用户名: 密码: 验证码:
煤田火区煤岩体裂隙渗流的热—流—固多场耦合力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤田火灾已成为全球性的灾难,我国煤田火区分布范围广、火灾程度严重,据初步调查,新疆、甘肃、青海、宁夏、陕西、山西、内蒙古等七个产煤大省(自治区)现共有200多个煤田火区,火区总面积达720km2。露头煤体经自燃而发展为充分燃烧的火源,继续往深部扩展,形成大面积煤田火区,这是一个复杂的多场耦合力学作用过程。本文围绕煤田火区煤岩体裂隙场的形成及分布、气体渗流的热-流-固耦合力学角度开展研究,揭示煤田火区进一步往深部扩展的过程,主要研究内容和成果如下:
     煤田火区发展和演化过程:煤田火区煤体由于煤氧复合作用产生热效应,并具备蓄热环境,当温度达到着火点后,煤体开始燃烧,燃烧中心在持续供氧的条件下,沿着煤层走向往深部扩展,同时,高温致使煤岩体形成热破坏裂隙,烧过后的煤层形成烧空区,引起上覆岩层垮落形成大范围的裂隙场,在热力风压的作用下,裂隙场为地表新鲜空气向火区供氧提供了输运通道,维持煤体的燃烧,同时又为燃烧中心释放的气体和热量向大气环境排放提供了畅通路径,如此形成一个循环的过程,解释了煤田火区煤体燃烧中心进一步往深部发展的规律。
     采用μCT225FCB型高精度显微CT扫描系统,实验研究了煤岩体的热破坏裂隙扩展及分布规律。在无烟煤试样从常温至600℃的升温过程中,实验结果表明:随着温度升高,煤样从200℃时开始形成裂隙,并逐渐增多、加宽、扩展,并得出无烟煤试样的热破裂阈值为300℃;而泥岩试样从常温至600℃热处理后基本上没有形成明显的裂隙,其外观表现为颜色变浅,形状变得不规则。
     建立了煤田火区煤岩体破坏的热-固耦合数学模型,基于泛函分析理论,将现有的有限元模型从二维扩展至三维,得到了三维环境下的控制方程。采用数值方法,研究了煤田火区煤岩体热破裂随温度的变化关系。研究结果表明:随着温度升高,煤体、岩体、煤岩组合体的热破裂率增大,在同样的温度值范围内,煤体的热破裂率大于岩体,煤岩组合体的热破裂率表现出阶段性变化,其主要出现在煤岩的交界面处。煤样过300℃后发生热解反应,在325℃时其热破裂率达23.302%,而岩样在320℃时为12.992%,煤岩组合体在300℃时就达到12.6258%,并在交界面处发生热破坏。
     采用MTS815.02测试了煤样、岩样在单轴、三轴、温度作用下的三轴全应力应变过程,得到了相应的峰值应力值、峰值轴向应变值和峰值侧向应变值。分析显示在围压的作用下,煤样、岩样的峰值应力值有所增加,但在温度作用产生的热应力影响下又有所降低。另外,还进行了煤样的全应力应变过程渗透特性测定,得出了Darcy流渗透率、非Darcy流渗透率、非Darcy流β因子和加速度系数。结果表明实际流动与Darcy流差异大,非Darcy流的渗透率比Darcy流的渗透率低,压力梯度较大,容易出现渗流失稳。在煤田火区煤岩体中,燃烧中心往前推移,其附近煤岩体受到高温热应力和围岩应力的共同作用下,大多处于峰后应力状态,而在煤岩体和烧空区之间形成较大的压力梯度,由于煤体烧过后引起围岩压力加大,加之燃烧中心引起的较大的高温热应力,使其发生渗流失稳的可能性增大。
     建立了煤田火区煤岩体裂隙场渗流的热-流-固耦合数学模型,并结合乌达煤田火区实际,采用有限元方法数值模拟和分析了煤田火区热-流-固的耦合过程,得出了煤田火区煤体燃烧中心发展推进至不同位置时的剪应力场、主应力应变场、位移场、温度场分布规律,当煤体燃烧中心往深部发展到72~78m之间时发生断裂破坏,形成上覆岩层大面积垮落裂隙场,此时的垂直方向最大位移为0.157m;同时分析了煤田火区煤岩体流场分布,主要包括:氧气浓度场、渗流速度场和压力场。
The coalfield fires burning around the world are an environmental catastrophe, whichhave a large distribution range and serious degree in China. According to investigation, thereare more than200coalfield fires with the total area of720km2in seven coal-rich provinces orautonomous regions included Xinjiang, Gansu, Qinghai, Ningxia, Shaanxi, Shanxi, and InnerMongolia. This is a complicated kinetics process with multi-field coupling when the largearea coalfield fires are formed by the outcrop coal from self-igniting to fire source burningand developing along its deep part. In this dissertation, the formation and distribution of thefissure field of coal-rock mass in coalfield fires are paid more attention, and its mechanicalcharacteristics of coal-rock mass of coalfield fires with thermo-hydro-mechanical coupling inseepage for fissure field are discussed in order to reveal the reason of coalfield fires developingalong the deep part of the coal seam. The main contents and contributions are summerized asfollows:
     The coal mass produces a thermal effect by the physics and chemical action of coal andoxygen and forms a thermal storage environment. When the temperature reaches the ignitionone, the coal mass happens burning. If the oxygen is supplied continuously, the burning centerdevelops along the deep part of the coal seam. Simultaneously, the fissure of the coal-rockmass in coalfield fires duo to the thermal destruction is formed by the high temperature, andthe burnt empty area is developed after the coal seam is burning, which can cause overlyingstrata collapse and produce a wide range of fissure field. Under the action of heat-pressure,the fissure field provides the transport channels of supplying oxygen for the new air from the surface to the fire area, which keeps burning coal mass. In the meantime, it also provides theways for emission gases and heat from burning center of coal mass to atmosphericenvironment, accordingly, a circular process is formed. Therefore, this is the development andevolvement process of the coalfield fires, which reveals the rule that the burning center ofcoal mass further develops along its deep part in coalfield fires.
     Based on the μCT225kvFCB high precision CT system, the experiments of anthraciteand mudstone samples are carried out from the atmospheric temperature to600℃in order toobtain the laws of expansion and distribution of coal and rock mass by thermal destruction.The results indicated that when the temperature at200℃, the fissure in the coal sample isstarted to form and its number is gradually to increase, its width is to grow and expand, itsthreshold of thermal destruction for anthracite sample is about300℃. However, for themudstone sample, the obvious fissures are not found from the atmospheric temperature to600℃, its appearance is pale in color and shape becomes irregularly.
     The mathematical model with thermo-mechanical coupling for fissure field of coal-rockmass in coalfield fires is established. Based on the Functional Theory, the dimension of thefinite element model is extended from2D to3D, and the control equations are obtained. Therules of rate of thermal destruction of coal and rock mass as rising the temperature areanalyzed by numerical method, and the results indicated that the rates of thermal destructionfor coal sample, rock sample and coal-rock combine sample increase with increasing thetemperatures. At the same temperature, the rate of thermal destruction of coal sample isgreater than that of the rock sample, and the coal-rock combine sample has a phased variationin the interface between the coal and rock. The coal sample takes place the pyrolytic reactionafter300℃and its rate of thermal destruction is23.302%at325℃, however, they are12.992%at320℃and12.6258%at300℃for the rock sample and the coal-rock combine one,respectively.
     The stress-strain relationships of the coal and rock sample are tested by using the testerMTS815.02under uniaxial, triaxial and temperature conditions, in which the peak stresses aswell as strains in axial and lateral directions are obtained, respectively. The analysis showsthat the peak stresses of coal and rock sample are increased under the action of confiningpressure, however, they are decreased by the effect of thermal stress. On the other hand, thepercolation features of coal sample for all process stress-strain are measured, on which thepermeability of Darcy flow, the permeability of non-Darcy flow, the factor β of non-Darcyand acceleration coefficient are obtained. By comparative analysis, the difference of the actualflow and Darcy is obviously, the permeability of non-Darcy flow is lower than that of the Darcy flow and its pressure gradient is greater, thus, the phenomenon of seepage instabilityoccurs easily. As the burning center of coal-rock mass in coalfield fires goes forward, thenearby coal-rock mass is mostly in the state of post-peak stress by the thermal stress of hightemperature and stress of surrounding rock, however, the larger pressure gradient is formedbetween the coal-rock mass and the burnt empty area because the rock pressure increases dueto coal burning and temperature stress is from the combustion center, which intensifies thepossibility of seepage instability.
     The mathematical model of seepage in fissure field of coal-rock mass withthermo-hydro-mechanical coupling for the coalfield fires is established. For Wuda coalfieldfire, the process of thermo-hydro-mechanical coupling is numerical simulated on finiteelement method, its the distributions of fields of displacement, the shear, the principal stresses,the principal strain and temperature are obtained when the burning center of coal mass goes todifferent locations along its deep part. While the burning center goes to72-78m, the overlyingstrata fractures, accordingly, a large area collapse fissure field is formed, in which themaximum displacement in vertical direction is0.157m. Additionally, the laws of flow field ofcoal-rock mass are also obtained, which included the oxygen concentration, seepage velocityand pressure fields.
引文
[1]Kathryn Brown. Subterranean coal fires spark disaster[J]. Science, Vol299,21February2003, p1177
    [2]Glenn B.Stracher, Anupma Prakash, Ellina V.Sokol. Coal and Peat Fires: A Global Perspective[M](Volume1: Coal-Geology and Combustion). Elsevier Science,2011, p101-114
    [3] Glenn B.Stracher, Tammy P.Taylor. Coal fires burning out of control around the world: thermodynamicrecipe for environmental catastrophe[J]. International Journal of Coal Geology,2004,59(1-2):7-17
    [4] Glenn B.Stracher. Coal fires burning around the world: a global catastrophe[J]. International Journal ofCoal Geology,2004,59(Preface):1-6
    [5]管海晏,冯·享特伦,谭永杰,等.中国北方煤田自燃环境调查与研究[M].北京:煤炭工业出版社,1998
    [6]曹代勇,时孝磊,樊新杰,吴查查.煤田火区环境效应分析[J].中国矿业,2007,16(7):40-42
    [7]Sinha A, Singh V K. Spontaneous coal seam fires: a global phenomenon[A]. Spontaneous coal seamfires: mitigating a global disaster[C]. Beijing: Tsinghua University Press and Springer Verlag,2005:42-66
    [8]蒋卫国,武建军,顾磊,杨波,陈强,刘晓晨.基于夜间热红外光谱的地下煤火监测方法研究[J].光谱学与光谱分析,2011,31(2):357-361
    [9]张春燕,郭杉,关燕宁,等.煤火释放气体影响区域模拟[J].煤炭学报,2012,37(10):1698-1704
    [10]夏军,塔西甫拉提·特依拜,张飞,蔡忠勇,魏军,姬洪亮.煤田火区自然地物热红外发射率光谱测量及其特征[J].煤炭学报,2012,37(12):2053-2059
    [11]王海燕,周心权,张红军,王素锋.煤田露头自燃的渗流--热动力耦合模型及应用[J].北京科技大学学报,2010,32(2):152-157
    [12]Paul van Dijk, Jianzhong Zhang, Wang Jun, Claudia Kuenzer, Karl-Heinz Wolf. Assessment of thecontribution of in-situ combustion of coal to greenhouse gas emission; based on a comparison of Chinesemining information to previous remote sensing estimates[J]. International Journal of Coal Geology86(2011)108-119
    [13]Anon.(2008). http://www.offroaders.com/album/centralia/photos12.htm, Accessed in December,2008
    [14]Anon.(2009). http://www.groundtruthtrekking.org/Issues/AlaskaCoal/SewardCoalPort.html, Accessedin April,2009
    [15]Mark A. Engle, Lawrence F. Radke, Edward L. Heffern, et al. Quantifying greenhouse gas emissionsfrom coal fires using airborne and ground-based methods[J]. International Journal of Coal Geology88(2011)147-151
    [16]Yutao Zhang. Fractal oxidation kinetics and risk evaluation of spontaneous combustion in coalmines[D]. USA: Missouri University of Science and Technology,2012
    [17]Jennifer M. Elick. The effect of abundant precipitation on coal fire subsidence and its implications inCentralia, PA[J]. International Journal of Coal Geology105(2013)110-119
    [18]Ashok K. Singh, Mahendra P. Singh, Mamta Sharma, Sunil K. Srivastava. Microstructures andmicrotextures of natural cokes: A case study of heat-affected coking coals from the Jharia coalfield, India[J].International Journal of Coal Geology71(2007)153-175
    [19]Taku S. Ide, Nigel Crook, F.M. Orr, Jr. Magnetometer measurements to characterize a subsurface coalfire[J]. International Journal of Coal Geology87(2011)190-196
    [20]Suman Paul, Rima Chatterjee. Mapping of cleats and fractures as an indicator of in-situ stressorientation, Jharia coalfield, India[J]. International Journal of Coal Geology88(2011)113-122
    [21]V.V. Sharygin, E.V. Sokol, D.I. Belakovskii. Fayalite-sekaninaite paralava from the Ravat coal fire(central Tajikistan)[J]. Russian Geology and Geophysics50(2009)703-721
    [22]E.V.Sokol, E. V.Kudinov, N.A. Kiriltseva, S.A. Korzhova. Geological prerequis ites of late Cenozoic coalfires in the Kuznetsk coal basin, West Siberia, Russia[A]. Latest developments in coal fireresearch-bridging the science, economics, and politics of a global disaster. Proceedings of sec ondinternational conference on coal fire research[C],19-21May2010dbb forum, Berlin, Germany, p86-92
    [23]V. Hudspith, A.C. Scott, M.E. Collinson, N. Pronina, T. Beeley. Evaluating the extent to which wildfirehistory can be interpreted from inertinite distribution in coal pillars: An example from the Late Permian,Kuznetsk Basin, Russia[J]. International Journal of Coal Geology89(2012)13-25
    [24]John N. Carras, Stuart J. Day, Abou Saghafi, David J. Williams. Greenhouse gas emissions fromlow-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia[J].International Journal of Coal Geology78(2009)161-168
    [25]Nick Higginbotham, SoniaFreeman, LindaConnor, GlennAlbrecht. Environmental injustice and airpollution in coal affected communities, Hunter Valley, Australia[J]. Health&Place16(2010)259-266
    [26]Z.Li, A. H. Clemens, T.A. Moore, D. Gong, S.D.Weaver, N. Eby. Partitioning behaviour of traceelements in a stoker-fired combustion unit: An example us ing bituminous coals from the Greymouthcoalfield (Cretaceous), New Zealand[J]. International Journal of Coal Geology63(2005)98-116
    [27]Alfred E. Whitehouse, Asep A.S. Mulyana. Coal fires in Indonesia[J]. International Journal of CoalGeology59(2004)91-97
    [28]C.D.Bekker. Spontaneous combustion at a South African opencast colliery[A]. Latest developments incoal fire research-bridging the science, economics, and politics of a global disaster. Proceedings of secondinternational conference on coal fire research[C],19-21May2010dbb forum, Berlin, Germany, p25
    [29]J. Denis N. Pone, Kim A. A. Hein, Glenn B. Stracher, et al. The spontaneous combustion of coal andits by-products in the Witbank and Sasolburg coalfields of South Africa[J]. International Journal of CoalGeology72(2007)124-140
    [30]Zhang, X., Kroonenberg, S.B. Pleistocene coal fires in Xinjiang, northwest China. Abstracts of the30thInternational Geologic Congress[J]. Beijing, China,1996(August4-14)1,457
    [31]Kroonenberg, S.B., Zhang, X.,1997. Pleistocene coal fires in northwestern China, Energy for earlyman. In: van Hinte, J.E.(Ed.),One Million Years of Anthropogenic Global Environmental Change.Proceedings of the ARA Symposium at the Royal Netherlands Academy of Art and Sciences (KNAW),Amsterdam, pp.39-44. Project ID:2-74690
    [32]International Institute for Geo-Information Science and Earth Observation,2003. ITC s coal fire homepage. http://www.itc.nl/personal/coalfire/index.html (November2003)
    [33]林睦曾.岩石热物理学及其工程应用[M].重庆大学出版社,1991
    [34]Somerton W H, Gupta V S. Role of fluxing agents in thermal alteration of sandstones [J]. Journal ofPetroleum Technology,1965,17(5):585-588
    [35]Somerton W H, Mehta M M, Dean G W. Thermal alteration of sandstones [J]. Journal of PetroleumTechnology,1965,17(5):589-593
    [36]Dorothy Richter, Gene Simmons. Thermal expansion behavior of igneous rocks [J]. InternationalJournal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1974,11:403-411
    [37]Brann J., Gangi A F., Handin J. Thermal cracking of rock subjected to slow, uniform temperaturechanges [A]. Procedure of19th Unite States Symposium Rock Mechanics[C],1978:259-267
    [38]张晶瑶,马万常,张凤鹏,金校元.高温条件下岩石结构特征的研究[J].东北大学学报,1996,17(1):5-9
    [39]陈颙,吴晓东,张福勤.岩石热开裂的试验研究[J].科学通报,1999,44(8):880-883
    [40]Homand-Etienne F, Houpert R. Thermally induced microcracking in granites: characterization andanalys is[J]. International Journal of Rock Mechanics and Mining Sciences&Geomechanic s Abstracts,1989,26(2):125-134
    [41]寇绍全.热开裂损伤对花岗岩变形及破坏特性的影响[J].力学学报,1987,19(6):550
    [42]Hueze F E. High-temperature mechanical phys ical and thermal properties of granitic rocks-A review[J].Int J Rock Mech Min Sci Geomech Abstr,1983,20(1):3
    [43]Ferrero A M., Marini P. Experimental studies on the mechanical behavior of two thermal crackedmarbles[J]. Rock Mech. Rock Engng.,2001,34(1):57-66
    [44]北野晃一,新孝一,木下直人,奥野哲失.高温下岩石力学特性、热特性和渗透特性的综合评述[J].世界地震译丛,1991,10(1):59-68
    [45]Wang H F, Bonner B P, Carlson S R, Kowallis B J, Heard H C. Thermal stress cracking in granite[J].Journal of Geophysical Research,1989,94(B2):1745-1758
    [46]Homand-Etienne F, Houpert R. Thermally microcracking in granites: characterization and analysis[J].Int J Rock Mech Min Sci,1989,26(2):125-134
    [47]吴晓东,刘均荣.岩石热开裂影响因素分析[J].石油钻探技术,2003,31(5):24-27
    [48]周克群,楚泽涵,张元中,赵书俊,石惠宁.岩石热开裂与检测方法研究[J].岩石力学与工程学报,2000,19(4):412-416
    [49]左建平,谢和平,周宏伟,彭苏萍.不同温度作用下砂岩热开裂的实验研究[J].地球物理学报,2007,50(4):1150-1155
    [50]张连英,茅献彪,李天珍.高温环境下大理岩热损伤特性的试验研究[J].采矿与安全工程学报,2010,27(4):505-511
    [51]谌伦建,吴忠,秦本东,顾海涛.煤层顶板砂岩在高温下的力学特性及破坏机理[J].重庆大学学报,2005,28(5):123-126
    [52]赵阳升,孟巧荣,康天合,等.显微CT试验技术与花岗岩热破裂特征的细观研究[J].岩石力学与工程学报,2008,27(1):28-34
    [53]于艳梅,胡耀青,梁卫国,孟巧荣,冯增朝,余传涛.瘦煤热破裂规律显微CT试验[J].煤炭学报,2010,35(10):1696-1700
    [54]Paterson M S, Wong T F. Experimental rock deformation-the brittle field[M]. Berlin: Springer,2005
    [55]Jaeger J C, Cook N G W, Zimmerman R W. Fundamentals of rock mechanics[M].4th ed. Oxford:Blackwell,2007
    [56]Mogi K. Experimental rock mechanics[M]. Taylor&Francis,2007
    [57]左建平,谢和平,孟冰冰,刘建锋.煤岩组合体分级加卸载特性的试验研究[J].岩土力学,2011,32(5):1287-1296
    [58]Hettema M H H. A microstructural analys is of the compaction of claystone aggregate at hightemperature[J]. International Journal of Rock Mechanics and Mining Sciences&GeomechanicsAbstracts,1999,36(1):57-68
    [59]孙天泽.高围压条件下岩石力学性质的温度效应[J].地球物理学进展,1996,11(4):63-70
    [60]方华,伍向阳.温压条件下岩石破坏前后的力学性质与波速[J].地球物理学进展,1999,14(3):73-78
    [61]Al-Hayea N A, Khan K, Abduljauward S N. Effects of confining pressure and temperature onmixed-mode(I-II) fracture toughness of a limestone rock[J]. Int J Rock Mech Min Sci,2000,37:629
    [62]谢卫红,高峰,李顺才.岩石热断裂破坏特性研究[J].北京科技大学学报,2007,29(9):863-868
    [63]谢卫红,高峰,李顺才.加载历史对岩石热开裂破坏的影响[J].辽宁工程技术大学学报,2010,29(4):593-596
    [64]Thirumalain K, Demon S G. Effect of reduced pressure on thermal expansion behavior of rocks and itssignificance to thermal fragmentation [J]. Journal of Applied Physics,1970,41:5147
    [65]Heard H C. Thermal expans ion and inferred permeability of climax quarts monzonite to300℃and27.6MPa[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1980,17(5):289-296
    [66] Morrow C, Lockner D, Moore D, et al. Permeability of granite in a temperature gradient[J]. Journal ofGeophysical Research,1981,86(B4):3002-3008
    [67]桑祖南,周永胜,何昌荣,金振民.辉长岩脆-塑性转化及其影响因素的高温高压实验研究[J].地质力学学报,2001,7(2):130
    [68]许锡昌,刘泉声.高温下花岗岩基本力学性质初步研究[J].岩土工程学报,2000,22(3):332
    [69]左建平,周宏伟,谢和平,鞠杨.温度和应力耦合作用下砂岩破坏的细观试验研究[J].岩土力学,2008,29(6):1477-1482
    [70]徐小丽.温度载荷作用下花岗岩力学性质演化及其微观机制研究[D].徐州:中国矿业大学博士学位论文,2008年4月
    [71]Bourros C M. The effect of temperature change on consolidation and shear strength of saturatedcohesive soils[D]. USA: University of Washington,1973
    [72]Baldi G, Hueckel T, Pellegrini R. Thermal volume change of the mineral-water system in low-porosityclay soils[J]. Canadian Geotechnical Journal,1988,25(4):807-825
    [73]Jefferson I, Rogers C D F, SMALLEY I J. Discussion: Temperature effects on undrained shearcharacteristics of clay by Kuntiwattanakul et al[J]. Soils and Foundations,1996,36(3):141-143
    [74]Hueckel T, Peano A, Pellegrini R. A constitutive law for thermo-plastic behaviour of rocks: An analogywith clays[J]. Surveys in Geophysics,1993,15(5):643-671
    [75]姚仰平,万征,杨一帆,牛雷.饱和黏土不排水剪切的热破坏[J].岩土力学,2011,32(9):2561-2569
    [76]付小兵,傅荣华,夏克勤.冻土斜坡的热融滑塌变形破坏机制分析与评估[J].水土保持研究,2006,13(1):243-244,268
    [77]王振波,徐道远,王向东,姬秀文.混凝土热损伤试验研究[J].河海大学学报,2001,29(6):94-98
    [78]Y.F. Fu, Y.L. Wong, C.A. Tang, C.S. Poon. Thermal induced stress and associated cracking incement-based composite at elevated temperatures-Part I: Thermal cracking around single inclus ion[J].Cement&Concrete Composites26(2004)99-111
    [79]Y.F. Fu, Y.L. Wong, C.A. Tang, C.S. Poon. Thermal induced stress and associated cracking incement-based composite at elevated temperatures-Part II: thermal cracking around multiple inclusions[J].Cement&Concrete Composites26(2004)113-126
    [80]F. Grondin, H. Dumontet, A. Ben Hamida, H. Boussa. Micromechanical contributions to the behaviourof cement-based materials: Two-scale modelling of cement paste and concrete in tension at hightemperatures[J]. Cement&Concrete Composites33(2011)424-435
    [81]曹代勇,樊新杰,吴查查,王国林.内蒙古乌达煤田火区相关裂隙研究[J].煤炭学报,2009,(08):1009-1014
    [82]曾强,王德明,蔡忠勇.煤田火区裂隙场及其透气率分布特征[J].煤炭学报,2010,35(10):1670-1673
    [83]C.Drebenstedt, D.Gusat, C.Wang. Numerical Modelling of Surface Impact of Coal Fires on Coal FireAreas[A]. Latest Developments in Coal Fire Rrsearch-Bridging the Science, Economics, and Politics of aGlobal Dister[C]. Proceeding of Second International Conference on Coal Fire Research, Berlin, Germany,2010,244-248
    [84]Jennifer M. Elick. The effect of abundant precipitation on coal fire subsidence and its implications inCentralia, PA[J]. International Journal of Coal Geology105(2013)110-119
    [85]E.L. Heffern, D.A. Coates. Geologic history of natural coal-bed fires, Powder River basin, USA[J].International Journal of Coal Geology59(2004)25-47
    [86] Heffern, E.L., Coates, D.A. Clinker-its occurrence, uses,and effects on coal mining in the PowderRiver Bas in. In: Jones, R.W., Harris, R.E.(Eds.), Proceedings of the32nd Annual Forum on the Geology ofIndustrial Minerals. Public Information Circular No.38,1997, pp.151-165. Wyoming State GeologicalSurvey, Laramie, WY, USA
    [87]孔祥言.高等渗流力学(第2版)[M].合肥:中国科学技术大学出版社,2010,1
    [88]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004
    [89]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994
    [90]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004
    [91]陈占清,李顺才,浦海,黄先伍.采动岩体蠕变与渗流耦合动力学[M].北京:科学出版社,2010
    [92]Bai M, Lin D Z, Roegiers J C. Study of flow and transport in fracture network using percolationtheory[J]. Appl. Math. Model,1998,22(4~5):277-291
    [93]Morrison F A. Transient non-Darcy gas flow in a porous medium[C]//Numerical/LaboratoryComputation Methods in Fluid Mechanics Presented at Winter Annual Meeting of the ASME. New York,USA,1976:311-323
    [94]Tissm M, Evans R D. Measurement and correlation of non-Darcy flow coefficient in consolidatedporous media[J]. Journal of Petroleum Science and Engineer ing,1989,3(1/2):19-33
    [95]陈代询,王章瑞.致密介质中低速渗流气体的非达西现象[J].重庆大学学报(自然科学版),2000,23(增1):25-27
    [96]Armenta M, Wojtanowicz A K. Rediscovering non-Darcy flow effect in gas reservoir[C]//Proceedingsof SPE Annual Technical Conference and Exhibition. Denver,USA:Society of Petroleum Engineers,2003:399-406
    [97]黄伟,四旭飞,厉彦菊.气体渗流系统的失稳及其概率应用[J].山东科技大学学报(自然科学版)[J],2005,24(4):81-83
    [98]李顺才,陈占清,缪协兴,茅献彪.破碎岩体中气体渗流的非线性动力学研究[J].岩石力学与工程学报,2007,26(7):1372-1380
    [99]李顺才.破碎岩体非Darcy渗流的非线性动力学研究[D].徐州:中国矿业大学博士学位论文,2006
    [100]王旭升,陈占清.岩石渗透试验瞬态法的水动力学分析[J].岩石力学与工程学报,2006,25(增1):3098-3105
    [101]Karl-Heinz Wolf, Hans Bruining. Modelling the interaction between underground coal fires and theirroof rocks[J]. Fuel86(2007)2761-2777
    [102]Terzaghi K. Theoretical soil mechanics[M]. New York:Wiley,1943
    [103]Biot M A. General theory of three-dimensional consolidation[J]. J. Appl. Phys.,1941,12:155-164
    [104]Biot M A. General solution of the equation of elasticity and consolidation for porous material[J]. J.Appl. Phys.,1956,78:91-96
    [105]Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. J. Appl. Phys.,1954,26:182
    [106]Biot M A. Mechanics of deformation and acoustic propagation in porous media[J]. J. Appl. Phys.,1962,33:1482
    [107]李树刚,张天军,陈占清,许鸿杰.高瓦斯矿煤样非Darcy流的MTS渗透性试验[J].湖南科技大学学报,2008,23(3):1-4
    [108]Sommerton W J, Soylemezoglu I M, Dudley R C. Effect of stress on permeability of coal[J].International Journal of Rock Mechanics and Mining Sciences,1975,12(2):129-145
    [109]Mckee C R, Bumb A C, Koenig R A. Stress-dependent permeability and porosity of coal and othergeologic formations[J]. SPE Formation Evaluation,1988,3(1):81-91
    [110]Mckee C R, Bumb A C, Koenig R A. Stress-dependent permeability and porosity of coal and othergeologic formations[J]. SPE Formation Evaluation,1988,3(1):81-91
    [111]Enever J R E, Henning A. The relationship between permeability and effective stress for Australiancoal and its implications with respect to coal bed methane exploration and reservoir model[A]. Proceedingsof the1997International Coal Bed Methane Symposium[C]. Tuscaloosa:University of Alabama,1997:13-22
    [112]张广洋,胡耀华,姜德义,等.煤的渗透性实验研究[J].贵州工学院学报,1995,24(4):65-68
    [113]孙培德,凌志仪.三轴应力作用下煤渗透率变化规律实验[J].重庆大学学报(自然科学版),2000,23(S):28-31
    [114]Enever J R E, Henning A. The relationship between permeability and effective stress for Australiancoal and its implications with respect to coal bed methane exploration and reservoir model[A]. Proceedingsof the1997International Coal Bed Methane Symposium[C]. Tuscaloosa: University of Alabama,1997:13-22
    [115]姜振泉,季梁军.岩石全应力-应变过程渗透性试验研究[J].岩土工程学报,2001,23(2):153-156
    [116]刘卫群,缪协兴,余为,房敬年,刘名.破碎岩石气体渗透性的试验测定方法[J].实验力学,2006,21(3):399-401
    [117]孙明贵,黄先伍,李天珍,雷光宇,茅献彪.石灰岩应力–应变全过程的非达西流渗透特性[J].岩石力学与工程学报,2006,25(3):484-491
    [118]彭守建,许江,陶云奇,程明俊.煤样渗透率对有效应力敏感性实验分析[J].重庆大学学报,2009,32(3):303-307
    [119]唐红度,唐平,陈占清.煤样渗透特性及渗流稳定性的实验研究[J].煤炭科技,2009,3:1-3
    [120]马占国,缪协兴,陈占清,李玉寿.破碎煤体渗透特性的试验研究[J].岩土力学,2009,30(4):985-988,996
    [121]韩国锋,王恩志,刘晓丽.岩石损伤过程中的渗流特性[J].土木建筑与环境工程,2011,33(5):41-50
    [122]李晓泉,尹光志,蔡波.循环载荷下突出煤样的变形和渗透特性试验研究[J].岩石力学与工程学报,2010,29(supp2):3498-3504
    [123]Kemeny J, Zomeni Z. A comparison of eight methods for measuring grain and boundary cracking inheated quartzite samples[J]. International Journal of Rock Mechanics and Mining Sciences andGeomechanics Abstracts,1998,35(4):506-507
    [124]Zhang S Q, Mervyn S P, Stephen F C. Microcrack growth andhealing in deformed calciteaggregates[J]. Tectonophysics,2001,335(1~2):17-36
    [125]程瑞端,陈海焱,鲜学福,等.温度对煤样渗透系数影响的实验研究[J].煤炭工程师,1998(1):13-16
    [126]杨新乐,张永利,李成全,等.考虑温度影响下煤层气解吸渗流规律试验研究[J].岩土工程学报,2008,30(12):1811-1814
    [127]李志强,鲜学福.煤体渗透率随温度和应力变化的实验研究[J].辽宁工程技术大学学报(自然科学版),2009,28(S):156-159
    [128]李志强,鲜学福,隆晴明.不同温度应力条件下煤体渗透率实验研究[J].中国矿业大学学报,2009,38(4):523-527
    [129]贺玉龙,杨立中.温度和有效应力对砂岩渗透率的影响机理研究[J].岩石力学与工程学报,2005,24(14):2420-2427
    [130]梁冰,高红梅,兰永伟.岩石渗透率与温度关系的理论分析和试验研究[J].岩石力学与工程学报,2005,24(12):2009-2012
    [131]张渊,张贤,赵阳升.砂岩的热破裂过程[J].地球物理学报,2005,48(3):656-659
    [132]张渊,赵阳升,万志军,等.不同温度条件下孔隙压力对长石细砂岩渗透率影响试验研究[J].岩石力学与工程学报,2008,27(1):53-58
    [133]张宁,赵阳升,万志军,等.三维应力下热破裂对花岗岩渗流规律影响的试验研究[J].岩石力学与工程学报,2010,29(1):118-123
    [134]赵阳升,万志军,张渊,等.岩石热破裂与渗透性相关规律的试验研究[J].岩石力学与工程学报,2010,29(10):1970-1976
    [135]冯子军,赵阳升,万志军,李根威,王冲,张源.热力耦合作用下无烟煤变形过程中渗透特性[J].煤炭学报,2010,35(增):86-90
    [136]Stephansson O, Jing L, Tsang C F, et al. Coupled Thermo hydro-Mechanical Processes of FracturedMedia[M]. Rotterdam Elsevier,1996
    [137]Noorishad J, Tsang C F, Witherspoon P A. Coupled thermal-hydraulic-mechanical phenomena insaturated fractured porous rocks: numerical approach[J]. J Geophys Res,1984,89:10365-10373
    [138]Lewis RW, Majorana CE, Schrefler BA. Coupled finite element model for the consolidation ofnon-isothermal elasto-plastic porous media[J]. Transport in Porous Media,1986,1:155-178
    [139]Thomas HR, He Y, Sansom MR, Li CLW. On the development of a model of the thermo-mechanical-hydraulic behavior of unsaturated soils. Engineering Geology,1996,41:197-218
    [140]Schrefler BA. F.E. in environmental engineering: coupled thermo-hydro-mechanical processes inporous media including pollutant transport. Archives of Comput Methods in Eng,1995,2:1-54
    [141]Li Xikui, Wu Wenhua, Charlier R. Numerical simulation of thermo-hydro-mechanical behavior withpollutant transport in engineered clay barrier. Proceedings of Int Workshop on EnvironmentalGeo-mechanics, Switzerland,2002:377-388
    [142]Wu Wenhua, Li Xikui, Charlier R, Collin F. A thermo-hydro-mechanical constitutive model and itsnumerical modeling for unsaturated soils. Computers and Geomechanics,2004,31:155-167
    [143]Rutqvist J, Tsang C F. Analysis of thermal-hydrologic-mechanical behavior near an emplacement driftat Yucca Mountain[J]. Journal of Contaminant Hydrology,2003,62-63:637-652
    [144]Vaziri H H, Xiao Y, Islam R, Nouri A. Numerical modeling of seepage induced sand production in oiland gas reservoirs[J]. Journal of Petroleum Science and Engineering,2002,36(1):71-86
    [145]Yangsheng Zhao, Yaoqing Hu, Baohu Zhao. Nonlinear coupled mathematical model for soliddeformation and gas seepage in fractured media[J]. Transport in Porous Media,2004,55(2):119-136
    [146]刘泽佳,李锡夔.非饱和多孔介质中热-渗流-力学耦合的混合元法[J].力学学报,2006,38(2):170-175
    [147]李宁,陈波,党发宁.裂隙岩体介质温度、渗流、变形耦合模型与有限元解析[J].自然科学进展,2000,10(8):722-728
    [148]Addis Kidane, Vijaya B. Chalivendra, Arun Shukla, Ravi Chona. Effect of temperature on thedynamic crack-tip stress fields in graded material[A], Society for Experimental Mechanics-11thInternational Congress and Exhibition on Experimental and Applied Mechanics[C],2008,2:603-609
    [149]Yasuhara, Hideaki, Elsworth, Derek. A numerical model simulating reactive transport and evolutionof fracture permeability[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2006,30(10):1039-1062
    [150]张志镇,高峰,徐小丽.花岗岩单轴压缩的声发射特征及热力耦合模型[J].地下空间与工程学报,2010,6(1):70-74
    [151]黄涛.裂隙岩体渗流-应力-温度耦合作用研究[J].岩石力学与工程学报,2002,21(1):77-82
    [152]姜永东,阳兴洋,鲜学福,熊令,易俊.应力场、温度场、声场作用下煤层气的渗流方程[J].煤炭学报,2010,35(3):434-438
    [153]黄小华.温度-水-应力下开挖扰动区裂隙花岗岩体流变过程研究及细胞自动机模拟[D].武汉:中国科学院博士学位论文,2007,6
    [154]康健.随机介质固热耦合数学模型与岩石热破裂数值实验[D].阜新:辽宁工程技术大学博士学位论文,2004,6
    [155]杨天鸿,屠晓利,於斌,张永彬,李连崇,唐春安,谭国焕.岩石破裂与渗流耦合过程细观力学模型[J].固体力学学报,2005,26(3):333-337
    [156]朱万成,魏晨慧,唐春安,杨天鸿,李连崇.岩体开挖损伤区的表征及热-流-力耦合模型:研究现状及展望[J].自然科学进展,2008,18(9):968-974
    [157]李连崇,唐春安,杨天鸿,王大国.岩石破裂过程THMD耦合数值模型研究[J].计算力学学报,2008,25(6):764-769
    [158]王桂梁,朱炎铭.论煤层流变[J].中国矿业学院学报,1988,(3):16-25
    [159]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602-1604
    [160]邓广哲,王广地.北山花岗岩热黏弹塑性流变特性分析[J].岩石力学与工程学报,2004,23(s1):4368-4372
    [161]Dong Yang, Yangsheng Zhao, Yaoqing Hu. The constitute law of gas seepage in rock fracturesundergoing three-dimensional stress[J]. Transport in Porous Media,2006,63(3):463-472
    [162]高小平.盐岩力学特性时温效应实验研究及其本构方程[D].武汉:中国科学院硕士学位论文,2005,5
    [163]邵宏甫.单轴压缩下粗砂岩热损伤统计本构模型[J].西安科技大学学报,2009,29(6):702-706
    [164]左建平,满轲,曹浩,等.热力耦合作用下岩石流变模型的本构研究[J].岩石力学与工程学报,2008,27(s1):2610-2616
    [165]高峰,徐小丽,杨效军,等.岩石热黏弹塑性模型研究[J].岩石力学与工程学报,2009,28(1):74-80
    [166]郤保平,赵阳升,万志军,赵金昌,王毅.热力耦合作用下花岗岩流变模型的本构关系研究[J].岩石力学与工程学报,2009,28(5):956-967
    [167]蔡强,牛丛丛,刘曰武,李海生.煤层中双重孔隙介质渗流理论的应用[J].科技导报,2012,30(24):17-22
    [168]徐精彩.煤自燃危险区域判定理论[M].北京:煤炭工业出版社,2001
    [169]徐精彩,张辛亥,文虎,邓军.煤层自燃胶体防灭火理论与技术[M].北京:煤炭工业出版社,2003
    [170]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002,10
    [171]Ulrich Krause, Martin Schmidt, Christian Lohrer. Computaion of real-scale fire scenarios based onlinking lab-scale experiments with a numerical heat and mass transfer model. In UNESCO OfficeBeijing(Ed.), Spontaneous coal seam fires: Mitigating a global disaster. International Research forsustainable control and management. ERSEC Ecological Book Series-4. Beijing: Tsinghua University Pressand Springer Verlag,2008,485-512
    [172]M.N.奥齐西克著,俞昌铭主译.热传导[M].北京:高等教育出版社,1984,7
    [173]王润富,陈国荣.温度场和温度应力[M].北京:科学出版社,2005,1
    [174]王贤能,黄润秋,黄国明.边坡岩体浅层破坏的热应力效应研究[J].工程地质学报,1997,15(3):262-268
    [175]车用太.岩体工程地质力学入门[M].北京:知识出版社,1983
    [176]王国旗,徐精彩,邓军,马砺.煤岩热破坏对露头火灾的影响研究[J].陕西煤炭,2002,(4):9-12
    [177]张建民,管海晏,曹代勇,等.中国地下煤火研究与治理[M].北京:煤炭工业出版社,2008,12
    [178]Taku S.Ide, David Pollard, Franklin M.Orr Jr. Fissure formation and subsurface subsidence in acoalbed fire. International Journal of Rock Mechanics&Mining Sciences47(2010)81-93
    [179]谢和平,冯夏庭,等.灾害环境下重大工程安全性的基础研究[M].北京:科学出版社,2009,1
    [180]S.R.De Groot, P.Mazur.非平衡态热力学.陆全康译.上海:上海科学技术出版社,1981
    [181]于骁中,谯常忻,周群力.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1991,12
    [182]朱学愚,谢春红.地下水运移模型[M].北京:中国建筑工业出版社,1990.9
    [183]彭瑞东,谢和平,周宏伟.岩石变形破坏过程的热力学分析[J].金属矿山,2008,3:61-64,132
    [184] Stefan Wessling. The Investigation of Underground Coal Fires-towards a Numerical approach forThermally, Hydraulically, and Chemically Coupled Processes[D]. Germany: Westf lischen Wilhelms-Universit t,2007
    [185]赵阳升.多孔介质多场耦合作用及其工程响应[M].北京:科学出版社,2010,6
    [186]杨兰和.煤炭地下气化三维渗流数学模型的研究[J].中国矿业大学学报,2000,29(5):528-531
    [187]Henric Turbell. Cone-Beam Reconstruction using Filtered Backprojection[M]. Sweden:LinkopingUniversity,2001
    [188]Willi A. Kalender著,崔世民,王怡,谢文石译.计算机体层成像[M].北京:人民卫生出版社,2003
    [189] K. Grudzień, M. Niedostatkiewicz, J. Adrien, J. Tejchman, E. Maire. Quantitative estimation ofvolume changes of granular materials during silo flow using X-ray tomography[J]. Chemical Engineeringand Processing: Process Intensification,2011,(50):59-67
    [190]赵阳升,孟巧荣,康天合,等.显微CT试验技术与花岗岩热破裂特征的细观研究[J].岩石力学与工程学报.2008,27(1):28-34
    [191]孟巧荣.热解条件下煤孔隙裂隙演化的显微CT实验研究[D].太原:太原理工大学博士学位论文,2011
    [192]冯子军.褐煤原位注蒸汽开采油气的理论及试验研究[D].太原:太原理工大学博士学位论文,2012
    [193]杨圣奇.裂隙岩石力学特性研究及时间效应分析[M].北京:科学出版社,2011,6
    [194]傅宇方.岩石脆性破裂过程的数值模拟试验研究[D].沈阳:东北大学博士学位论文,2000
    [195]Tang C A. Numerical simulation of progressive rock failure and associated seismicity[J]. InternationalJournal of Rock Mechanics and Mining Science,1997,34(2):249-261
    [196]Tang C A, Liu H, Lee P K K et al. Numerical studies of the influence of microstructure on rock failurein uniaxial compression-Part I: effect of heterogeneity. Int. J. of Rock Mech.&Min.,2000,37:555-569
    [197] Tang C A, Tham L G, Wang S H, et al. A numerical study of the influence of heterogeneity on thestrength characterization of rock under uniaxial tension[J]. Mechanics of Materials,2006,39(4):326-339
    [198] Tang C A, Kaiser P K. Numerical studies of cumulative damage and seismic energy release duringbrittle rock failure-Part I: Fundamentals[J]. International Journal of Rocks Mechanics and Mining Sciences,1998,35(2):113-121
    [199] Tang C A, Kaiser P K. Numerical studies of cumulative damage and seismic energy release duringbrittle rock failure-Part II: Rib pillar collapse[J]. International Journal of Rocks Mechanics and MiningSciences,1998,35(2):123-134
    [200]赵阳升.有限元法及其在采矿工程中的应用[M].北京:煤炭工业出版社,1994,12
    [201]万志军.非均质岩体热力耦合理论与煤炭地下气化通道稳定性[M].徐州:中国矿业大学出版社,2009,11
    [202]康健.岩石热破裂的研究及应用[M].大连:大连理工大学出版社,2008,5
    [203]孙明贵,李天珍,黄先伍,陈荣华.破碎岩石非darcy流的渗透特性试验研究[J].安徽理工大学学报(自然科学版),2003,23(2):11-13
    [204]高喜才.富水覆岩综放开采采动裂隙演化与突水机理研究[D].西安科技大学博士学位论文,2011
    [205]张天军.富含瓦斯煤岩体采掘失稳非线性力学机理研究[D].西安:西安科技大学博士学位论文,2009
    [206]刘树才.煤矿底板突水机理及破坏裂隙带演化动态探测技术[D].徐州:中国矿业大学博士学位论文,2008
    [207]赵阳升,王瑞凤,胡耀青,等.高温岩体地热开发的块裂介质固流热耦合三维数值模拟[J].岩石力学与工程学报,2002,21(12):1751-1755
    [208]杨立中,黄涛,贺玉龙.裂隙岩体渗流-应力-温度耦合作用的理论与应用[M].成都:西南交通大学出版社,2008,10
    [209]杨兰和.煤炭地下气化干馏气渗流运动多场耦合数值模拟[J].西安交通大学学报,2002,36(7):752-756
    [210]曹代勇,樊新杰,时孝磊,吴查查,魏迎春.乌达煤田煤层自燃内因分析与自燃类型划分[J].煤炭学报,2005,30(3):288-292
    [211]Gielisch H. and Kus J. An anomalous coalfication distribution in the Northern Helan Shan-A possiblekey into the geological history of the Helan Shan area. Poster presented at the International Conference onCoal Fire Research-ERSEC Conference on Understanding, Extinction, and Prevention of Spontaneous CoalSeam Fires, Beijing, P.R. China,29November-1December2005
    [212]周维恒,杨强.岩石力学数值计算方法[M].北京:中国电力出版社,2005
    [213]贺永德.现代煤化技术手册[M].北京:化学工业出版社,2002
    [214]沈显杰,杨淑贞,张文仁.岩石热物理性质及其测试[M].北京:科学出版社,1988
    [215]杨兰和,宋全友,李耀娟.煤炭地下气化工程[M].徐州:中国矿业大学出版社,2001,11
    [216]康托劳维EB著,闻望,欧天恒,黄鸣谦译.固体燃料燃烧与气化导论[M].北京:中国工业出版社,1964
    [217]Nitao J J, Camp D W, Buscheck T A, White J A, Burton G C, Wagoner J L. Progress on a newintegrated3D UCG simulator and its initial application. International Pittsburgh Coal Conference;Pittsburgh, PA, United States,2011.
    [218]Abdul Waheed Bhutto, Aqeel Ahmed Bazmi, Gholamreza Zahedi. Underground coal gasification:From fundamentals to applications[J]. Progress in Energy and Combustion Science,39(2013)189-214
    [219]安欧.构造应力场[M].北京:地震出版社,1992
    [220]谭启.岩石热破裂理论研究[D].成都:西南科技大学硕士学位论文,2008
    [221]Luo Ji an,Wang Lianguo,Tang Furong,He Yan,Zheng Lin. Variation in the temperature field of rocksoverlying a high-temperature cavity during underground coal gasification[J]. Mining Science andTechnology (China)21(2011)709-713

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700