M. Targeting the DNA damage response in cancer. Chemical Reviews,2009,109(7):2929-2950
    [267] Lal S, Clare S E, Halas N J. Nanoshell-enabled photothermal cancer therapy:impending clinical impact. Accounts of Chemical Research,2008,41(12):1842-1851
    [268] Nam J, Won N, Jin H, et al. pH-Induced aggregation of gold nanoparticles forphotothermal cancer therapy. Journal of the American Chemical Society,2009131(38):13639-13645
    [269] Yong K T, Ding H, Roy I, et al. Imaging pancreatic cancer using bioconjugatedInP quantum dots. ACS Nano,2009,3(3):502-510
    [270] Bhirde A A, Patel V, Gavard J, et al. Targeted killing of cancer cells in Vivo andin Vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano,2009,3(2):307-316
    [271] Paredes-Aguilera R, Romero-Guzman L, Lopez-Santiago N, et al. Flowcytometric analysis of cell-surface and intracellular antigens in the diagnosis ofacute leukemia. American Journal of Hematology,2001,68(2):69-74
    [272] Belov L, Vega O, Remedios C G, et al. Immunophenotyping of leukemias using acluster of differentiation antibody microarray. Cancer Research,2001,61:4483-4489
    [273] Ghossein R A, Bhattacharya S. Molecular detection and characterization ofcirculating tumour cells and micrometastases in solid tumours. European Journalof Cancer,2000,36:1681-1694
    [274] Pan C, Guo M, Nie Z, et al. Aptamer-based electrochemical sensor for label-freerecognition and detection of cancer cells. Electroanalysis,2009,21(11):1321-1326
    [275] Eltahir E M, Mallinson D S, Birnie G G, et al. Putative markers for the detectionof breast carcinoma cells in blood. British Journal of Cancer,1998,77(8):1203-1207
    [276] Shangguan D, Li Y, Tang Z, et al. Aptamers evolved from live cells as effectivemolecular probes for cancer study. Proceedings of the National Academy ofSciences of the United States of America,2006,103(32):11838-11843
    [277] Shangguan D, Meng L, Cao Z C, et al. Identification of liver cancer-specificaptamers using whole live cells. Analytical Chemistry,2008,80(3):721-728
    [278] Tang Z, Shangguan D, Wang K, et al. Selection of aptamers for molecularrecognition and characterization of cancer cells. Analytical Chemistry,2007,79(13):4900-4907
    [279] Famulok M. Mayer G. Chemical biology: aptamers in nanoland. Nature,2006,439:666-669
    [280] Li T, Fan Q, Liu T, et al. Detection of breast cancer cells specially and accuratelyby an electrochemical method. Biosensors and Bioelectronics,2010,25(12):2686-2689
    [281] Smith J E, Medley C D, Tang Z, et al. Aptamer-conjugated nanoparticles for thecollection and detection of multiple cancer cells. Analytical Chemistry,2007,79(8):3075-3082.
    [282] Herr J K, Smith J E, Medley C D, et al. Aptamer-conjugated nanoparticles forselective collection and detection of cancer cells. Analytical Chemistry,2006,78(9):2918-2924
    [283] Schmidt D M, Ernst J D. A fluorometric assay for the quantification of RNA insolution with nanogram sensitivity. Analytical Biochemistry,1995,232(1):144-146
    [284] Morozkin E S, Laktionov P P, Rykova E Y, et al. Fluorometric quantification ofRNA and DNA in solutions containing both nucleic acids, AnalyticalBiochemistry,2003,322(1):48-50
    [285] Hao C, Ding L, Zhang X J, et al. Biocompatible conductive architecture ofcarbon nanofiber-doped chitosan prepared with controllable electrodeposition forcytosensing, Analytical Chemistry,2007,79(12):4442-4447
    [286] Rahn J J, Dabbagh L, Pasdar M, et al. The importance of MUC1cellularlocalization in patients with breast carcinoma, Cancer,2001,91(11):1973-1982
    [287] Shen Q, Rahn J J, Zhang J, et al. MUC1initiates Src-CrkL-Rac1/Cdc42–mediated actin cytoskeletal protrusive motility after ligating intercellularadhesion molecule-1. Molecular Cancer Research,2008,6:555-567
    [288] Han E, Ding L, Jin S, et al. Electrochemiluminescent biosensing ofcarbohydrate-functionalized CdS nanocomposites for in situ label-free analysisof cell surface carbohydrate. Biosensors and Bioelectronics,2010,26(15):2500-2505
    [289] Escosura-Mu iz A, Sánchez-Espinel C, Díaz-Freitas B, et al. Rapididentification and quantification of tumor cells using an electrocatalytic methodbased on gold nanoparticles. Analytical Chemistry,2009,81(24):10268-10274
    [290] Croce M V, Isla-Larrain M T, Capafons A, et al. Humoral immune responseinduced by the protein core of MUC1mucin in pregnant and healthy women.Breast Cancer Research and Treatment,2001,69(1):1-11
    [291] Beatty P, Hanisch F G, Stolz D B, et al. Biochemical characterization of thesoluble form of tumor antigen MUC1isolated from sera and ascites fluid ofbreast and pancreatic cancer patients, Clinical Cancer Research,2001,7:781s-787s
    [292] Croce M V, Isla-Larrain M T., Demichelis S O, et al. Tissue and serum MUC1mucin detection in breast cancer patients. Breast Cancer Research and Treatment,2003,81(3):195-207
    [293] Henner W D, Rodriguez L O, Hecht S M, et al. Gamma ray induceddeoxyribonucleic acid strand breaks.3' Glycolate termini. The Journal ofBiological Chemistry,1983,258:711-713
    [294] Ames B N, Gold L S, Willett W C. The causes and prevention of cancer.Proceedings of the National Academy of Sciences of the United States ofAmerica,1995,92(12):5258-5265
    [295] Karimi-Busheri F, Lee J, Tomkinson A E, et al. Repair of DNA strand gaps andnicks containing3′-phosphate and5′-hydroxyl termini by purified mammalianenzymes. Nucleic Acids Research,1998,26(19):4395-4400
    [296] Henner W D, Grunberg S M, Haseltine W A. Enzyme action at3' termini ofionizing radiation-induced DNA strand breaks. The Journal of BiologicalChemistry,1983,258:15198-15205
    [297] Yang S W, Burgin A B, Huizenga B N, et al. A eukaryotic enzyme that candisjoin dead-end covalent complexes between DNA and type I topoisomerases.Proceedings of the National Academy of Sciences of the United States ofAmerica,1996,93(21):11534-11539
    [298] Zhu H, Yin S M, Shuman S. Characterization of polynucleotidekinase/phosphatase enzymes from mycobacteriophages omega and cjw1andvibriophage KVP40. The Journal of Biological Chemistry,2004,279:26358-26369
    [299] Takahashi T, Tada M, Igarashi S, et al. Aprataxin, causative gene product forEAOH/AOA1, repairs DNA single-strand breaks with damaged3′-phosphate and3′-phosphoglycolate ends. Nucleic Acid Research,2007,35(11):3797-3809
    [300] Rasouli-Nia A, Karimi-Busheri F, Weinfeld M. Stable down-regulation of humanpolynucleotide kinase enhances spontaneous mutation frequency and sensitizescells to genotoxic agents. The Proceedings of the National Academy of Sciencesof the United States of America,2004,101(18):6905-6910
    [301] Jilani A, Ramotar D, Slack C, et al. Molecular cloning of the human gene, PNKP,encoding a polynucleotide kinase3'-phosphatase and evidence for its role inrepair of DNA strand breaks caused by oxidative damage. The Journal ofBiological Chemistry,1999,274(34):24176-24186
    [302] Wang L K, Shuman S. Domain structure and mutational analysis of T4polynucleotide kinase. The Journal of Biological Chemistry,2001,276(29):26868-26874
    [303] Dobson C L, Allinson S L. The phosphatase activity of mammalianpolynucleotide kinase takes precedence over its kinase activity in repair of singlestrand breaks. Nucleic Acids Research,2006,34(8):2230-2237
    [304] Fanta M, Zhang H, Bernstein N, et al. Production, characterization, and epitopemapping of monoclonal antibodies against human polydeoxyribonucleotidekinase. Hybridoma.2001,20(4):237-242
    [305] Karimi-Busheri F, Rasouli-Nia A, Allalunis-Turner J, et al. Humanpolynucleotide kinase participates in repair of DNA double-strand breaks bynonhomologous end joining but not homologous recombination. Cancer Research.2007,67(14):6619-6625
    [306] Ma C, Tang Z, Wang K, et al. Real-time monitoring of nucleic aciddephosphorylation by using molecular beacons. ChemBioChem2007,8(3):1487-1490
    [307] Chen A K, Behlke M A, Tsourkas A. Avoiding false-positive signals withnuclease-vulnerable molecular beacons in single living cells. Nucleic AcidsResearch,2007,35(16):105-118
    [308] Song C, Zhang C, Zhao M. Development of a high-throughput screeningplatform for DNA3’-phosphatases and their inhibitors based on a universalmolecular beacon and quantitative real-time PCR. Chemistry-An Asian Journal,2010,5(5):1146-1151
    [309] Halappanavar S S, Rhun Y L, Mounir S, et al. Survival and proliferation of cellsexpressing caspase-uncleavable poly(ADP-ribose) polymerase in response todeath-inducing DNA damage by an alkylating agent. The Journal of BiologicalChemistry,1999,274:37097-37104
    [310] Luo J, Nikolaev A Y, Imai S, et al. Negative control of p53by Sir2α promotescell survival under stress. Cell,2001,107:137-148
    [311] Imai S, Armstrong C M, Kaeberlein M, et al. Transcriptional silencing andlongevity protein Sir2is an NAD-dependent histone deacetylase. Nature,2000,403:795-800
    [312] Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1activation prevent axonal degeneration. Science,2004,305(5686):1010-1013
    [313] Kawamura H, Aswad F, Minagawa M, et al. P2X7receptor-dependent and-independent T cell death is induced by nicotinamide adenine dinucleotide. TheJournal of Immunology,2005,174(4):1971-1979
    [314] Canto C, Gerhart-Hines Z, Feige J N, et al. AMPK regulates energy expenditureby modulating NAD+metabolism and SIRT1activity. Nature,2009,458:1056-1060
    [315] Cohen H Y, Miller C, Bitterman K J, et al. Calorie restriction promotesmammalian cell survival by inducing the SIRT1deacetylase. Science,2004,305(5682):390-392
    [316] Guarente L, Picard F. Calorie restriction-the SIR2connection. Cell,2005,120(4):473-482
    [317] Anderson R M, Latorre-Esteves M, Neves A R, et al. Yeast life-span extension bycalorie restriction is independent of NAD fluctuation. Science,2003,302(5653):2124-2126
    [318] Neves A R, Ventura R, Mansour N, et al. Is the glycolytic flux in Lactococcuslactis primarily controlled by the redox charge? The Journal of BiologicalChemistry,2002,277:28088-28098
    [319] Litt M R, Potter J J, Mezey E, et al. Analysis of pyridine dinucleotides incultured rat hepatocytes by high-performance liquid chromatography. AnalyticalBiochemistry,1989,179(1):34-36
    [320] Sadanaga-Akiyoshi F, Yao H, Tanuma S. Nicotinamide attenuates focal ischemicbrain injury in rats: with special reference to changes in nicotinamide and NAD+levels in ischemic core and penumbra. Neurochemical Research,2003,28(8):1227-1234
    [321] Xie W, Xu A, Yeung E S. Determination of NAD+and NADH in a single cellunder hydrogen peroxide stress by capillary electrophoresis. AnalyticalChemistry,2009,81(3):1280-1284
    [322] Bernofsky C, Swan M. An improved cycling assay for nicotinamide adeninedinucleotide. Analytical Biochemistry,1973,53(2):452-458
    [323] Jacobson E L, Jacobson M K. Pyridine nucleotide levels as a function of growthin normal and transformed3T3cells. Archives of Biochemistry andBiophysics,1976,175(2):627-634
    [324] Lu L M, Zhang X B, Kong R M, et al. A ligation-triggered DNAzyme cascade foramplified fluorescence detection of biological small molecules withzero-background signal. Journal of the American Chemical Society,2011,133(30):11686-11691
    [325] Tang Z, Liu P, Ma C, et al. Molecular beacon based bioassay for highly sensitiveand selective detection of nicotinamide adenine dinucleotide and the activity ofalanine aminotransferase. Analytical Chemistry,2011,83(7):2505-2510
    [326] Zhou Z, Du Y, Dong S. Double-strand DNA-templated formation of coppernanoparticles as fluorescent probe for label-free aptamer sensor. AnalyticalChemistry,2011,83(13):5122-5127
    [327] Oh S S, Plakos K, Lou X, et al. In vitro selection of structure-switching,self-reporting aptamers. Proceedings of the National Academy of Sciences of theUnited States of America,2010,107(32):14053-14058
    [328] Hu D, Huang Z, Pu F, et al. A label-free, quadruplex-based functional molecularbeacon (LFG4-MB) for fluorescence turn-on detection of DNA and nuclease.Chemistry-A European Journal,2011,17(5):1635-1641
    [329] Putt K S, Hergenrother P J. An enzymatic assay for poly(ADP-ribose)polymerase-1(PARP-1) via the chemical quantitation of NAD+: application tothe high-throughput screening of small molecules as potential inhibitors.Analytical Biochemistry,2004,326(1):78-86
    [330] Karp M T, Raunio R P, Lovgren T N-E. Simultaneous extraction and combinedbioluminescent assay of NAD+and NADH. Analytical Biochemistry,1983,128(1):175-180
    [331] MacMicking J, Xie Q W, Nathan C. Nitric oxide and macrophage function.Annual Review of Immunology,1997,15(1):323-350
    [332] Chauhan A, Chauhan V. Oxidative stress in autism. Pathophysiology,2006,13(3):171-181
    [333] Levina A, Lay P A. Solution structures of chromium(VI) complexes withglutathione and model thiols. Inorganic Chemistry,2004,43(1):324-335
    [334] Cruz B H, D az-Cruz J M, D az-Cruz M S, et al. Differential pulse polarographicstudy of the Pb(II) complexation by glutathione. Journal of ElectroanayticalChemistry,2001,516(1-2):110-118
    [335] Burford N, Eelman M D, Mahony D E, et al. Definitive identification of cysteineand glutathione complexes of bismuth by mass spectrometry: assessing thebiochemical fate of bismuth pharmaceutical agents. Chemical Communications,2003,(1):146-147
    [336] Wang X F, Cynader M S. Pyruvate released by astrocytes protects neurons fromcopper-catalyzed cysteine neurotoxicity. The Journal of Neuroscience,2001,21(10):3322-3331
    [337] Liu J, Yeo H C, vervik-Douki E, et al. Chronically and acutely exercised rats:biomarkers of oxidative stress and endogenous antioxidants. Journal of AppliedPhysiology,2000,89(1):21-28
    [338] Lu C, Zu Y, Yam V W W. Nonionic surfactant-capped gold nanoparticles aspostcolumn reagents for high-performance liquid chromatography assay oflow-molecular-mass biothiols. Journal of Chromatography A,2007,1163(1-2):328-332
    [339] Zhang W, Wan F, Zhu W, et al. Determination of glutathione and glutathionedisulfide in hepatocytes by liquid chromatography with an electrode modifiedwith functionalized carbon nanotubes. Journal of Chromatography B,2005,818(2):227-232
    [340] Vacek J, Klejdus B, Petrlová J, et al. A hydrophilic interaction chromatographycoupled to a mass spectrometry for the determination of glutathione in plantsomatic embryos. Analyst,2006,131(10):1167-1174
    [341] Feng C H, Huang H Y, Lu C Y. Quantitation of the glutathione in humanperipheral blood by matrix-assisted laser desorption ionization time-of-flightmass spectrometry coupled with micro-scale derivatization. Analytica ChimicaActa,2011,690(2):209-214
    [342] McDermott G P, Francis P S, Holt K J, et al. Determination of intracellularglutathione and glutathione disulfideusing high performance liquidchromatography with acidic potassium permanganate chemiluminescencedetection. Analyst,2011,136(12):2578-2585
    [343] Spataru N, Sarada B V, Pop E, et al. Voltammetric determination of L-cysteine atconductive diamond electrodes. Analytical Chemistry,2001,73(3):514-519
    [344] Ndamanisha J C, Bai J, Qi B, et al. Application of electrochemical properties ofordered mesoporous carbon to the determination of glutathione and cysteine.Analytical Biochemistry,2009,386(1):79-84
    [345] Stobiecka M, Deeb J, Hepel M. Molecularly templated polymer matrix films forbiorecognition processes: sensors for evaluating oxidative stress and redoxbuffering capacity. ECS Transactions,2009,19(28):15-32
    [346] Zhang F X, Han L, Israel L B, et al. Colorimetric detection of thiol-containingamino acids using gold nanoparticles. Analyst,2002,127(4):462-465
    [347] Sudeep P K, Joseph S T S, Thomas K G. Selective detection of cysteine andglutathione using gold nanorods. Journal of the American Chemical Society,2005,127(18):6516-6517
    [348] Huang H, Liu X, Hu T, et al. Ultra-sensitive detection of cysteine by goldnanorod assembly. Biosensors and Bioelectronics,2010,25(9):2078-2083
    [349] Kou X, Zhang S, Yang Z, et al. Glutathione-and cysteine-induced transverseovergrowth on gold nanorods. Journal of the American Chemical Society,2007,129(20):6402-6404
    [350] Liu X, Qi C, Bing T, et al. Highly selective phthalocyanine thymine conjugatesensor for Hg2+based on target induced aggregation. Analytical Chemistry,2009,81(9):3699-3704
    [351] Xu H, Hepel M.“Molecular beacon”-based fluorescent assay for selectivedetection of glutathione and cysteine. Analytical Chemistry,2011,83(3):813-819
    [352] Gao Y, Li Y, Zou X, et al. Highly sensitive and selective detection of biothiolsusing graphene oxide-based “molecular beacon”-like fluorescent probe.Analytical Chimica Acta,2012,731:68-74
    [353] Han B, Yuan J, Wang E. Sensitive and selective sensor for biothiols in the cellbased on the recovered fluorescence of the CdTe quantum dots-Hg(II) system.Analytical Chemistry,2009,81(13):5569-5573