用户名: 密码: 验证码:
基于能效分析的氧化铝蒸发过程优化控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝蒸发过程是回收有用资源、排除杂质和维持整个氧化铝生产循环系统中水量平衡的关键工序,也是主要的耗能工序。蒸发过程的母液质量直接影响磨矿和溶出过程的碱粉消耗量,以及全流程生产的稳定性。随着资源、能源危机和市场竞争的日益加剧,在现有工艺设备条件下,利用优化控制技术来降低蒸发过程能耗、保证母液质量,对提高氧化铝生产过程生产效率和降低能耗具有重要意义。
     然而,氧化铝蒸发过程流程长,过程参数检测存在大滞后,参数间非线性耦合关系强;且过程受其它工序排出溶液、设备结垢等不确定因素的干扰,因此,蒸发过程仍采用人工控制的方法,存在母液和冷凝水质量不合格、生蒸汽使用过量、能耗高等问题。针对上述问题,论文以四效逆流氧化铝蒸发过程为研究对象,开展蒸发过程母液浓度的预测、蒸发过程能耗分析及优化、以达到最优能效状态为目标的蒸发过程控制方法的研究。主要研究工作和创新性成果如下:
     1)针对长流程的蒸发过程工况复杂,末效出口母液浓度检测滞后的问题,提出了基于最小二乘支持向量机的末效出口母液浓度预测方法。首先采用独立成分分析方法提取蒸发过程非平稳性数据的主要特征信息,在此基础上,建立了基于最小二乘支持向量机的末效出口母液浓度预测模型。工业现场数据实验结果表明预测精度满足现场实际生产工艺要求,为生产操作提供依据。
     2)针对影响设备性能的关键因素无法检测的问题,提出了基于鲁棒估计函数的蒸发过程数值计算方法,获得各单元母液浓度值。该方法利用末效出口母液浓度预测结果和过程参数检测结果,以测量误差的鲁棒估计函数为评价指标,基于平衡机理级联模型修正数值计算误差。蒸发过程数值计算结果为过程能耗分析奠定了基础。
     3)针对蒸发过程能耗高,一般优化问题无法兼顾过程能耗和母液质量的问题,构建了最大化蒸发过程用能效率的优化问题。首先,结合蒸发过程工艺机理和能源消耗特点,基于数值计算结果和有效能分析法分析得到了蒸发过程各部分能源损耗情况。在此基础上,建立了以最大化目的(?)效率和最小化(?)损失率为目标的蒸发过程能效优化模型,求解获得能效最优操作参数设定值。实际数据实验结果表明,该优化方法保证了母液质量,且过程目的(?)效率平均提高了3%左右。
     4)针对数值计算误差修正问题和蒸发过程能效优化问题中约束条件的复杂性特点,设计了基于不可行度的涡旋粒子群算法来求解约束优化问题。该方法将基于不可行解有效信息的不可行度计算函数增广到目标函数中,形成近似优化问题的适应度函数,然后采用具有自组织特性的涡旋粒子群算法来求解近似优化问题。测试函数优化结果表明了优化算法求解约束优化问题的有效性。
     5)为使蒸发过程过渡到能效最优的操作条件,在研究蒸发过程动态特性的基础上,建立了各单元蒸发室的动态特性模型,并针对动态模型中滞后时间未知的问题,提出了基于多特征时间点的滞后时间辨识方法。该方法以最小化多采样点时刻模型输出与实测值的偏差为目标,通过求解一组辅助时滞系统方程来获得未知时滞参数的梯度信息,然后采用信赖域内点优化方法求解参数辨识问题。数值算例表明了该方法的准确性和快速性,可有效辨识蒸发过程动态模型滞后时间参数。
     6)提出了以达到能效最优工艺参数设定值和降低汽水比技术指标为目的蒸发过程控制问题及其求解方法。该方法基于控制参数化技术将控制向量用分段常数函数来近似,通过求解一系列近似控制参数优化选择问题实现了带连续状态不等式约束、多时滞系统的优化控制问题的求解。实验结果表明,优化控制有效降低了蒸汽消耗同时实现了能效最优设定参考轨迹的跟踪。
The evaporation process is used to recycle the valuable materials, remove impurities contended in the mother liquor, and maintain water balance of the whole alumina production process. It is a key procedure and a high energy consumption procedure in the production of alumina. The quality of the mother liquor not only influences the alkaline powder consumption of the grinding and dissolution process, but also influences the stability of the whole alumina production process. Thus, it is essential to develop optimal control techniques for the evaporation process, under the existing equipment and the current procedure, such that the specific quality of the mother liquor is met with the highest energy efficiency. In addition, with the increasing resources crisis, energy crisis and competition pressure, optimal control of the evaporation process becomes more and more important in enhancing the productivity and energy efficiency of the whole alumina production process.
     The evaporation process is a long procedure, thus there is a long time delay in parameter measurement. Moreover, the relationships among the paremeters are highly nonlinear coupled. In addition, there are many uncertainties existed in the evaporation process, such as the fluctuation of the solution discharged from other processes and the scaring of the evaporators. Thus, the currently used manual control method usually leads to unacceptable product mother liquor and condensate, and excessive live steam consumption.
     Consider these problems arising in the study of the evaporation process; this dissertation takes a practical four-effect countercurrent alumina evaporation process as the research background. It focuses on the mother liquor concentration prediction, the energy consumption analysis and optimization, and the operation control of the process to achieve the optimal energy efficiency. The detailed content and the main contributions are arranged as follows.
     1) Due to the long and complex working procedure, there is a large time delay in the measurement of the product mother liquor concentration. To deal with this problem, a least square support vector machine (LSSVM) based model is built to predict the product mother liquor concentration. Firstly, the independent component analysis method is used to extract the main information from the non-stationary process data. On this basis, LSSVM model is established to predict the concentration of the product mother liquor. Using the real data collected from the practical evaporation process, the experimental results show that the prediction precision satisfies the the measurement requirement of practical industrial process. Thus, the prediction result provides guidance for evaporation process operation.
     2) The key factors for evaluating the performance of the unit cannot be measured. Furthermore, there is no historical concentration data to use. To obtain these concentration values, a numerical calculation method based on robust estimation function is proposed. The proposed numerical calculation method contains two parts:one is the mechanistic model built on balance principle and cascading method; another part is the error correction model based on the robust estimation of the measurement error. In the error correction model, the result of the LSSVM predictive model and the collected data are used. The numerical calculation results are the bases of process energy consumption analysis.
     3) Since the evaporation process is a high energy consumption process, but the existing optimization problems arising in the study of evaporation process are either aimed at the product quality or purely designed for energy saving, thus an energy efficiency optimization model is built, in which both the product quality and the energy consumption are considered. To construct the optimization model, firstly, on the basis of the numerical calculation results, the energy efficiency and the cause of energy loss are analyzed using the exergy analysis method. Then, an optimization model, whose objective function aiming at minimizing exergy loss rate and maximizing the target exergy efficiency, is built. Solving this optimization model, the opertation parameter settings for optimal energy efficiency can be obtained. The optimization results of the practical industrial production demonstrate that the quality of the mother liquor is guaranteed. Moreover, the target exergy efficiency is increased by3.03%averagely.
     4) Both the error correction model and the energy consumption optimization model contain complex constraints. To solve the constrained optimization problems, a vortex motion based particle swarm optimization (VMPSO) algorithm is developed. Firstly, an infeasible degree function is constructed based on the information provided by infeasible solutions. The summation of all the infeasible degree function is then appended to the objective function to form an augment objective function. The VMPSO with self-organized characteristic is then developed to solve the approximate optimization problem. The optimization results of several benchmark functions demonstrate the advantage of the proposed optimization algorithm in finding the global optimum.
     5) To control the evaporation process, the dynamic behavior is investigated. Then, dynamic model in each of the evaporation vessels is established. The dynamic model is in the form of multiple time delays space model with unknown delays. Since the delays influence the behavior of the process and the control effect, thus the delays should first be estimated. For this, a time delay estimation method with multiple characteristic time points is proposed to determine the unknown time delays. The main characteristics of the proposed estimation method are that the cost function of the estimation problem measures the discrepancy between predicted and observed system output; the partial derivatives of this cost function can be computed by solving a set of auxiliary time-delay systems. Using the partial derivatives, the estimation problem is solved by trust region interior point technique effectively. Numerical simulations demonstrate the accuracy and effectiveness of the estimation method. By applying this method, the obtained dynamic system is satisfied.
     6) To deal with the problems of unacceptable product and high energy usage encountered in the control of evaporation process, an optimal control problem is studied. The aim of this optimal control problem is to follow the desired parameter settings and decrease the steam consumption. This optimal control problem is with both multiple delays and continuous inequality constraints. To solve this optimal control problem, the control is first approximated by a piecewise constant function using the control parameterization technique. Then the optimal control problem is solved effectively through solving a sequence of approximate optimization parameter selection problems subject to only boundedness constraints on decision variables. The developed optimal control method is used to study the problem arising in the evaporation process. The optimal control results obtained based on field data show that the steam comsumption is reduced and the operation parameter settings to achieve the optimal energy efficiency are followed.
引文
[1]Z. K. Chen, H. W. Chen. New research on burden calculation for raw mix slurry in production of alumina with sintering process [J]. World Nonferrous Met,2004: 41-45.
    [2]俞性佑,章世鑫.多效蒸发制盐与热泵法(蒸汽机械压缩)制盐中蒸发能耗的分析与比较[J].中国井矿盐,1993(6):1-6.
    [3]蒋楚生.工业节能的热力学基础和应用[M].北京:化学工业出版社,1990.
    [4]朱明善.能量系统的(?)分析[M].北京:清华大学出版社,1986.
    [5]党洁修,秦刚.制盐装置蒸发过程的(?)分析[J].中国井矿盐,1995,3:21-23.
    [6]J. B. Hillenbran, A. W. Westerberg. The synthesis of multiple-effect evaporato systems using minimum utility insights[J]. A cascaded heat represntation. Conputers and Chemical Engineering,1988,12(7):611-624.
    [7]J. U. Ahamed, R. Saidur, H. H. Masjuki. A review on exergyanalysis of vapor compression refrigeration system [J]. Renewable and Sustainable Energy Reviews,2011,15(3):1593-1600.
    [8]郑艳梅,杨春光,赵斌,赵景利.碳酸钾三效蒸发系统有效传热温差的(?)优化[J].无机盐工业,2003,2:55-56.
    [9]K. Matsuda, S. Tanaka, M. Endou,T. Iiyoshi. Energy saving study on a large steel plant by total site based pinchte chnology[J]. Applied Thermal Engineering,2012,43:14-19.
    [10]Y. Wu, X. Peng, J. Zhang, Y. Song, S. Li. Thermal analysis and exergy analysis of evaporation process in alumina refinery [J]. International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, China,19-20 Feb,2011:1002-1006.
    [11]徐国峰,庄正宁,徐国飞.锅炉的能量平衡分析[J].热力发电,2004,9:13-15.
    [12]J. Sun, F. Wang, T. Ma, et al.. Energy and exergy analysis of a five-column methanol distillation scheme[J]. Energy,2012,45(1):696-703.
    [13]周勇,彭燕,沈兰.“(?)”概念在镀锌退火炉节能方面的应用[J].四川冶金,2000,6:34-35.
    [14]黄萍,郑丹星,田涛,武向红.甲苯吸收分离乙烯工艺的(?)分析[J].华北电力大学学报,2007,34(2):82-86.
    [15]唐爱坤,魏爱坤,杨志坚,王贞涛.燃气-蒸汽联合循环热电冷三联供系统火用分析[J].机电信息,2005,3(87):5-7.
    [16]A. V. Ensinas, M. Modesto, S. A. Nebra, L. Serra. Reduction of irreversibility generation in sugar and ethanol production from sugarcane[J]. Energy,2009, 34(5):680-688.
    [17]孙家宁,陈清林,尹清华,华贲.基于能级概念的(?)经济学计价策略[J].热能动力工程,2003,18(6):552-554.
    [18]J. Soma. Exergy transfer:a new field of energy endeavor[J]. Energy Engineering,1985,82(4):11-22.
    [19]A. A. Mabrouk, A. S. Nafey, H. E. S. Fath. Analysis of a new design of a multi-stage flash-mechanical vapor compression desalination process[J]. Desalination,2007,204(1-3):482-500.
    [20]崔书君.基于(?)分析的氧化铝四效逆流降膜式蒸发系统优化[D].长沙:中南大学,2010.
    [21]崔书君,桂卫华,阳春华,柴琴琴.氧化铝管式降膜蒸发器的(?)分析[J].控制工程,2010, 17:723-726.
    [22]夏车奎,罗雄麟,孙琳.基于全周期节能的有旁路换热网络裕量优化设计[J].化工学报,2012,63(5):1449-1458.
    [23]丁干红,叶鑫,李延生.甲醇合成及精馏单元的热集成[J].化工进展,2009,28(S2):1-5.
    [24]M. Higa, A. J. Freitas, A. C. Bammwart, R. J. Zemp. Thermal integration of multiple effect evaporator in sugar plant[J]. Appied Thermal Engineering,2008, 29(2-3):515-522.
    [25]S. P. Wang, Q. L. Chen, Q. H. Yin, B. Hua. A phenomenological equation of exergy transfer and its application[J]. Energy,2005,30(1):85-95.
    [26]S. Y. Wu, X. F. Yuan, Y. R. Li, L. Xiao. Exergy transfer effectiveness on heat exchanger for finite pressure drop[J]. Energy,2007,32(11):2110-2120.
    [27]项新耀,成庆林.离心压缩式热泵装置的(?)传递分析[J].机械工程学报,2006,42(7):67-71.
    [28]A. D. Sahin, I. Dincer, M. A. Rosen. Thermodynamic analysis of solar photovoltaic cell systems [J]. Solar Energy Materials and Solar Cells,2007, 91(2-3):153-159.
    [29]项新耀,J. Kun,成庆林.化工装置反应能量系统的(?)传递描述[J].化工学报,2007,58(9):2178-2182.
    [30]孔令伟,胡仰栋,安维中,伍联营.基于(?)价格的精馏过程综合的研究[J].计算机与应用化学,2006,23(9):817-820.
    [31]杨爽言,李芳芹,曹叔维.(?)经济系数在制冷方案选择中的应用[J].制冷技术,2004,4:16-21.
    [32]王弘轼.化工过程系统工程[M].北京:清华大学出版社,2006.
    [33]王雅琳,黎良伟,桂卫华,阳春华.序贯模块法在选矿流程模拟中的应用与实现[J].计算机工程与应用,2009,45(7):224-226.
    [34]阮奇,叶长燊,陈文波.复杂逆流多效蒸发系统优化设计的模型与算法[J].化工学报,2001,52(8):715-720.
    [35]A. Jernqvista, M. Jernqvist, G. Aly. Simulation of thermal desalination processes[J]. Desalination,2001,134(1-3):187-193.
    [36]A. H. Osman, M. A. K. Al-Sofi, M. Imam, et al.. Simulation of multistage flash desalination process[J]. Desalinlation,2001,134(1-3):195-203.
    [37]李会雄,林英,牛天文,孙树翁,郭斌.350万吨/年重油催化裂化外取热器水动力特性计算方法[J].化工进展,2006,25(z1):334-339.
    [38]毕庆华,唐朝晖,桂卫华,叶炜.氧化铝蒸发系统的模拟[J].计算机测量与控制,2008,16:1119-1121.
    [39]袁卫星,王海,花严红,袁修干,付林.氨水吸收式热泵一种通用模拟方法研究[J].太阳能学报,2008,29(4):454-458.
    [40]张正江,邵之江,陈曦,钱积新.大范围工况变化下联塔的严格机理模拟研究[J].化工自动化及仪表,2006,33:7-10.
    [41]赵敏,李少远.基于信赖域二次规划的非线性模型预测控制优化算法[J].控制理论与应用,2009,26(6):634-640.
    [42]K. Schittkowski. Solving nonlinear programming problems with very many constraints[J]. Optimization,1992,25(2-3):179-196.
    [43]C. Yu, K. Teo, Y. Bai. An exact penalty function method for nonlinear mixed discrete programming problems[J]. Optimization Letters,2012:1-16.
    [44]B. Li, C. Yu, K. Teo, G Duan. An exact penalty function method for continuous inequality constrained optimal control problem [J]. Journal of Optimization Theory and Applications,2011,151(2):260-291.
    [45]R. M. Lewis, V. Torczon, L. R. Center. A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds[J]. SIAM Journal on Optimization,2002,12:1075-1089.
    [46]杜学武,靳祯.不等式约束优化问题的一个精确增广拉格朗日函数[J].上 海交通大学学报,2006,40(9):1636-1640.
    [47]刘欢培,黄建华.改进单纯形法寻优的MATLAB实现[J].浙江工业大学学报,2003,31(4):377-381.
    [48]李海艳,李维嘉,吴金波.基于单纯形法触式探头传感器校准算法[J].武汉大学学报:工学版.2010(4):532-536.
    [49]王勇,蔡自兴,周育人,肖赤心.约束优化进化算法[J].软件学报,2009,20(1):11-29.
    [50]桂卫华,王雅琳,阳春华,黄泰松.基于模拟退火算法的锌电解过程分时供电优化调度[J].控制理论与应用,2001,18(1):127-130.
    [51]刘晓芳,赵万生.基于改进遗传算法的工艺过程优化设计[J].中国机械工程,2003,14(2):137-140.
    [52]王斌,王孙安,杜海峰.基于模糊遗传算法的工业过程控制参数优化研究[J].西安交通大学学报,2004,38(1):56-59.
    [53]D. M. Prata, M. Schwaab, E. L. Lima, J. C. Pinto. Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: Application for an industrial polypropylene reactor[J]. Chemical-Engineering Science.2009,64(18):3953-3967.
    [54]O. P. Rani, A. K. Chandel, M. G. Sharma. Optimization of hydro power plant design by particle swarm optimization (PSO)[J]. Procedia Engineering,2012, 30:418-425.
    [55]C. Y. Chung, K. P. Wong. Application of differential evolution algorithm for transient stability constrained optimal power flow[J]. IEEE Transactions on Power Systems,2008,23(2):719-728.
    [56]郭俊,桂卫华,阳春华.改进差分进化算法在铝电解多目标优化中的应用[J].中南大学学报(自然科学版),2012,43(1):184-188.
    [57]黄海燕,顾幸生.基于文化算法的神经网络及其在建模中的应用[J].控制与决策,2008,23(4):477-480.
    [58]黄海燕,顾幸生.文化差分进化算法及其在化工过程建模中的应用[J].化工学报,2009(3):668-674.
    [59]刘卓倩,顾幸生.基于智能集成优化的合成塔入口氨含量软测量[J].化工学报,2010(8):2051-2055.
    [60]李秀英,韩志刚.一种基于粒子群优化的非线性系统辨识方法[J].控制与决策,2011,26(11):1627-1631.
    [61]王跃宣,胡昔祥,刘连臣,吴澄.面向复杂工业过程的模型辨识软件设计与 应用[J].系统仿真学报,2004,16(7):1401-1404.
    [62]何新贵,梁久祯.过程神经元网络的若干理论问题[J].中国工程科学,2000,2(12):40-44.
    [63]S. Chen, S. A. Billings. Neural networks for nonlinear dynamic system modeling and identification[J]. International Journal of Control,1992,56(2): 319-346.
    [64]彭晓波,桂卫华,胡志坤,李勇刚,王凌云.基于混沌遗传算法的铜闪速熔炼过程操作模式智能优化系统[J].信息与控制,2008,37(1):87-92.
    [65]吴建锋,何小荣.动态系统前馈神经网络模型及其应用[J].化工学报,2000,51(3):378-382.
    [66]W. Wang, W. Yu, L. Zhao, T. Chai. PCA and neural networks-based soft sensing strategy with application in sodium aluminate solution [J]. Journal of Experimental and Theoretical Artificial Intelligence,2011,23(1):127-136.
    [67]李勇刚,桂卫华,陈峰.基于因素分析的复合神经网络及其在软测量中的应用[J].信息与控制,2004,33(2):141-144.
    [68]王晓丽,阳春华,桂卫华.基于变量聚类和PCA的神经网络在碳分分解率预测中的应用研究[A].第二十六届中国控制会议论文集[C],2007,1-6.
    [69]孙强,桂卫华,王雅琳.锌电解过程电流效率的模糊神经网络模型设计[J].系统仿真学报,2001,13(z1):105-107.
    [70]吴敏,唐朝晖.锌湿法冶炼电解过程的神经网络专家控制[J].自动化学报,2001,27(6):867-869.
    [71]刘志远,吕剑虹.新型RBF神经网络及在热工过程建模中的应用[J].中国电机工程学报,2002,22(9):118-122.
    [72]H. S. Hippert, C. E. Pedreira, R. C. Souza. Neural networks for short-term load forecasting:A review and evaluation[J]. IEEE Transactions on Power Systems, 2001,16(1):44-55.
    [73]L. J. Cao, F. E. H. Tay. Support vector machine with adaptive parameters in financial time series forecasting[J]. IEEE Transactions on Neural Networks, 2003,14(6):1506-1518.
    [74]V. N. Vapnik. An overview of statistical learning theory [J]. IEEE Transactions on Neural Networks,1999,10(5):988-999.
    [75]Z. Bao, D. Pi, Y. Sun. Nonlinear model predictive control based on support vector machine with multi-kernel[J]. Chinese Journal of Chemical Engineering, 2007,15(5):691-697.
    [76]王春林,周昊,周樟华,凌忠钱,李国能,岑可法.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2005,25(20):72-76.
    [77]唐贤伦,庄陵,胡向东.铁水硅含量的混沌粒子群支持向量机预报方法[J].控制理论与应用,2009,26(8):838-842.
    [78]朱红求,阳春华,桂卫华.基于模糊LS-SVM的净化过程钴离子浓度软测量[J].仪器仪表学报,2009,30(6):1224-1227.
    [79]唐春霞,江彤,阳春华,贺建军.硅锰合金埋弧熔炼过程中炉渣成分软测量[J].中国有色金属学报,2012,21(11):2922-2928.
    [80]范玉刚,李平,宋执环.动态加权最小二乘支持向量机[J].控制与决策,2006,21(10):1129-1133.
    [81]冯瑞,张玥杰,张艳珠,邵惠鹤.基于加权支持向量机的移动建模方法及其在软测量中的应用[J].自动化学报,2004,30(3):436-441.
    [82]李劫,孔玲爽,阳春华.氧化铝烧结法生产的生料浆质量预测模型及应用[J].中国有色金属学报,2006,16(3):536-541.
    [83]王雷,陈宗海,张海涛,秦廷.复杂过程对象混合建模策略的研究[J].系统仿真学报,2004,16(8):1794-1796.
    [84]彭小奇,胡志坤,梅炽,胡军,姚俊峰.炼铜转炉吹炼终点的神经网络和自适应残差补偿组合预报模型[J].控制理论与应用,2002,19(1):149-151.
    [85]王亦文,桂卫华.基于最优组合算法的烧结终点集成预测模型[J].中国有色金属学报,2002,12(1):191-195.
    [86]袁平,毛志忠,王福利.基于多支持向量机的软测量模型[J].系统仿真学报,2006,18(6):1458-1461.
    [87]唐志杰,唐朝晖,朱红求.一种基于多模型融合软测量建模方法[J].化工学报,2011,62(8):2248-2252.
    [88]王永富,李小平,柴天佑,谢书明.转炉炼钢动态过程预设定模型的混合建模与预报[J].东北大学学报:自然科学版,2003,24(8):715-718.
    [89]K. L. G. Teo, C. J. Goh, K. H. Wong. A unified computational approach to optimal control problems [M]. Essex:Longman Scientific and Technical,1991.
    [90]R. C. Loxton, K. L. Teo, V. Rehbock. Optimal control problems with multiple characteristic time points in the objective and constraints[J]. Automatica,2008, 44(11):2923-2929.
    [91]Q. Q. Chai, C. H. Yang, K. L. Teo, W. H. Gui. Optimal control of an industrial-scale evaporation process:sodium aluminate solution[J]. Control Engineering Practice,2012,20(6):618-628.
    [92]L. Y. Wang, W. H. Gui, K. L. Teo, R. C. Loxton, C. H. Yang. Time delayed optimal control problems with multiple characteristic time points:computation and industrial applications [J]. Journal of Industrial and Management Optimization,2009,5(4):705-718.
    [93]J. Richalet, D. O'Donovan. Predictive functional control:principles and industrial applications[M]. Springer Verlag,2009.
    [94]G P. Rangaiah, P. Saha, M. O. Tade. Nonlinear model predictive control of an industrial four-stage evaporator system via simulation[J]. Chemical Engineering Journal,2002,87(3):285-299..
    [95]J. C. Atuonwu, Y. Cao, G. P. Rangaiah, M. O. Tade. Identification and predictive control of a multistage evaporator [J]. Control Engineering Practice,2010, 18(12):1418-1428.
    [96]王永刚,柴天佑.蒸发过程的非线性模型预测控制[J].东北大学学报(自然科学版),2008,29(10):1369-1372.
    [97]张立,高宪文,李申明,赵娟平,王介生.基于Wang-Mendel模型的有约束模糊预测控制[J].控制与决策,2010,25(9):1384-1388.
    [98]张日东,王树青,李平.基于支持向量机的非线性系统预测控制[J].自动化学报,2007,33(10):1066-1073.
    [99]D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert. Constrained model predictive control:Stability and optimality[J]. Automatica,2000,36(6): 789-814.
    [100]周德云,陈新海.采用加权控制律的自适应广义预测控制器[J].控制与决策,1991,6(1):7-13.
    [101]W. H. Chen, D. Ballance, J. O'Reilly. Optimisation of attraction domains of nonlinear MPC via LMI methods[A]. Proceedings of the 2001 American Control Conference[C]. Arlington, VA, USA,2001,4:3067-3072.
    [102]H. Fukushima, R. R. Bitmead. Robust constrained predictive control using comparison model[J]. Automatica,2005,41(1):97-106.
    [103]张立岩,柴天佑.氧化铝回转窑制粉系统磨机负荷的智能控制[J].控制理论与应用,2010,27(11):1471-1478.
    [104]K. Vintner, C. H. Lyhne, E. B. Sorensen, H. Rasmussen, Evaporator superheat control with one temperature sensor using qualitative system knowledge [A]. American Control Conference[C], Montreal, QC,2012:374-379.
    [105]A. Moghaddamnia, M. Ghafari Gousheh, J. Piri, S. Amin, D. Han. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques[J]. Advances in Water Resources,2009,32(1):88-97.
    [106]Y. Wang, T. Chai, J. Fu, J. Sun. Adaptive decoupling control of the forced-circulation evaporation system using neural networks and multiple models[A]. American Control Conference[C]. San Francisco, USA,2011: 5061-5066.
    [107]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.
    [108]X. T. Wu, Y. Ye, K. R. Subramanian. Interactive gene interaction analysis using graphical gaussian models[A]. The 3rd ACM SIGKDD Workshop on Data Mining in Bioinformatics[C]. Melbourne, Florida,2003:63-69.
    [109]张小海,金家善,耿俊豹.用DEA优化偏最小二乘回归建模及应用[J].浙江大学学报:工学版,2011(9):1688-1692.
    [110]王凌云,桂卫华,刘梅花,阳春华.基于改进在线支持向量回归的离子浓度预测模型[J].控制与决策,2009,24(4):537-541.
    [111]侯振雨,蔡文生,邵学广.主成分分析-支持向量回归建模方法及应用研究[J].分析化学,2006,34(5):617-620.
    [112]W. Wang, Z. Xu. A heuristic training for support vector regression[J]. Neurocomputing,2004,61:259-275.
    [113]姚志湘,蹇华丽,刘焕彬.多变量统计分析中独立变量数目的判定方法[J].华南理工大学学报(自然科学版),2007,35(1):123-128.
    [114]C. K. Yoo, J. M. Lee, P. A. Vanrolleghem, I. B. Lee. On-line monitoring of batch processes using multiway independent component analysis [J]. Chemometrics and Intelligent Laboratory Systems,2004,71(2):151-163.
    [115]杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772.
    [116]P. Comon. Independent component analysis a new concept?[J]. Signal Processing,1994,36(3):287-314.
    [117]M. K. Nath. Independent component analysis of real data[A]. The seventh International Conference on Advances in Pattern Recognition[C]. Kolkata, 2009:149-152.
    [118]A. Hyvarinen, E. Oja. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation,1997,9(7):1483-1492.
    [119]J. A. K. Suykens, J. Vandewalle. Least squares support vector machine classifiers[J]. Neural Processing Letters,1999,9(3):293-300.
    [120]J. A. K. Suykens, L. Lukas, J. Vandewalle. Sparse approximation using least squares support vector machines[A]. The 2000 IEEE International Symposium on Circuits and Systems[C], Geneva,2000,2:757-760.
    [121]M. A. Dibo. Data reconciliation:a robust approach using contaminated distribution[S]. Control Engineering Practice,2008,16(2):159-170.
    [122]从松波.基于优化的生产过程先进控制技术[M].北京:清华大学出版社,1998.
    [123]李听,颜学峰.融合离群点判别的稳态检测方法及其应用[J].华东理工大学学报:自然科学版,2009,35(1):144-148.
    [124]N. T. Russell, H. H. C. Bakker, R. L. Chaplin. A comparison of dynamic models for an evaporation process[J]. Chemical Engineering Research and Design, 2000,78(8):1120-1128.
    [125]D. R. Kuehn, H. Davidson. Computer control II:Mathematics of control [J]. Chemical Engineering and Processing,1961,57(6):44-47.
    [126]Q. Gao, W. W. Yan, H. H. Shao. A novel robust nonlinear dynamic data reconciliation[J]. Chinses Journal of Chemical Engineering,2007,15(5): 698-702.
    [127]D. B. Ozyurt, R. W. Pike. Theory and practice of simultaneous data reconciliation and gross error detection for chemical processes [J]. Computers and Chemical Engineering,2004,28(3):381-402.
    [128]X. Li, Y. Yao. Cooperatively coevolving particle swarms for large scale optimization[J]. IEEE Transactions on Evolutionary Computation,2011,16(2): 1-15.
    [129]H. Zhu, Y. Wang, K. Wang, Y. Chen. Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem[J]. Expert Systems with Applications,2011,38(8):10161-10169.
    [130]W. Dai, H. Yin, W. H. Lam. Optimal multi-period operational planning for steam power system in petrochemical enterprise with consideration of environmental costs in China[J]. Canadian Journal of Chemical Engineering, 2011,89(2):337-344.
    [131]M. A. M. de Oca, T. StUtzle, M. Birattari, M. Dorigo. Frankenstein's PSO:A composite particle swarm optimization algorithm[J]. IEEE Transactions on Evolutionary Computation,2009,13(5):1120-1132.
    [132]R. Mendes, J. Kennedy, J. Neves. The fully informed particle swarm:simpler, maybe better[J]. IEEE Transactions on Evolutionary Computation,2004,8(3): 204-210.
    [133]J. J. Liang, A. K. Qin, P. N. Suganthan, S. Baskar. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation,2006,10(3):281-295.
    [134]J. C. Ni, L. Li, F. Qiao, Q. D. Wu. A novel memetic algorithm based on the comprehensive learning PSO [J].2012 IEEE Congress on Evolutionary Computation [C], Brisbane, Australia, June,10-15,2012:1-8.
    [135]C. Li, S. Yang. An adaptive learning particle swarm optimizer for function optimization[A]. IEEE Congress on Evolutionary Computation[C]. Trondheim, Norway,2009:381-388.
    [136]C. Mei, J. Zhang, Z. Liao, G. Liu. Improved particle swarm optimization algorithm based on periodic evolution strategy [J]. Advanced Research on Computer Science and Information Engineering,2011,153:8-13.
    [137]R. Joshi, A. Selvam. Identification of self-organized criticality in atmospheric low frequency variability [J]. Fractals,1999,7(4):421-426.
    [138]A. Selvam, S. Fadnavis. Superstrings, cantorian-fractal spacetime and quantum-like chaos in atmospheric flows[J]. Chaos, Solitons and Fractals, 1999,10(8):1321-1334.
    [139]梁福明,时少英,刘式达,刘式适,付遵涛,辛国君.大气流场的拓扑结构[J].地球物理学报,2004,47(4):584-587.
    [140]F. Gao, Z. Q. Li, H. Q. Tong. Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization[J]. Chinese Physics B, 2008,17(4):1196-1201.
    [141]S. Kheawhom. Efficient constraint handling scheme for differential evolutionary algorithm in solving chemical engineering optimization problem[J]. Journal of Industrial and Engineering Chemistry,2010,16(4): 620-628.
    [142]J. P. K. Doye, D. J. Wales. Thermodynamics of global optimization[J]. Physical Review Letters,1998,80(7):1357-1360.
    [143]T. P. Runarsson, X. Yao. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation,2000,4(3): 284-294.
    [144]J. A. Joines, C. R. Houck. On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's[A]. Proceedings of the First IEEE Conference on Evolutionary Computation[C]. Orlando,1994, 2:579-584.
    [145]郑宏飞.自然资源的(?)分析观[J].北京理工大学学报(社会科学版),2003,5(2):37-39.
    [146]T. Tekin, M. Bayramoglu. Exergy loss minimization analysis of sugar production process from sugar beet[J]. Food and Bioproducts Processing,1998, 76(3):149-154.
    [147]W. Wagner. Extended IAPWS-IF97 steam tables:Interactive software for the calculation of thermodynamic and transport properties of water and steam-DLL for user specific programs[R],2006.
    [148]H. Chang, J. W. Li. A new exergy method for process analysis and optimization[J]. Chemical Engineering Science,2005,60(10):2771-2784.
    [149]M. C. H. Heluane, M. Colombo, M. R. Hernandez, M. Graells, L. Puigjaner. Enhancing sugar cane process performance through optimal production scheduling[J]. Chemical Engineering and Processing,2007,46(3):198-209.
    [150]C. Pignotti. A note on stabilization of locally damped wave equations with time delay[J]. Systems and Control Letters,2012,61(1):92-97.
    [151]P. Gawthrop, M. Nihtila. Identification of time delays using a polynomial identification method[J]. Systems and Control Letters,1985,5(4):267-271.
    [152]L. Belkoura, J. P. Richard, M. Fliess. Parameters estimation of systems with delayed and structured entries[J], Automatica,2009,45(5):1117-1125.
    [153]S. Diop, I. Kolmanovsky, P. Moraal, M. Van Nieuwstadt. Preserving stability/performance when facing an unknown time-delay [J]. Control Engineering Practice,2001,9(12):1319-1325.
    [154]L. Zunino, M. C. Soriano, I. Fischer, O. A. Rosso, C. R. Mirasso. Permutation-information-theory approach to unveil delay dynamics from time-series analysis[J]. Physical Review E,2010,82:046212.
    [155]F. Pan, R. C. Han, D. M. Feng. An identification method of time-vary ing delay based on genetic algorithm[A]. International Conference on Machine Learning and Cybernetics[C].2003,2:781-783.
    [156]R. Loxton, K. L. Teo, V. Rehbock. An optimization approach to state-delay identification[J]. IEEE Transactions on Automatic Control,2010,55(9): 2113-2119.
    [157]R. L. Burden, J. D. Faires. Numerical analysis[M]. Cengage Learning,2010.
    [158]韩东,顾昂,岳晨,单华伟.可用于MVR蒸发系统的气液分离器改进结构分析[J].化工学报,2012,63(2):508-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700