微/纳米二氧化硅形貌结构调控及其复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分三个层次进行论述,一是研究SiO2从非晶态到晶态的相变行为;二是在乳突形微/纳米SiO2和支化形微/纳米SiO2(包括蜈蚣状、树枝状和珊瑚状微/纳米SiO2)的制备和表征、生长机理以及影响微/纳米SiO2形貌结构的因素等方面展开了较深入的研究;三是对用水热法、化学气相沉积法、共混法制备的微/纳米SiO2核壳式复合材料和复合薄膜作了应用性探索。研究内容既考虑了微米技术的前沿性和现实性,又着眼于纳米科技的前瞻性和基础性,因此,此研究具有重要的理论意义和广泛的应用前景
     首先,以稻壳为原料,制备微.纳米SiO2粉末,SEM、TEM和HRTEM表明,焙烧温度小于570℃时,微.纳米SiO2为非晶态;当焙烧温度达到1080℃时,非晶态SiO2转化为柱形晶态纳米SiO2。焙烧温度不仅是SiO2晶型转变的关键因素,而且对其纯度和形貌结构也影响很大。用有序原子集团切变沉积机制解释了SiO2相变行为。
     其次,特殊形貌的微/纳米SiO2的制备。一是采用酸碱两步法从稻壳中提取了原生原位的乳突形微/纳米SiO2。研究结果表明,原生原位的乳突形微/纳米SiO2为非晶态,并整齐有序地排列着在稻壳的外表面上,分为双峰乳突、单峰乳突和瘤峰乳突三种类型;Si含量呈现递增梯度。二是采用水热法制备了不同形貌的支化形(包括蜈蚣状、树枝状和珊瑚状)微/纳米SiO2。研究结果表明,支化形由基体和分枝组成,分枝的各向平均生长速率和各向平均特征长度各不相同,具有各向异性特征;原材料、压力、温度以及保温时间等因素对支化形微/纳米SiO2形貌有很大的影响。气相沉积-悬键辅助生长机理解释了支化形微/纳米SiO2的生长过程。
     最后,采用不同的方法制备了三种微/纳米SiO2复合材料。用水热法制备了核-壳-支C@SiO2@SiO2三层结构的复合材料,核心碳纳米线为单晶结构,壳层非晶态SiO2分两层包覆碳纳米线,最外层微/纳米SiO2的形貌是支化形状,悬键辅助沉积生长机理解释C@SiO2@SiO2的成形过程;用化学气相沉淀法制备了制备SiC@SiO2核壳式复合材料,直径约为25-50nm.,而长度约为几百微米,最长可达几个厘米。核心SiC纳米线存在“凹洞”填隙缺陷和“凸结头”缺陷。在438nm和464.5nm处有较强的PL性能。气态Si02沉积速率与SiC纳米线生长速率是否相匹配是调控微/纳米SiC@SiO2结构形貌的关键;通过共混法制备了SiO2/PI、 CNT@SiO2/PI和SiC@SiO2/PI三种复合薄膜。微/纳米SiO2在PI基体中分散均匀,具有较好的相容性,提高了复合薄膜的热稳定性能,降低了介电常数。CNT@SiO2/PI复合薄膜的热性能、硬度、耐磨性能、断裂强度和电性能的测试结果表明,CNT@SiO2的加入能提高复合薄膜的各项性能,特别是耐磨性能的提高更为显著。SiC@SiO2的加入,提高了SiC@SiO2/PI复合薄膜的热稳定性,体积电阻的下降致使导电性增强,机械性能,如断裂强度和断裂伸长率,硬度、耐磨性,得到有效的提高。SiC@SiO2主要通过裂纹偏转、SiC@SiO2拔出和桥接来实现增强补韧。
     微/纳米SiO2包覆碳纳米管(CNT)和SiC纳米线,进行表面修饰,不仅改善了CNT和SiC纳米线的分散性,而且还整合优化了它们的性能。将微/纳米SiO2、核壳CNT@SiO2和SiC@SiO2有效地分散在PI基体中,可以提高复合薄膜综合性能指标。SiO2/PI复合薄膜的介电常数得到降低,CNT@SiO2/PI复合薄膜的耐磨性能的提高较为显著,SiC@SiO2/PI复合薄膜的断裂强度和韧性的增加更为突出。
This manuscript was discussed in three aspects:Firstly, the transition of amorphous SiO2to crystalline state was investigated. Secondly, the mastoid-like and the branch-like micro/nano SiO2were prepared and characterized, the growth mechanisms were researched in detail, and the factors that affecting the morphologies of micro/nano-SiO2were analyzed more in-depth. Thirdly, hydrothermal method, chemical vapor deposition and blending method were developed to prepare the micro/nano SiO2core-shell composite materials and composite films. Both the micron technology frontier and reality are concerned but also the forward-looking and foundation of nanotechnology are focused in this study. Therefore, this research is valuable in theory and application.
     In this present study, the micro/nano SiO2was prepared from rice hull. The results of SEM, TEM and HRTEM show that the SiO2is amorphous when the roasting temperature is lower than570℃; the columnar-like SiO2appeared when the temperature rise to1080℃. The roasting temperature is critical factor for phase transformation of SiO2, it also decides the purity, morphology and structure of SiO2. These phenomena were explained by the change of deposition model of the ordered atomic clusters.
     Then, the micro/nano SiO2with different morphologies were prepared by two different methods. The native in-situ mastoid SiO2can be purified by acid and alkali pretreatment from rice husk. Studies have shown that the mastoid SiO2is amorphous, is place in an orderly arrangement on the outer surface of the rice husk, and is divided into three types of bimodal mastoid, unimodal mastoid and tumor peak mastoid. Si content is increasing from the outer surface to the inner surface of the husk. In other side, three branch-like micro/nano SiO2with different morphologies (including centipede-like, arborization and coral-like) were prepared by hydrothermal method, and was constructed by the main body and dendrtics, The growth rate and length of these dendrtics are different from each other. The raw materials, pressure, temperature and the temperature keeping time have great effects on the morphologies of SiO2. The growth mechanism of branch-like micro/nano SiO2can be explained by the vapor deposition and dangling bonds-assisted growth.
     At last, three kinds of micro/nano SiO2composites were prepared by different methods. C@SiO2@SiO2composites with core-shell-branch structure were prepared by hydrothermal method. The carbon nanowires are single crystal structure, and two SiO2shells are amorphous, the outer SiO2shell is branch-like structure. The formation of C@SiO2@SiO2can be explained by dangling bonds-assisted growth and the vapor deposition. SiC@SiO2composites with core-shell structure were prepared by chemistry vapor deposition. Its diameter is25-50nm, while its length is about hundreds of micrometers, even up to several centimeters. The defects of'convex knot'and'concave hole'exist on the SiC nanowires. There is a PL peak in438nm and464.5nm. The matching of deposition rate of the gaseous SiO2and the growth rate of SiC nanowires can control the morphology of SiC@SiO2. Three kinds of composite films, including SiO2/PI, CNT@SiO2/PI and SiC@SiO2/PI, were prepared by blending method. The heat stabilities of SiO2/PI were greatly increased and the dielectric constant was reduced by adding micro/nano SiO2which has better dispersion and compatibility in the PI matrix. The heat stability, rigidity, wear resistance, fracture strength, and electricity properties of CNT@SiO2/PI were improved by adding CNT@SiO2, especially the wear resistance property. By adding SiC@SiO2, the heat stabilities of SiC@SiO2/PI were greatly increased, and its volume resistivity was reduced to improve its conductivity. The mechanism properties, including fracture strength, rigidity, and wear resistance, were improved effectively. SiC@SiO2can enhance the strength and toughness by the crack deflexion, SiC@SiO2pulled out and bridged.
     When the carbon nanotubes (CNT) and SiC nanowires were coated by the micro/nano SiO2to modify its surface, they can not only be improved its dispersion but also be integrated and optimized its performance. Micro/nano SiO2, the core-shell CNT@SiO2and SiC@SiO2dispersed in the PI matrix, can improve the performances of the composite film. A dielectric constant of SiO2/PI was reduced, the improving wear resistance of CNT@SiO2/PI is more distinguished, and the increasing fracture strength and toughness of SiC@SiO2/PI are more prominent.
引文
[1]徐祖顺,易昌凤.聚合物纳米粒子[M].北京:化学工业出版社,2006,2-3.
    [2]丁秉钧.纳米材料[M].北京:机械工业出版社,2004,2-3.
    [3]丁燕鸿,唐元洪,杨扬.悬键辅助制备枝化型微/纳米SiO2[C].功能材料-第七届中国功能材料及其应用学术会议论文集(4).湖南长沙:《功能材料》期刊社,2010:367-370.
    [4]Zheng B, Wu Y Y, Yang P D, et al. Synthesis of ultra-long and highly oriented silicon oxide nanowires from liquid alloys[J]. Advanced Materials,2002,14(2):122-124.
    [5]Sun S H, Meng G W, Zhang M G, et al. Microscopy study of the growth process and structural features of closely packed silica nanowires[J]. The Journal of Physical Chemistry B,2003,107(47):13029-13032.
    [6]Pan Z W, Dai Z R, Ma C, et al. Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires[J]. Journal of the American Chemical Society.2002, 124(8):1817-1822.
    [7]Zhang M, Bando Y, Wada K, et al. Synthesis of nanotubes and nanowires of silicon oxide[J]. Journal of Materials Science Letters,1999,18(23):1911-1913.
    [8]Li J P, Zhang Z J, Luo Y M, et al. Synthesis and Characterization of Amorphous SiC>2 Nanowires Derived from a Polymeric Precursor [J]. Journal of Nanoscience and Nanotechnology,2008,8(2):997-1002.
    [9]Lin L W. Synthesis and optical property of large-scale centimetres-long silicon carbide nanowires by catalyst-free CVD route under superatmospheric pressure conditions[J]. Nanoscale,2011,3:1582-1591.
    [10]Wang H H, Kim S H, Yang S M. Microfluidic fabrication of SERS-active microspheres for molecular detection[J]. Lab on a Chip,2011,11:87-92.
    [11]曹茂盛.超微颗粒制备科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1998,4-5.
    [12]Huang K, Rzayev J. Charge and Size Selective Molecular Transport by Amphiphilic Organic Nanotubes[J]. Jouranl of the American Chemical Society,2011,133(42): 16726-16729.
    [13]Joo S H, Ryoo R, Kruk M, et al. Evidence for General Nature of Pore Interconnectivity in 2-Dimensional Hexagonal Mesoporous Silicas Prepared Using Block Copolymer Templates[J]. The Journal of Physical Chemistry B,2002,106(18):4640-4646.
    [14]An X H, Meng G W, Wei Q, et al. SiO2 Nanowires Growing on Hexagonally Arranged Circular Patterns Surrounded by TiO2 Films [J]. The Journal of Physical Chemistry B, 2006,110(1):222-226.
    [15]Zhang Z J, Wang L M, Wang J, et al. Theranostics:Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment [J]. Advanced Materials,2012,24(11):1349-1349.
    [16]赵东林,沈曾民.炭纤维及其复合材料的吸波性能和吸波机理[J].新型炭材料,2001,16(2):66-72.
    [17]黎炎图,黄小忠,杜作娟,等.结构吸波纤维及其复合材料的研究进展[J].材料导报,2010,24(4):76-79.
    [18]Feng D H, Jia T Q, Li X X, et. Catalytic synthesis and photoluminescence of needle-shaped 3C-SiC nanowires[J]. Solid State Communications,2003,128(8):295-297.
    [19]朱彦武,陈喜红,陈耀锋,等.超细氧化硅纳米线阵列的制备和发光特性[J].发光学报,2004,25(2):173-177.
    [20]李新勇,李树本.纳米半导体研究进展[J].化学进展,1996,8(3):231-239.
    [21]王中林.压电电子学和压电光电子学[J].物理,2010,59(8):555-557.
    [22]Wang H L, Song J H. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays [J]. Science,2006,312(5771):242-246.
    [23]王晓丽,刘谦,于鹤龙.纳米铜自修复添加剂的制备及其摩擦学性能[J].粉末冶金材料科学与工程,2006,11(6):337-340.
    [24]谢学兵,陈国需,孙霞.润滑油纳米Ti02添加剂的摩擦自修复及其性能研究[J].中国表面工程,2008,21(2):36-40.
    [25]李柯,王煦,何显儒.纳米粒子作为润滑油添加剂的应用现状[J].纳米科技,2010,7(2):6-9.
    [26]吴光杰,王海宝.纳米陶瓷及其在轴承工业中的应用[J].西南民族大学学报:自然科学版,2003,29(3):431-343.
    [27]丁燕鸿.SiC晶须增韧碳氮化钛基金属陶瓷切削刀片及其制备方法.中国:ZL200710034792.4[P],2009-09-30.
    [28]赵洪国,胡海华,宋中勤,等.改性纳米二氧化硅对丁腈橡胶的补强作用[J].世界橡胶工业,2010,37(2):13-15.
    [29]郑秋红,刘丰,李小红,等.可分散性纳米二氧化硅补强硅橡胶的性能[J].高分子材料科学与工程,2007,23(3):139-142.
    [30]Kurauchi T, Ohta T. Energy absorption in blends of polycarbonate with ABS and SAN [J]. Journal of Material Science,1984,19(5):1699-1702.
    [31]Koo K K, Inoue T, Miyasaka K. Toughened plastics consisting of brittle particles and ductile matrix[J]. Polymer Engineering and Science,1985,29(12):741-746.
    [32]郑艳红,蔡楚江,沈志刚,等.微纳米SiO2/PP复合材料增强增韧的实验研究[J].复合材料学报,2007,24(6):19-25.
    [33]孔德玉,王家邦,韦苏,等.纳米Si02包覆A1203浓悬浮体制备及其凝胶注模成型[J].硅酸盐学报,2004,32(4):442-447.
    [34]丁燕鸿,刘建文.SiC晶须增韧Ti (C,N)基金属陶瓷复合材料的研究[J].粉末冶金技术,2007,4(25):256-265.
    [35]泽仑.非晶态固体物理学[M].北京:北京大学出版社,1988,81-84.
    [36]黄永炎.沉淀法白炭黑的制,特性和性能鉴定[J].广州化工,1997,25(2):33-38.
    [37]王志成,平琳,张慧勤.沉淀法纳米白炭黑的制备[J].有机硅材料,2005,19(2):23-25.
    [38]宁延生,马慧斌,王慧玲.沉淀法白炭黑与纳米级二氧化硅[J].无机盐工业,2002,34(1):18-20.
    [39]郑景新,舒畅,钟婷婷.气相二氧化硅的性质、发展现状及其应用[J].有机硅氟资讯-GBS(吉必盛)专栏,2009,20-24.
    [40]赵贝贝,田彩华,王克宇,等.两相溶胶-凝胶法制备微米二氧化硅[J].无机盐工业,2009,41(6):37-39.
    [41]郑典模,苏学军.化学沉淀法制备纳米Si02的研究[J].南昌大学学报:工科版,2003,25(2):39-41.
    [42]贾东舒,童忠良.纳米SiO2粉体的制备与研究[J].化工进展,2003,22(7):735-738.
    [43]张密林,丁立国,景晓燕,等.纳米二氧化硅的制备、改性与应用研究进展[J].应用科技,2004,31(6):64-66.
    [44]何清玉,郭锴,赵柄国,等.超重力法制备超细二氧化硅及影响因素的研究[J].北京化工大学学报,2006,33(1):16-19.
    [45]许珂敬,杨新春,段贤峰,等.多孔纳米SiO2微粉的制备与表征[J].硅酸盐通报,2001,20(1):58-62.
    [46]韩静香,佘利娟,翟立新,等.化学沉淀法制备纳米二氧化硅[J].硅酸盐通报,2010,29(3):681-685.
    [47]聂王焰,徐洪耀,李洋,等.微乳液法制备纳米二氧化硅[J].安徽大学学报,2007,31(6):70-73.
    [48]王玉琨,钟浩波,吴金桥.微乳液法制备条件对纳米Si02粒子形貌和粒径分布的影响[J].精细化工,2002,19(8):466-468.
    [49]朱振峰,李晖,朱敏.微乳液法制备无定形纳米二氧化硅[J].无机盐工业,2006,38(6):14-16.
    [50]赵丽,余家国,程蓓,等.单分散二氧化硅球形颗粒的制备与形成机理[J].化工学 报,2003,61(4)::562-566.
    [51]符远翔,孙艳辉,葛杏心.单分散纳米二氧化硅的制备与表征[J].硅酸盐通报,2008,27(1):154-159.
    [52]丁燕鸿,唐元洪,杨扬.Dangling bonds-assisted synthesis of arborization silica[J]. Asian Journal of Chemistry,2011,23(8):3626-3630.
    [53]段先健,王跃林,杨本意,等.一种高分散纳米二氧化硅的制备方法.中国:CN02149782.6[P],2002-06-11
    [54]徐喻琼,游敏,郑小玲,等.二氧化硅对不饱和聚酯树脂浇铸体力学性能的影响[J].弹性体,2007,17(1):7-10.
    [55]郑亚萍,宁荣昌.纳米SiO2/环氧树脂复合材料性能研究[J].高分子材料科学与工程,2002,18(5):148-151.
    [56]吕国斌.水相微悬浮聚合法纳米SiO2改性氯醚树脂的合成及应用[D].安徽:安徽大学,2011.
    [57]Huang W T, Chen G X, Tang B L, et al. Study on Nano-SiO2 Used to Improve the Property of Ink[J]. Advanced Materials Research,2011,380(22):56-59.
    [58]郁亮,李汾.聚氨酯弹性体耐热性能的研究进展[J].特种橡胶制品,2008,29(6):52-57.
    [59]王虹,倪星元,汤人望,等.纤维毡复合SiO2气凝胶常压干燥法制备超低导热系数保温隔热材料[J].产业用纺织品,2009,11(9):9-12.
    [60]王涛.界面SiO2层对SiC/Al电子封装材料热膨胀系数的影响[J].硅酸盐通报,2009,28(1):71-75.
    [61]李建中,吕功煊,李克.甲烷在Ni/SiO2催化剂上裂解制碳纳米管和氢气[J].石油与天然气化工,2004,33(4):222-225.
    [62]李望良,柳云骐,刘春英,等.MCM-41负载Mo-Ni-P催化剂的加氢性能[J].石油学报,2004,20(2):69-74.
    [63]潘家亮,张拴勤,卢言利,等.光谱选择性激光隐身材料研究现状[J].光电技术应用,2011,26(6):45-48.
    [64]刘冰,王德平,姚爱华,等.反相微乳液法制备核壳SiO2/Fe3O4复合纳米粒子[J].硅酸盐学报,2008,36(4):569-574.
    [65]陈雪刚,叶瑛,程继鹏.电磁波吸收材料的研究进展[J].无机材料学报,2011,26(5):449-457.
    [66]Che S N, Liu Z, Ohsuna T, et al. Synthesis and characterization of chiral mesoporous silica [J]. Nature,2004,429:281-284.
    [67]安哲.基于高分散水滑石和手性螺旋氧化硅材料的纳米-生物界面构筑与调控[D].北京:北京化工大学,2011
    [68]Zhu Y Q, Hsu W K, Grobert N, ET AL.3D silicon oxide nanostructures:from nanoflowers to radiolarian [J]. Journal of Materials Research,1998,8(81):1859-1864.
    [69]王莉,张广斌,秦晓英,等.新奇纳米结构SiOx的自组织生长及其发光[J].发光学报,2010,(31)3:390-394.
    [70]Zhong L, Wang R P, Gao J L, et al. Silica nanotubes and nanofiber arrays [J]. Advanced Material,2000,12(24):1938-1940.
    [71]Chen Y J, Li J B, Han Y S, et al. Self-assembly of Si and SiOx nanostructures [J]. Journal of Materials Science Letters,2002,21(2):157-177.
    [72]Pan Z W, Dai S, Beach D B, et al. Temperature Dependence of Morphologies of Aligned Silicon Oxide Nanowire Assemblies Catalyzed by Molten Gallium [J]. Nano Latters,2003,3(9):1279-1284.
    [73]Sun S H, Meng G W, Zhang M G, et al. Preparation and characterization of oriented silica nanowires [J]. Solid State Communications,2003,128(8):287-290.
    [74]Ding Y H, Yang Y, Tang Y H. Synthesis and characterization of coral-like micro/nano-SiO2 [J]. Advanced Materials Research,2011,338:350-354.
    [75]Poyraz A S, Albayrak C, Dag O. The effect of cationic surfactant and some organic/inorganic additives on the morphology of mesostructured silica templated by pluronics [J]. Microporous Mesoporous Mater,2008,115(3):548-555.
    [76]Polshettiwar V, Cha D, Zhang X X, et al. High-Surface-Area Silica Nanospheres (KCC-1) with a Fibrous Morphology [J]. Angewandte Chemie International Edition, 2010,49(50):9652-9656.
    [77]Shrivastava S, Nuffer J H, Siegel R W, et al. Position-Specific Chemical Modification and Quantitative Proteomics Disclose Protein Orientation Adsorbed on Silica Nanoparticles [J]. Nano letter,2012,12 (3):1583-1587.
    [78]王晨,古宏晨.金、银纳米粒子包覆核壳结构微球的制备与研究进展[J].材料科学与工程学报,2011,29(6):958-964.
    [79]姜玲玲,隋成华,姜吉光.氧化硅亚微米纳米线光波导的制备[J].光学仪器,2005,27(5):132-135.
    [80]Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction [J]. Science,1997,277(5341):1287-1289.
    [81]Ruecks T, Kim K, Joselevich E, et al. Carbon nanotube-based nonvolatile random access memory for molecular computing [J]. Science,2000,289(5476):94-97.
    [82]Li Y B, Bando Y, Golberg D, et al. SiO2-sheathed InS nanowires and SiO2 nanotubes [J]. Applied Physics Letters,2003,83(19):3999-4001.
    [83]贾志光,赵新强,安华良,等.Pb/SiO2催化剂上尿素与1,2-丙二醇合成碳酸丙烯酯 [J].石油化工,2006,35(10):927-931.
    [84]张德立,牟季美.纳米材料与纳米结构[M].北京:科学出版社,2001,25-26.
    [85]Whitesides G M, Grzybowski B. Self-Assembly at all Scales [J]. Science,2002, 295(5564):2418-2421.
    [86]Wesson P J, Soh S, Klajn R, et al. "Remote" Fabrication via Three-Dimensional Reaction-Diffusion:Making Complex Core-and-Shell Particles and Assembling them into Open-Lattice Crystals [J]. Advanced Materials,2009,21(19):1911-1915.
    [87]Arruebo M, Galan M, Navascues N, et al. Development of Magnetic Nanostructured Silica-Based Materials as Potential Vectors for Drug-Delivery Applications [J]. Chemistry of Material s,2006,18(7):1911-1919.
    [88]李玉,于文志,韩兆让,等.PMMA/TiO2@SiO2高分子杂化材料的制备与表征[J].高分子材料科学与工程,2008,24(11):161-164.
    [89]张立功,赵贵梅,吴晓宏.ZnO/SiO2核壳结构热控涂层制备研究[J].材料科学与工艺,2011,19(4):33-35.
    [90]Aslan K, Wu M, Lakowicz J R, Geddes C D. Metal Enhanced Fluorescence Solution-based Sensing Platform 2:Fluorescent Core-Shell Ag@SiO2 Nanoballs [J]. Journal of Fluorescence,2007,17(2):127-131.
    [91]Asian K, Wu M, Lakowicz J R. Fluorescent Core-Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms [J]. The Journal of the American Chemical Society,2007,129 (6):1524-1525.
    [92]Tovmachenko O G, Graf C, Heuvel D J, et al. Fluorescence Enhancement by Metal-Core/Silica-Shell Nanoparticles [J]. Advanced Materials,2006,18(1):91-95.
    [93]Zhang Z J, Wang L M, Wang J, et al. Theranostics:Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment [J]. Advanced Materials,2012,24(11):1349-1349.
    [94]邓伟,陈国,王满意,等.PH值和前驱体用量对核壳结构PSt/SiO2复合微球结构形态的影响[J].高分子学报,2011,0(3):307-312.
    [95]Shi W S, Peng H Y, Xu L, et al. Coaxial Three-Layer Nanocables Synthesized by Combining Laser Ablation and Thermal Evaporation [J], Advanced Materials,2000, 12(24):1927-1929.
    [96]Tie S L, Lee H C, Bae Y S, et al. Monodisperse Fe3O4/Fe@SiO2 core/shell nanoparticles with enhanced magnetic property [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,293(1-3):278-285.
    [97]解思深,潘正伟,超长定向碳纳米管阵列的制备[J].物理,1999,28(1):1-3.
    [98]刘兴明,韩琳,刘理天.新Si02栅介质非晶硅薄膜晶体管室温红外探测器[J]红 外与激光工程,2006,35(6):764-766.
    [99]钱伯章.橡胶市场对特种Si02需求将增长[J].橡塑技术与装备,2010,36(11):55-55.
    [100]刘岩,贾德昌,等.纳米SiCp/SiO2陶瓷基复合材料的制备和性能研究.宇航材料工艺,2002,5:34~37
    [101]丁衡高.在第六届全国微米纳米技术学术大会开幕式上的讲话[J].微纳电子技术,2003,10:1-4.
    [102]Gharghi M, Gladden C, Zentgraf T, et al. A Carpet Cloak for Visible Light[J]. Nano Letters,2011,11 (7):2825-2828.
    [103]Warren S C, Perkins M R, Adams A M, et al. A silica sol-gel design strategy for nanostructured metallic materials[J]. Nature Materials,2012,11(5):460-467.
    [104]王志成,平琳,张慧勤.沉淀法纳米白炭黑的制备[J].有机硅材料,2005,19(2):23-25.
    [105]李海青,闫卫东,沈晓莉,等.模板法合成有序大孔材料研究进展[J].化学通报,2004,67(77):1-7.
    [106]Miguez H, Meseguer F, Lopez C, et al. Evidence of FCC Crystallization of SiO2 Nanospheres [J]. Langmuir,1997,13 (23):6009-6011.
    [107]Elechiguerra J L, J.A. Manriquez J A, Yacaman M J. Growth of amorphous SiO2 nanowires on Si using a Pd/Au thin film as a catalyst [J]. Applied Physics A:Materials Science & Processing,2004,79(3):461-467.
    [108]Kovtyukhova N I, Mallouk T E, Mayer T S.Templated Surface Sol-Gel Synthesis of SiO2 Nanotubes and SiO2-Insulated Metal Nanowires [J]. Advanced Materials,2003, 15(10):780-785.
    [109]孔令丽,钟顺和.NiO-V2O5/SiO2光催化材料的结构和光吸收性能.无机材料学,2006,21(5):1203-1208.
    [110]Cui Y, Lieber C M. Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks [J]. Science,2001,291 (5505):851-853.
    [111]Wang Y Q, Wang G Z, Wang H Q, et al. Chemical-Template Synthesis of Micro/Nanoscale Magnesium Silicate Hollow Spheres for Waste-Water Treatment [J]. Chemistry-A European Journal,2010,16(11):3497-3503.
    [112]吴艳军,张亚非,杨忠,等.碳纤维无催化剂法制备-SiC纳米晶须[J].无机材料学报,2005,20(3):740-743.
    [113]Zhou W M, Wu Y J, Kong E S W, et al. Field emission from nonaligned SiCnanowires [J]. Applied Surface Science,2006,253(4):2056-2058.
    [114]万雨挺.准一维硅纳米材料的制备及其场发射特性[D].浙江:浙江大学,2011.
    [115]Leonhardta A, Liepacka H, Biedermanna K, et al. Synthesis of SiC Nanorods by Chemical Vapor Deposition. Fullerenes [J]. Nanotubes and Carbon Nanostructures, 2005,13(1):91-97.
    [116]蔡辉,闫逢元,薛群基.聚酰亚胺/SiO2纳米复合材料的摩擦学行为及SEM研究[J].电子显微学报,2003,22(5):420-425.
    [117]Zhu Z K, Yang Y, Yin J, et al. Preparation and properties of organosoluble polyimide/silica hybrid materials by sol-gel process [J]. Journal of Applied Polymer Science,1999,73(14):2977-2984.
    [118]朱永法.纳米材料的表征与测试技术[M].北京:化学工业出版社,2006,1-2.
    [119]刘景春,韩建成.跨世纪高新科技纳米材料一员一纳米Si02[J].涂料工业,1998,1:34-35.
    [120]徐涛,谢长生.纳米材料在涂料中的应用进展[J].化工进展,2001,20(11):28-30.
    [121]柯博.纳米SiO2在涂料中的应用[J].涂料工业,1998,12:29-30.
    [122]张子锋,任淑英.聚合物/纳米SiO2复合材料研究进展.塑料加工[J].2003,38(1):23-25.
    [123]吴为亚,徐世前,张强.纳米SiO2复合溶剂型地板漆的研制及性能研究[J].安徽化工,2009,35(3):23-25.
    [124]徐洁明,谢吉民,朱建军.粉煤灰气相法制备纳米白炭黑研究[J].无机盐工业,2006,38(7):54-56.
    [125]侯贵华,罗驹华,陈景文.用稻壳灰为硅源合成有序介孔二氧化硅材料的研究[J].材料科学与工程学报,2006,24(4):528-530.
    [126]崔文雷,胡建,张启忠.废稻壳制白炭黑工艺研究[J].吉林化工学院学报,2006,23(2):242-243.
    [127]Yu Q, Sawayama K, Sugita S, et al. The reaction between rice husk ash and Ca(OH)2 solution and the nature of its product[J]. Cement and Concrete Research,1999, 29(1):37-43.
    [128]Ikpong A A. The relationship between the strength and non-destructive parameters of rice husk ash concrete [J], NDT & E International,1997,30(4):261-267.
    [129]黄胜涛.非晶态材料的结构和结构分析[M].北京:科学出版社,1987,10~11.
    [130]徐子颉,吕泽霖,甘礼华,等.SiO2气凝胶小球热处理过程中的相变研究[J].人工晶体学报,2006,35(6):1176-1179.
    [131]张纵.水热法及溶剂热合法制备纳米SiO2的工艺.中国:200910103083[P],2009-07-08.
    [132]王国光,水淼,岳林海.X射线衍射分析非晶二氧化硅结构及其物化性质的研究[J].无机化学学报,2002,18(10):991-996.
    [133]冯彩虹,矫庆泽,李前树,等.溶胶-凝胶法制备聚醚砜-二氧化硅复合材料[J].高等学校化学学报,2004,25(9):1743-1746.
    [134]Ida T, Ando M, Toraya H. Extended pseudo-Voigt function for approximating the Voigt profile [J]. Journal of Applied Crystallography,2000,33(6):1311-1316.
    [135]沈绍典,蔡华强,朱晓东,等.三头季铵盐阳离子表面活性剂合成菱形十二面体介孔二氧化硅单晶[J].化学学报,2009,67(10):1093-1097.
    [136]葛小月,张富生.青金石中有序结构畴与无序结构畴交生的畴结构新类型[J].矿物学报,1999,19(4):385-389.
    [137]丁元法,张跃,张大海,等.石英玻璃分子动力学模拟中的原子电荷转移与系综选择[J].物理化学学报,2010,26(6):1651-1656.
    [138]程晓农,戴起勋,邵红红.材料固态相变与扩散[M].北京:化学工业出版社,2006,58-58.
    [139]卢柯.非晶态合金向纳米晶体的相转变[J].金属学报,1994,30(1):1-21.
    [140]Zallen R. The Physics of Amorphous Solids [M]. New York:A Wiley-Interscience Publication,1983,24-25.
    [141]吕秀阳,夏文莉,刘田春.稻壳资源化新工艺的研究[J].农业工程学报,2001(3):132-135.
    [142]马军强,冯贵颖.稻壳制备糠醛的研究[J].安徽农业科学,2007,35(16):4738-4739.
    [143]Della V P, KuHN I, HOTZA D. Rice husk ash as an alternate source for active silica production [J]. Materials Letters,2002,57(4):818-821.
    [144]Huang S, Jing S, Wang J F, et al. Silica white obtained from rice husk in a fiuidized bed [J]. Powder Technology,2001,117(3):232-238.
    [145]阮长青,马军喜,崔素萍,等.稻壳沉淀法制备白炭黑工艺的研究[J].黑龙江八一农垦大学学报,2005,17(2):63-66.
    [146]刘厚凡,甘露,李日生,杨桂珍.稻壳制备白炭黑新方法研究[J].无机盐工业,2007,39(2):40-42.
    [147]Jia H Z, Wan Y M, Zhang S M, Preparation of Nano-silica by Thermal Decomposition of Rice Hull[J]. New Technology & New Process,2006,6(5):81-82.
    [148]Mochidzuki K, Sakoda A, Suzuki M, et al. Structural behavior of rice husk silica in pressurized hot-water treatment processes[J]. Industrial & Engineering Chemistry Research,2001,40(24):5705-5709
    [149]Liou T H. Preparation and characterization of nano-structured silica from rice husk [J]. Materials Science and Engineering,2004,364(1):313-323.
    [150]黄艳兰,张乃群,何光存,等.我国三种野生稻及其与栽培稻种间杂种外稃表面显微 特征的比较观察[J].中国水稻科学,1999,13(2):77-80.
    [151]Nypuist R A, Kagel R O. Infrared Spectra of Inorganic Compounds [M]. New York/London:Academic Press,1971:1-94.
    [152]Wang L J, Lu A H, Wang C Q, et al. Nano-fibriform production of silica from natural chrysotile[J]. Journal of Colloid and Interface Science,2006,295(2):436-439.
    [153]Glinka Y D, Lin S H, Chen Y T. Two-photon-excited luminescence and defect formation in SiO2 nanoparticles induced by 6.4-eV ArF laser light[J]. Physical Review B,2000,62(7):4733-4743.
    [154]Duran A, Sema C, Fornes V, et al. Structural considerations about SiO2 glasses prepared by sol-gel [J]. Journal of Non-Crystalline Solids,1986,82(1):69-77.
    [155]Glinka Y D, Krak T B, Belyak Y N, et al. X-ray and photo-luminophors based on Si02-UO2+2 adsorption systems[J]. Colloids and Surfaces A,1995,104(1):17-27.
    [156]Yu D P, Hang Q L, Ding Y, et al. Amorphous silica nanowires:Intensive blue light emitters[J]. Applied Physics Letters,1998,73 (21):3076-3078.
    [157]Lin L W, Tang Y H, Chen C S. Self-assembled silicon oxide nanojunctions [J]. Nanotechnology,2009,20(17):175601-175605.
    [158]Yang Y, Suzuki M, Owa S, et al. Control of helical silica nanostructures using a chiral surfactant [J]. Journal of Materials Chemistry,2006,16(17):1644-1650.
    [159]Yang Y, Suzuki M, Fukui H, et al. Preparation of helicalmesoporous silica and hybrid silica nanofibers using hydrogelator [J]. Chemistry of Materials,2006,18(5):1324-1329.
    [160]Yang Y, SuzukiM, Owa S, et al. Preparation of helical nanostructures using chiral cationic surfactant [J]. Chemical Communications,2005,35:4462-4464.
    [161]Hu J Q, Jiang Y, Meng X M, et al. Temperature-dependent growth of germanium oxide and silicon oxide based nanostructures, aligned silicon oxide nanowire assemblies, and silicon oxide microtubes [J]. Small,2005,1(4):429-438.
    [162]Pan Z W, Dai S, Beach D B, et al. Liquid Gallium Ball/Crystalline Silicon Polyhedrons/Aligned Silicon Oxide Nanowires Sandwich Structure:An Interesting Nanowire Growth Route [J]. Applied Physics Letters,2003,83(15):3159-3161.
    [163]Zhu Y Q, Hu W B, Hsu W K, et al. A Simple Route to Silicon-Based Nanostructures. Advanced Materials,1999,11(10):844-847.
    [164]Wang Z L, Gao R P, Gole J L, et al. Silica Nanotubes and Nanofiber Arrays [J]. Advanced Materials,2000,12(24):1938-1940
    [165]Hu J Q, Jiang Y, X.M Meng X M, et al. A simple large-scale synthesis of very long aligned silica nanowires [J]. Chemical Physics Letters,2003,367(3):339-343.
    [166]Chen Y J, Li J B, Dai J H, et al. Si and SiOx nanostructures formed via thermal evaporation [J]. Chemical Physics Letters,2001,344(5-6):450-456.
    [167]邹兴权,吴萍,李强,等.非晶SiO2纳米灯笼的制备和表征物[J],理化学学报,2007,23(3):322-326.
    [168]韦磊,周爱军,江学良,等.有序大孔二氧化硅微球的制备研究[J],化学与生物工程,2009,26(6):24-26.
    [169]Hu J, Odom T W and Lieber C M. Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes [J]. Accounts of Chemical Research,1999, 32(5):435-445.
    [170]Nguyen P, Ng H T, Meyyappan M. Growth of individual vertical germanium nanowires [J]. Advanced Materials,2005,17(5):549-553.
    [171]Ting J M, Li T P, Chang C C. Carbon nanotubes with 2D and 3D multiple junctions [J]. Carbon,2004,42(14):2997-3002.
    [172]徐灿,张小芳,陈亮.二氧化硅纳米线中振动模式奇偶振荡的理论研究[J].物理化学报,2007,23(11):1733-1737.
    [173]Hu J, Bando Y, Zhan J, et al. Self-Assembly of SiO2 Nanowires and Si Microwires into Hierarchical Heterostructures on a Large Scale [J]. Advanced Materials,2005, 17(8):971-975.
    [174]Sun K, Jing Y, Li, C, et al.3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation [J]. nanoscale,2012,4(5): 1515-1521.
    [175]李志宏,巩雁军,吴东,等.介孔氧化硅的分形特征[J].核技术,2004,27(1):14-17.
    [176]Rabenau A. The role of hydrothermal synthesis in preparative chemistry [J]. Angewandte Chemie International Edition,1985,24(12):1026-1040.
    [177]曹茂盛.超微颗粒制备科学与技术[M].哈尔滨:哈尔滨工业出版社,1998:123-134.
    [178]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in micron size range [J]. Journal of Colloid and Interface Science,1968,26(1):62-69.
    [179]Lin Y C, Lin W T. Growth of SiO2 nanowires without a catalyst via carbothermal reduction of CuO powders [J]. Nanotechnology,2005,16(9):1648-1651
    [180]吴燕,黄胜利,朱贤方,等.CVD制备SiOx纳米线的各个生长阶段的直接实验证据[J].科学通报,2009,54(19):2988-2992.
    [181]Lin L W, Tang Y H, Li X X, et. Water-assisted synthesis of silicon oxide nanowires under supercritically hydrothermal conditions [J]. Journal of Applied Physics,2007, 101(1):014314-014317.
    [182]Zhuravlev L T. The surface chemistry of amorphous silica Zhuravlev model [J]. Colloids and Surfaces A:physicochemical and Engineering Aspeets,2000,173(1): 1-38.
    [183]Dai X M, Li Q F. Synthesis of powder gas-solid phase [J]. China powder science and technology,2000(6):15-20.
    [184]陈乾旺.碳基纳米材料化学合成储氢性能碳纳米管超临界二氧化碳化学吸附[D].北京:中国科学技术大学,2006.
    [185]徐灿,张小芳,陈亮,等.二氧化硅纳米线中振动模式奇偶振荡的理论研究[J].物理化学学报,2007,23(11):1733-1737.
    [186]柳得橹,张济忠.电子束辐照下碳沉积的分形生长[J].电子显微学报,1996,15(16):529-529.
    [187]Zhang J Z, Liu D L. Morphology of molybdena fractal clusters grown by vapour-phase deposition [J]. Journal of Materials Science,1992,27(16):4329-4332.
    [188]Zheng w P, Sheng D, David B, et al. Temperature Dependence of Morphologies of Aligned Silicon Oxide Nanowire Assemblies Catalyzed by Molten Gallium [J]. Nano Latters,2003,3(9):1279-1284.
    [189]Scher E C, Manna L, Alivisatos A P. Shape control and applications of nanocrystals [J]. Philosophical transactions A, Mathematical, physical, and engineering sciences, 2003,361(1803):241-255.
    [190]Link S, El-Sayed M A. Optical properties and ultrafast dynamics of metallic nanocrystals [J]. Annual Reviews Physical Chemistry,2003,54:331-366.
    [191]Huang C K, Hou C H, Chen C C, et al. Magnetic SiO2/Fe3O4 colloidal crystals [J]. Nanotechnology,2008,19(5):055701-055703.
    [192]Medeiros S K, Albuquerque E L, Maia Jr F F, et al. Electronic and optical properties of CaCO3 calcite, and excitons in Si@CaCO3 and CaCO3@SiO2 core-shell quantum dots [J]. Journal of Physics D:Applied Physics,2007,40(18):5747-5752.
    [193]Wang Z X, Chen J F, Xue X, et al. Synthesis of monodispersed CdS nanoballs through y-irradiation route and building core-shell structure CdS@SiO2 [J]. Materials Research Bulletin,2007,42(12):2211-2218.
    [194]Bikram M, Gobin A M, Whitmire R E, et al. Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery [J]. Journal of Controlled Release, 2007,123(3):219-227.
    [195]刘桂霞,李若兰,董相廷,等.LaPO4:Eu3+@Si02核壳结构发光纳米棒的制备与表征[J].发光学报,2011,32(5):466-470.
    [196]Yang H, Kim S H, Yang L, et al. Pentacene Nanostructures on Surface Hydrophobicity Controlled Polymer/SiO2 Bilayer Gate-Dielectrics [J]. Advanced Materials,2007, 19(19):2868-2872.
    [197]Khopade A J, Caruso F. Two Component Ultrathin Microcapsules Prepared by a Core Mediated Layer-by-Layer Approach [J]. Chemistry of Materials,2004,16(11): 2107-2112.
    [198]Caruso F, Caruso R A, Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science 1998,282(5391):1111-1114.
    [199]Junjie Yuan, Shuxue Zhou, Bo You, and Limin Wu. Organic Pigment Particles Coated with Colloidal Nano-Silica Particles via Layer-by-Layer Assembly [J]. Chemistry of Materials,2005,17(14):3587-3594.
    [200]Ye C H, Zhang L D, Fang X S, et al. Hierarchical structure silicon nanowires standing on silica microwires [J]. Advanced Materials.2004,16 (12):1019-1023.
    [201]Baram M, Chatain D, Kaplan W D. Anometer-Thick Equilibrium Films:The Interface Between Thermodynamics and Atomistics [J]. Science,2011,332 (6026):206-209.
    [202]张立功,赵贵梅,吴晓宏.ZnO/SiO2核壳结构热控涂层制备研究[J].材料科学与工艺,2011,19(4):33-35.
    [203]党岱,高海丽,彭良进,等.高性能核壳结构PbRu@PtCNT的制备[J].物理化学学报,2011,27(10):2379-2384.
    [204]唐元洪.硅纳米线分析[M].湖南:湖南大学出版社,2006,25-25.
    [205]Xu N S, Ejaz H S. Novel cold cathode materials and applications [J]. Materials Science and Engineering:R:Reports,2005,48(2-5):47-189.
    [206]Lo H C, Das D, Hwang J S, et al. SiC-capped nanotip arrays for field emission with ultralow turn-on field [J]. Applied Physics Letters,2003,83(7):1420-1423.
    [207]Wong K W, Zhou X T, Lee S T, et al. Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition [J]. Applied Physics Letters,1999,75(19): 2918-2920.
    [208]Yu W P, Zheng Y, Yang E, et al. Synthesis of β-SiC/SiO2 core-shell nanowires with the assistance of cerium oxide [J]. Journal of rare earths,2010,28(3):365-368.
    [209]曹连振.SiC/SiO2低维核壳结构材料的制备及特性研究[D].吉林:中国科学院研究生院,2010.
    [210]Cai K F, Zhang A X, Yin J L, et al. Preparation, characterization and photoluminescence properties of ultra long SiC/SiOx nanocables [J]. Applied Physics A:Materials Science & Processing,2008,91(4):579-584.
    [211]王秀春.SiC基一维纳米材料的结构调控及性能研究[D].山西:太原理工大学, 2011.
    [212]Lin M, Loh K P, Boothroyd C, et al. Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones [J]. Appl Phys Lett,2004,8(22):5388-5390.
    [213]李昌龄.碳纳米管模板法制备SiC纳米线的研究[D].上海:中国科学院上海冶金研究所,2000.
    [214]吴旭峰.电弧放电法制备SiC纳米丝的实验研究[D].上海:中国科学院上海冶金研究所,2000.
    [215]Zhang H F, Wang C M, Wang L S. Helieal crystalline SiC/SiO2 core-shell nanowires [J]. Nano Letters,2002,2(9):941-944.
    [216]Lin M, Loh K P, Boothroyd C, et al. Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones [J]. Applied Physics Letters,2004,8(22): 5388-5390.
    [217]Jitianu A, Cacciaguerra T, Benoit R, et al. Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites[J]. Carbon,2004,42(9):1147-1151.
    [218]张亚利,郭玉国,孙典亭.纳米线研究进展(1):制备与生长机制[J].材料科学与工程,2001,19(1):131-136.
    [219]Diego O, Cardona M. Pressure dependence of the optical phonons and transverse effective charge in 3C-SiC [J]. Physical Review B,1982,25(6):3878-3888.
    [220]Feng Z C, Mascarenhas A J, Choyke W J, et al. Raman scattering studies of chemical-vapor-deposited cubic SiC films of (100) Si [J]. Journal of Applied Physics, 1988,64(6):3176-3186.
    [221]Li G Y, Li X D, Chen Z D, et al. Large Areas of Centimeters-Long SiC Nanowires Synthesized by Pyrolysis of a Polymer Precursor by a CVD Route [J]. the Journal of physical chemistry C,2009,113(41):17655-1760.
    [222]Ishikawa Y, Vasin A V, Salonen J, et al. Color control of white photoluminescence from carbon-incorporated silicon oxide [J]. Journal of Applied Physics,2008,104(8): 083522-083526.
    [223]Kim K, Qin W, Wei G, et al. Synthesis of large-scale SiC-SiO2 nanowires decorated with amorphous carbon nanoparticles and Raman and PL properties [J]. Chemical Physics Letters,2009,475(16):86-90.
    [224]Ho G W, Wong A S W, Kang D J, et al. Three-dimensional crystalline SiC nanowire flowers [J]. Nanotechnology,2004,15(6):996-999.
    [225]Bechelany M, Brioude A, Cornu D, et al. A Raman Spectroscopy Study of Individual SiC Nanowires [J]. Advanced Functional Materials,2007,17(6):939-943.
    [226]Niu J J, Wang J N. A Simple Route to Synthesize Scales of Aligned Single-crystalline SiC Nanowires Arrays with Very Small Diameter and Optical Properties [J]. Journal of Physical Chemistry B,2007,111(17):4368-4373.
    [227]Lin L W. Synthesis and optical property of large-scale centimetres-long silicon carbide nanowires by catalyst-free CVD route under superatmospheric pressure conditions [J]. Nanoscale,2011(3):1582-1591.
    [228]Glinka Y D, Jaroniec M. Spontaneous and Stimulated Raman Scattering from Surface Phonon Modes in Aggregated SiO2 Nanoparticles [J]. the Journal of Physical Chemistry B,1997,101(44):8832-8835.
    [229]石礼伟,李玉国,王书运,等.SiC/SiO2镶嵌结构薄膜光致发光特性研究[J].电子元件与材料,2004,23(7):41-43.
    [230]Guo Y P, Zheng J C, Wee A T S, et al. Photoluminscence studies of SiC nanocrystals embedded in a SiO2 matrix [J]. Chemical Physics Letters,2001,339(5-6):319-322.
    [231]朱彦武,陈喜红,陈耀峰,等.超细氧化硅纳米线阵列的制备和发光特性[J].发光学报,2004,25(2):173-177.
    [232]Wei G D, Qin W P, Zheng K Z. Synthesis and Properties of SiC/SiO2 Nanochain Heterojunctions by Microwave Method [J]. Crystal Growth & Design,2009,9 (3): 1431-1435.
    [233]Li G Y, Li, X D, Wang H, et al. Ultra long SiC nanowires with fluctuating diameters synthesized in a polymer pyrolysis CVD route [J].2009,11(12):2167-2172.
    [234]Meng A, Li Z J, Zhang J L, et al. Synthesis and Raman scattering of β-SiC/SiO2 core-shell nanowires [J]. Journal of Crystal Growth,2007,38(2):263-268.
    [235]Wang H T, Xie Z P, Yang W Y, et al. Morphology Control in the Vapor-Liquid-Solid Growth of SiC Nanowires Crystal Growth & Design,. Crystal Growth & Design,2008, 8 (11):3893-3896.
    [236]Zhang H X, Feng P X, Makarov V, et al. Synthesis of nanostructured SiC using the pulsed laser deposition technique [J]. Materials Research Bulletin,2009, 44(1):184-188.
    [237]Zhang R Q, Lifshitz Y, Lee S T. Oxide-Assisted Growth of Semiconducting Nanowires [J]. Advanced Materials,2003,15(7-8):635-640.
    [238]林海,袁菁,田晓丽,等.SiC热氧化SiO2层结构的光谱学表征[J].光散射学报,2007,19(3):248-251.
    [239]Deak P, Knaup J M, Hornos T, et al. The mechanism of defect creation and passivation at the SiC/SiO2 interface [J]. Journal of Physics D:Applied Physics,2007, 40(20):6242-6245.
    [240]丁孟贤,何天白.聚酰亚胺新型材料[M].北京:科学出版社.1998,187-191.
    [241]刘金刚,何民辉,范琳,等.先进电子封装中的聚酰亚胺树脂[J].半导体技术,2003,28(10):37-41.
    [242]Chao.W, Qihua W, Tingmei W. Simple Method for Preparation of Porous Polyimide Film with an Ordered Surface Based on in Situ Self-Assembly of Polyamic Acid and Silica Microspheres [J]. Langmuir 2010,26(23),18357-18361.
    [243]Nandi M, Conklin J A. Molecular level ceramic/polymer composites-Synthesis of polymer-trapped silica and titania nanoclusters [J]. Chemistry of Materials,1991, (3): 201-206.
    [244]王书运.纳米颗粒的测量与表征[J].山东师范大学学报,2005,20(1):45-47.
    [245]Wang C, Wang C H, Wang T M. Simple Method for Preparation of Porous Polyimide Film with an Ordered Surface Based on in Situ Self-Assembly of Polyamic Acid and Silica Microspheres [J], Langmuir 2010,26(23),18357-18361.
    [246]Huang Y, Gu Y. New polyimide-silica organic-inorganic hybrids [J]. Journal of Applied Polymer Science,2003,88 (9):2210-2214.
    [247]Hsiue G H, Chen J K, Liu YL. Synthesis and characterization of nano-composite of polyimide-silica hybrid from nona-queous sol-gel process [J]. Journal of Applied Polymer Science,2000,76 (11):1609-1618.
    [248]Zhu Z K, Yang Y, Yin J, et al. Preparation and properties of organo soluble polyimide/silica hybrid materials by sol-gel process [J]. Journal of Applied Polymer Science,1999,73 (14):2977-2984.
    [249]Joly S, Garnaud G, Ollitrault R, et al. Organically Modified Layered Silicates as Reinforcing Fillers for Natural Rubber [J]. Chemistry of Materials,2002,14(10): 4202-4208.
    [250]Nand M, Sen A. Molecular Level Metal and Ceramic/Polymer Composites, Synthesis of Metal and Metal Oxide Containing Poly-imides and Its Relevance to Polymer Metallization [J]. Proceedings of the Electrochemical Society Symposium on Metallized Plastics,1991 (1):35-41.
    [251]Tyan H L, Wei K H, Hsieh T E. Mechanical Properties of Clay-Polyimide (BTDA2ODA) Nano-composites Via ODA-modified Organoclay [J]. Journal of Polymer Science, Part B:Polymer Physics,2000,38(22):2873-2878.
    [252]王继华,张明艳,张亚斌,等.PI/SiO2纳米杂化薄膜聚集态结构的影响[J].哈尔滨理工大学学报,2008,13(3):71-75.
    [253]朱梦冰,王晓东,王少峰,等.溶胶陈化对聚酰亚胺/二氧化硅杂化薄膜性能的影响[J].功能高分子学报,2008,21(2):226-229.
    [254]Musto P, Ragosta G, Scar Inzi G. Structure-Properties Correlation in Polyimide/Silica Hybrids [J]. High Performance Polymers,2006,18 (5):799-816.
    [255]黄培,耿洪斌,程茹,等.长链聚酰胺酸的热环化动力学[J].高分子学报,2004,2(2):256-262.
    [256]Cornelius C J, Marand E. Hybrid inorganic organic materials based on a 6FDA-6FpDA-DAB A polyimide and silica:physical characterization studies [J]. Polymer, 2002,43(8):2385-2400.
    [257]Wu K H, Chang T C, Yang J C, et al. Organic-Inorganic Hybrid Materials. Ⅱ. Chain Mobility and Stability of Polysiloxaneimide-Silica Hybrids [J]. Journal of Applied Polymer Science,2001,79(6):965-973.
    [258]Ree M, Goh W H, Kim Y. The film of organic polymer composites with inorganic aerogels as dielectric materals:polymer chain orientation and properties [J]. Polymer Bulletin,1995,35(1-2):215-222.
    [259]Zhang Y H, Lu G G, Li Y Q, et al. Novel Silica Tube/Polyimide Composite Films with Variable Low Dielectric Constant [J]. Advanced Materials,2005,17(8) 1056-1059.
    [260]Gu A J, Kuo S W, Chang F C. Synthesis and properties of PI/clay hybrids [J]. Journal of Applied Polymer Science,2001,79(10):1902-1910.
    [261]杨长城,姚月雯,王晓东,等.表面改性碳纤维对聚酰亚胺复合材料摩擦学行为的影响,2010,35(10):77-80.
    [262]刘志真,李宏运,邢军,等.RTM聚酰亚胺复合材料“离位”增韧技术研究[J].航空材料学报,2008,28(6):72-77.
    [263]李白存,樊君,汤春娟,等.聚酰亚胺/Si02杂化薄膜的制备及其透光、隔热性能[J].材料导报:纳米与新材料专辑,2010,24(1):354-356.
    [264]Kizilkaya C, Karatas S, Apohan N K, et al. Synthesis and characterization of novel polyimide/SiO2 nano-composite materials containing Phenylphosphine Oxide via Sol-Gel technique [J]. Journal of Applied Polymer Science,2010,115(6):3256-3264.
    [265]刘世宏,王当憨,潘承璜.X射线光电子能谱分析[M],北京:科学出版社,1988,312.
    [266]陈建升,杨士勇,范琳.含三氟甲基聚酰亚胺的合成与性能研究[J].高分子学报,2007,(1):15-20.
    [267]雷勇,刘宇锋,江璐霞,等.蒙脱土/聚酰亚胺纳米复合薄膜的制备[J].复合材料学报,2002,19(3):42-45.
    [268]Al-Kandary Sh, Ali A A M, Ahmad Z. Morphology and thermo-mechanical properties of compatibilized polyimide-silica nanocomposites [J]. Journal of Applied Polymer Science,2005,98(6):2521-2531.
    [269]袁剑辉,袁晓博.单壁碳纳米管弹性性质的羟基接枝效应,物理学报,2008,57(6):3666-3673.
    [270]张雷勇,何水剑,陈水亮,等.聚苯胺/碳纳米纤维复合材料的制备及电容性能[J].物理化学学报,2010,26(12):3181-3186.
    [271]邱晓燕,李建.C(膜)/Si(SiO2)(纳米微粒)/C(膜)的XPS谱测试分析[J].西南师范大学学报:自然科学版,2003,28(2):230-233.