重型数控落地铣镗床误差建模及补偿技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的不断发展,各行各业对产品精度的要求越来越高。重型数控机床因其结构尺寸空间大、运动范围大,各零部件制造安装精度受限,因而会产生较大的几何误差,同时重型数控机床因其质量和惯量大,驱动系统所需功率较大,零部件发热较为严重,产生较为明显的热变形,因而形成较大的热误差,严重制约数控机床精度的提高。误差补偿技术是提高数控机床精度的一项重要技术手段,本文在对现有误差补偿技术进行分析和研究的基础上,结合“高档数控机床与基础制造装备”科技重大专项以及生产企业急需解决的滑枕热伸长误差较大等实际问题,针对重型数控机床在实施误差补偿技术时存在的技术难点,以重型数控落地铣镗床为研究对象,重点研究了综合误差建模、误差测量与辨识以及误差补偿实施等关键技术难题。
     误差建模是误差补偿的关键技术之一,本文尝试采用共形几何代数原理建立数控机床的综合误差模型。首先借助共形几何代数中的几何积对刚体运动中的旋转运动和平移运动进行统一表达;然后采用共形几何代数法对三轴机床的误差元素重新划分为平移误差元和旋转误差元,并分析了多体系统中两相邻体之间的运动;接下来,针对无误差的机床理想运动和有误差的机床实际运动分别建立了相应的数学模型,在此基础上根据刀尖点和工件上正被切削的点在空间中是同一点推导了机床误差模型的一般表达式;最后,以重型数控落地铣镗床为例,建立了基于共形几何代数的误差模型,并对模型的精度进行了分析。
     实施误差补偿之前还需要能够对所要补偿的误差进行测量与辨识,以便掌握误差的特点和规律。本文针对重型数控机床工作空间尺寸大、误差辨识难的现状,提出一种用于重型数控机床大尺寸空间误差测量与辨识的方法。该方法利用激光跟踪仪进行误差的测量,在对激光跟踪仪测量误差进行分析的基础上,提出利用共形几何代数法进行误差辨识的原理。最后以重型数控落地铣镗床为研究对象,进行了几何误差的测量与辨识实验,用最小二乘多项式拟合的方法建立了几何误差元素的数学模型。
     重型数控落地铣镗床的热误差占了较大比例,本文首先针对企业急需解决的重型数控落地铣镗床滑枕热伸长误差较为明显的问题,提出并实现了一种重型数控落地铣镗床滑枕热伸长误差的实时在线检测与补偿系统。该系统避免了在滑枕上安装温度传感器,能够适应各种工况,它采用一种热膨胀系数几乎为零的因瓦合金杆作为检测标准,利用位移传感器直接在线实时测量出滑枕的热伸长变形量,并将其实时反馈给数控系统,从而实现重型数控机床滑枕热伸长误差的实时补偿。然后针对其余部分热变形严重的问题,提出了一种热误差分离与建模的新方法。该方法首先在机床上根据一定的原则布置适量的温度传感器以测量相应点的温度变化,并用激光跟踪仪测量热误差,然后对实验获得的误差数据,利用基于共形几何代数的综合误差模型进行几何误差与热误差的分离,以得到相应的热误差参数,同时结合有关的温度传感器优化布置策略,选出相应的热误差关键点,最后采用多元线性回归理论建立了热误差的数学模型。
     误差补偿实施策略是误差补偿技术实现的关键,本文在分析研究综合误差补偿功能的基础上,提出了一种用于西门子840D数控系统的综合误差补偿实施策略,并开发了相应的补偿系统。该系统通过手轮偏置功能与数控系统进行实时交互,实现了补偿系统与数控系统的无缝集成。开发了误差补偿器的硬件系统和软件系统,研究了机床坐标位置读取的方法、关键点温度的采集方法以及第三手轮在西门子840D数控系统中的应用,为了实现并行处理,采用了多线程编程技术,实现了误差补偿系统和机床数控系统的联接。
     设计了重型数控落地铣镗床误差模型验证与补偿实验,并取得了一定效果,为数控机床误差补偿技术的实际应用奠定了基础。
With the continual development of science and technology, the demands forproducts’ precision are higher and higher in various fields. As a result of their largestructures and movement ranges, heavy-duty CNC machine tools’ geometric errorsare obvious; and due to their weighty mass and higher driving power, they willgenerate much heat, consequently their thermal induced errors is also prominent.Error compensation technologies are concernful means of improving machinetools’ precision. In this thesis, existing error compensation technologies researchstatus were analyzed firstly, then combining Major National S&T Program andmanufacturing enterprises’ requirements, for example ram thermal elongation erroris obvious and so on, aiming at the problems when error compensation technologyis implemented for heavy-duty CNC machine tools, the error compensationtechnology of heavy-duty CNC floor-typed boring and milling machine tools,which includes error modeling, error measurement, error identification and errorcompensation implementation, was researched.
     Error modeling is one of key technologies in error compensation field.Conformal geometric algebra theory was attempted to apply in the error modelingtechnology field, and a new error modeling method which was based on conformalgeometric algebra was proposed in this thesis. Firstly, rotations and translations ofrigid body movement was expressed as a uniform formula with the geometricproduct of conformal geometric algebra; then, components of errors in3-axesmachine tools were classified into translation components and rotation components;and the movement of adjacent bodies in multi-body system were researched. Idealmovement in which error movements wasn’t calculated and actual movements inwhich error movements was calculated were researched and modeled withconformal geometric algebra theory; and then the machine tool’s error model wasconstructed according to the tip of tool is the same with the point which is cuttingin the workpiece. Finally, take a heavy-duty CNC floor-typed boring and millingmachine tool as an example, error model based on conformal geometric algebrawas obtained and the precisions of the error model were researched.
     To obtain the characteristic of machine tools’ error, error measurement anderror identification are needed firstly before error compensation are implemented.Researching the problems on measuring small errors in large movement ranges, anew measurement and identification method for heavy-duty CNC machine tools’large movement ranges was proposed, which was finished by measuring volumeerrors with a laser tracker firstly, then components of the errors were identified based on conformal geometric algebra model. Basing on the analyzing of themeasurement error for the laser tracker, the error identification principle wasproposed. Finally, geometric errors in a heavy-duty CNC floor-typed boring andmilling machine tool were measured and identified, and the mathematic models ofgeometric error components were constructed through least square polynomialfitting method.
     Thermal errors are the main of heavy-duty CNC machine tools’ volume errors,and an on-line measuring and compensating system was proposed for the ramthermal elongation error firstly in this thesis. Temperature sensors mounted on theram were not required in this system which can be used in various operatingconditions. An invar pole whose thermal expand coefficient is near to zero wasused as a benchmark, and a displacement sensor, which could obtain ram’selongation value and sent it to CNC system, was installed in one end of invar pole.Then, a new thermal error modeling method was proposed. Firstly, suitabletemperature sensors were mounted on the machine tool, and thermal error weremeasured with a laser tracker, then to get thermal error parameters, thermal errorsobtained from the experiments were separated from geometric errors. At the sametime, basing on temperature sensors optimizing distribution strategies, key pointsof thermal errors were selected. Finally, a multiple linear regression model wasconstructed.
     The implementation strategy of error compensation is another key technology.Basing on handwheel offset function of CNC system, a novel error compensationimplementing strategy were proposed, and an error compensator was developed torealize the error compensation implementing on machine tools with Siemens840DCNC systems, which communicates with CNC system by the handwheel offsetfunction and substitutes for electronic handwheel of CNC system. The errorcompensator’s hardware and software systems, in which coordinates positionsacquiring, temperature collecting and third handwheel application in Sinumerik840D were included, were researched. And multithread technique was used toparallel run to avoid CPU’s long-playing employment by one task, were developed.
     Error model validation and compensation experiments on a heavy-duty CNCfloor-typed boring and milling machine tool were designed, which laid afoundation for applying error compensation technology in the industries.
引文
[1]赵明.重型数控机床多学科设计优化若干关键技术研究[D].华中科技大学博士学位论文,2006:1-10.
    [2]徐安宁.我国重型机床制造业面临的发展机遇与挑战.中国机床工具工业年鉴,2008:284-286.
    [3]黄和祥,刘曙光.浅谈数控机床现状及发展趋势[J].机械研究与应用,2005,18(7):34-35.
    [4]粟时平.多轴数控机床精度建模与误差补偿方法研究[D].长沙:国防科学技术大学博士学位论文,2002:14.
    [5]杨建国.数控机床误差综合补偿技术及应用[D].上海:上海交通大学博士学位论文,1998:5-6;9-62.
    [6]周宗明.金属切削机床[M].北京:清华大学出版社,2004:56-58.
    [7]邱映辉,黄兴元,毛志伟.机械设计[M].北京:清华大学出版社,2004:163.
    [8] Zhang G, Wang C, Hu X. Error Compensation of Coordinate MeasuringMachine[J]. Annals of CIRP,1985,34(1):445-448.
    [9] Huang P S, Ni J. On-line Error Compensation of Coordinate MeasuringMachine[J]. International Journal of Machine Tools&Manufacture.1995,5:725-738.
    [10] Weekers W G, Schellekens P H J. Assessment of Dynamic Error of CMMs forFast Probing[J]. Annals of CIRP,1995,1(44):469-474.
    [11] Weck M, Schmidt M. A new method for determining geometric accuracy inthe axis of movement of machine tools[J]. Precision Engineering,1986,8(2):97-103.
    [12] Iwasawa K, Iwama A, Mitsui K. Development of a measuring method forseveral types of programmed tool paths for NC machine tools using a laserdisplacement interferometer and a rotary encoder[J]. Precision Engineering,2004,28:399-408.
    [13] Lee J H, Yang S H. Measurement of geometric errors in a miniaturizedmachine tool using capacitance sensors[J]. Journal of Materials ProcessingTechnology,2005,164:1402-1409.
    [14] Bryan J B, A simple method for testing measuring machine and machinetools-Part1: principles and applications[J]. Precision Engineering,1982,4(3):61-69.
    [15] Lai J M, Liao J S, Chieng W H. Modeling and analysis of nonlinear guideway for double-ball bar (DBB) measurement and diagnosis[J]. InternationalJournal of Machine Tools and Manufacture,1997,37(5):687-707.
    [16] Knapp W, Weikert S. Testing the contouring performance in6degrees offreedom[J]. Annals of the CIRP,1999,48(1):433-436.
    [17] Nakao Y, Goto H, Yamashita C. Motion trajectory measurement method ofmachining center using parallel mechanism-1st report, principle ofmeasurement method and measurement experiments[J]. Transactions of theJapan Society of Mechanical Engineers Series,2002, C68(676):3735-3741.
    [18] Hong S W. An effect method for identification of motion error sources fromcircular test result in NC machine[J]. International Journal of Machine Toolsand Manufacture,1997,37(3):327-340.
    [19] Qiu H, Li Y, Li Y B. A New Method and Device for Motion AccuracyMeasurement of NC Machine Tools, Part1: Principle and Equipment[J].International Journal of Machine Tools&Manufacture,2001,4(41):521-534.
    [20] H. Qiu, Y. Li, Y.B. Li. A New Method and Device for Motion AccuracyMeasurement of NC Machine Tools, Part2: Device Erroe Identification andTrajectory Measurement of General Planar Motions[J]. International Journalof Machine Tools&Manufacture,2001,4(41):535-554.
    [21] Mou J, Donmez M A, Cetinkunt S. Adaptive error correction method usingfeature-based analysis techniques for machine performance improvement,part1: Theory derivation[J]. Journal of Engineering for Industry,1995,117(4):584-590.
    [22] Mou J, Donmez M A, Cetinkunt S. Adaptive error correction method usingfeature-based analysis techniques for machine performance improvement,part2: Experimental verification[J]. Journal of Engineering for Industry,1995,117(4):591-600.
    [23] Hong S W, Shin Y J, Lee H S. An Efficient Method for Identification ofMotion Error Sources from Circular Test Results in NC Machines[J].International Journal of Machine Tools&Manufacture,1997,37(3):327-340.
    [24] Du Z C, Zhang S J, Hong M S. Development of a multi-step measuringmethod for motion accuracy of NC machine tools based on cross gridencoder[J]. International Journal of Machine Tools and Manufacture,2010,50(3):270-280.
    [25] Zhang G, Ouyang R, Lu B, et al. Displacement Method for MachineGeometry Calibration[J]. CIRP Annals,1988,38(1):515-518.
    [26] Chen G Q, Yuan J X, Ni J. A Displacement Measurement Approach forMachine Geometric Error Assessment[J]. International Journal of MachineTools and Manufacture,2001,41(1):149-161.
    [27]翟宁,孙克.浅议14线测量法的数控机床误差参数辨识技术[J].机械工程与自动化,2009,(5):108-109.
    [28]刘又午,刘丽冰,赵小松等.数控机床误差补偿技术研究[J].中国机械工程,1998,9(12):48-52.
    [29]鲁志政.数控机床误差的辨识新方法研究及补偿应用[D].上海:上海交通大学硕士学位论文,2008:11-26.
    [30]鲁志政,陈志俊,杨建国.数控机床空间误差辨识新方法研究[J].机械设计与制造,2008,(12):178-180.
    [31] Aguado S, Samper D, Santolaria J, et al. Identification strategy of errorparameter in volumetric error compensation of machine tool based on lasertracker measurements[J]. International Journal of Machine Tools andManufacture,2012,53(1):160-169.
    [32] Ni J. CNC machine accuracy enhancement through real-time error compens-ation[J]. ASME Trans Journal of Manufacturing Science and Engineering,1997,119(4):717-724.
    [33] Zhu J. Robust thermal error modeling and compensation for CNC machinetools[D]. A Dissertation for the Degree of Doctor of Philosophy in theUniversity of Michigan,2008:8-10.
    [34] Leete D L. Automatic Compensation of Alignment Errors in MachineTools[J]. International Journal of Machine Tool Design and Research,1961,1(4):293-324.
    [35] Schultschik R. The Components of Volumetric Accuracy[J]. CIRP Annals,1977,26(1):223-227.
    [36] Hocken R, Simpson R, Borchardt J, et al. Three Dimensional Metrology[J].CIRP Annals,1977,26(2):403-408.
    [37] Ferreira P M, Liu C R. An Analytical Quadratic Model for the GeometricError of a Machine Tool[J]. Journal of Manufacturing System,1986,5(1):51-62.
    [38] Donmez A. A General Methodology for Machine Tool Accuracy Enhance-ment by Error Compensation[J]. Precision Engineering,1986,8(4):187-196.
    [39] Reshetov D N, Portman V T. Accuracy of Machine Tools[M]. New York:ASME Press,1988:197-203.
    [40]朱建忠,李圣怡,黄凯.超精密机床变分法精度分析及其应用[J].国防科技大学学报,1997,4:36-40.
    [41] Anjanappa M, Anand D K, Kirk J A. Error Correction Methodologies andControl Strategies for Numerical Control Machines[J]. Control Methods forManufacturing Process,1988,7:41-49.
    [42] Kiridena V, FerreiraP M. Mapping the Effects of Positioning Errors on theVolumetric Accuracy of Five-Axis CNC Machine Tools[J]. IntenationalJournal of Machine Tools&Manufacture,1993,33(3):417-437.
    [43] Srivastava A K, VeldhuisS C, Elbestawit M A. Modeling Geometric andThermal Errors in a Five-Axis CNC Machine Tool[J]. Intenational Journal ofMachine Tools&Manufacture,1995,9:1321-1337.
    [44] Eman K F, Wu B T. A Generalized Geometric Error Model for Multi-AxisMachines[J]. Annals of CIRP,1997,36(1):253-256.
    [45] Ziegert J C, Kalle P. Error Compensation in Machine Tools: A NeuralNetwork Approach[J]. Journal of Intelligent Manufacturing,1994,5:143-151
    [46] Elshchnawy A K, Ham I. Performance Improvement of Coordinate Measur-ing Machines by Error Compensation[J]. Journal of Manufacturing Systems,1990,9(2):151-158.
    [47] Soons J A, Theuws F C, Schellenkens P H. Modeling the Error of Multi-AxisMachines: a General Methodology[J]. Precision Engineering,1992,14(1):5-19.
    [48] Chen J S, Yuan J, Ni J. Compensation of No-Rigid Body Kinematic Effect ofa Machine Center[J]. Transaction of NAMRI,1992,20(2):325-329.
    [49] Yang J G, Ren Y Q, Du Z C. An Application of Real-time Error Compen-sation on an NC Twin-spindle Lathe[J]. Journal of Materials ProcessingTechnology,2002,(129):474-479.
    [50]刘又午,章青,赵小松等.数控机床全误差模型和误差补偿技术的研究[J].制造技术与机床,2003,(7):46-50.
    [51]刘又午.多体动力学在机械工程领域的应用[J].中国机械工程,2000,11(1-2):144-149.
    [52] Zhu S W, Ding G F, Qin S F, et al. Integrated geometric error modeling,identification and compensation of CNC machine tools[J]. InternationalJournal of Machine Tools and Manufacture,2012,52(1):24-29.
    [53]裘家骝.机床热误差微机实时补偿技术[J].机床,1986,(8):34-36.
    [54] Toshimichi Moriwaki. Thermal Deformation and Its On-Line Compensationof Hydrostatically Supported Precision Spindle[J]. Annals of CIRP,1988,37(1):283-286.
    [55] Youden D H, Nelson N H.车床温度测量装置US4998957[P].1993,3:1-15.
    [56] Spur G, Hoffmann E, Paluncic Z, et al. Thermal Behavior Optimization ofMachine Tool[J]. Annals of CIRP,1988,37(1):401-405.
    [57] WECK M, Mc K P. Reduction and Compensation of Thermal Error inMachine Tools[J]. Annals of CIPP,1995,44(2):589-598.
    [58] Kim S K, Cho D W. Real-Time Estimation of Temperature Distribution in aBall-Screw System[J]. Internatinal Journal Of Machine Tools&Manufacture,1997,37(4):451-464.
    [59] Zhao H T, Yang J G, Shen J H. Simulation of Thermal Behavior of a CNCMachine Tool Spindle[J]. International Journal of Machine Tools&Manufacture,2007,(47):1003-1010.
    [60] Schafer W.机床的热变形补偿[J]. Ind. Anz,1990,112(72).
    [61]项伟宏,郑力,刘大成等.机床主轴热误差建模[J].制造技术与机床,2000,(11):12-14.
    [62]王智明,彭安华,王其兵.多项式回归理论在机床热误差建模中的应用[J].兰州理工大学学报,2007,33(6):40-42.
    [63]王秀山,杨建国,余永昌,等.双转台五轴数控机床热误差建模、检测及补偿实验研究[J].中国机械工程,2009,20(4):405-408.
    [64] Vyroubal J. Compensation of machine tool thermal deformation in spindleaxis direction based on decomposition method[J]. Precision Engineering,2012,36(1):121-127.
    [65] Ranesh R, Mannan M A, Poo A N, et al. Thermal Error Measurement andModeling in Machine Tools. Part II Hybrid Bayesian Network-Support VectorMachine Model[J]. International Journal of Machine Tools and Manufacture,2003,43(4):405-419.
    [66]白福友.基于贝叶斯网络的数控机床热误差建模研究[D].浙江大学硕士学位论文,2008:24-34.
    [67]吴雄彪,姚鑫骅,傅建中.基于贝叶斯网络的数控机床热误差建模[J].中国机械工程,2009,20(3):293-296.
    [68] Veldhuis S C, Elbestawi M A. A Strategy for Compensation of Errors inFive-Axis Machining[J]. Annals of CIRP,1995,44(1):373-377.
    [69] Lee J, Kramer B M. Analysis of Machine Degradation Using a NeuralNetwork Based Pattern Discrimination Model[J]. Journal of ManufacturingSystems,1993,38(2):379-387.
    [70] Hatamura Y. Development of an Intelligent Machining Center IncorporatingActive Compensation for Thermal Distortion[J]. Annals of CIRP,1993,42(1):549-552.
    [71] Chen J S Y. Computer-aided Accuracy Enhancement for Multi-Axis CNCMachine Tool[J]. International Journal of Machine Tools&Manufacture,1995,35(4):593-605.
    [72] Yang Q D. Study of the Thermal Deformation on a Coordinate MeasuringMachine and Compensation via a Neural Network Model[J]. InternationalJournal of Flexible Automation and Integrated Manufacturing,1999,7(1):129-147.
    [73]杨建国,张宏韬,童恒超.数控机床热误差实时补偿应用[J].上海交通大学学报,2005,39(9):1391-1394.
    [74] Yang J G, RenY Q, Liu G L, et al. Testing, Variable Selecting and Modelingof Thermal Errors on an INDEX-G200Turning Center[J]. InternationalJournal of Advanced Manufacturing Technology,2005,26(7-8):814-818.
    [75]刘国良,张宏韬,曹洪涛等.神经网络理论在数控机床热误差建模中的应用[J].现代制造工程,2005,(8):20-23.
    [76]于金.补偿模糊神经网络在机床热误差预报模型中的应用[J].航空精密制造技术,2004,40(5):37-39.
    [77]岳红新,章青,王慧清.基于多体理论的加工中心热误差建模及补偿技术研究[J].组合机床与自动化加工技术,2005,(1):27-29.
    [78] Kang Y, Chang C W, Huang Y, et al. Modification of a Neural NetworkUtilizing Hybrid Filters for the Compensation of Thermal Deformation inMachine Tools[J]. International Journal of Machine Tools&Manufacture,2007,47(2):376-387.
    [79] Fines J M, Agah A. Machine tool positioning error compensation usingartificial neural networks[J]. Engineering Applications of ArtificialIntelligence,2008,21(7):1013-1026.
    [80]闫嘉钰,杨建国.基于人体免疫系统RBF网络的数控机床热误差建模[J].上海交通大学学报,2009,43(1):148-152.
    [81]郭前建,杨建国.基于蚁群算法的机床热误差建模技术[J].上海交通大学学报,2009,43(5):803-806.
    [82]西村真桢.利用模糊理论抑制主轴的热变形[J].机械的工具,1993,37(2).
    [83] Lee J H, Lee J H, Yang S H. Thermal error modeling of a Horizontalmachining center using fuzzy logic strategy[J]. Journal of ManufacturingProcesses,2001,3(2):120-127.
    [84]李永祥.数控机床热误差建模新方法及其应用研究[D].上海:上海交通大学博士学位论文,2007:1-76.
    [85] Krulewich D A. Temperature Integration Model and Measurement PointSelection for Thermally Induced Machine Tool Errors[J]. Mechtronics,1998,(8):395-412.
    [86]于金.无限冲激响应网络在数控机床热误差建模中的应用[J].机床与液压,2003,(2):93-94.
    [87]章青,岳红新,王慧清.四轴加工中心热误差建模及补偿技术研究[J].制造技术与机床,2004,(10):55-58.
    [88]杨建国,邓卫国,任永强.机床热补偿中温度变量分组优化建模[J].中国机械工程,2004,15(6):478-451.
    [89]高栋,姚英学,赵伟明,袁哲俊.镗削加工误差的建模及预报补偿技术[J].制造技术与机床,2002,(1):16-18.
    [90]姚英学,李荣彬.面向加工质量预测的虚拟加工检测单元的研制[J].中国机械工程,2000,11(5):520-524.
    [91]荆怀靖.面向离线误差补偿的虚拟加工技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2005:73-105.
    [92] Yang S, Yuan J, Ni J. Accuracy Enhancement of a Horizontal MachiningCenter by Real-Time Error Compensation[J]. Journal of ManufacturingSystems,1996,15(2):113-124.
    [93] Yuan J X, Ni J. The Real-time Error Compensation Technique for CNCMachining Systems[J]. Mechatronics,1998,8(4):359-380.
    [94]任永强,杨建国,罗磊.基于外部机床坐标系偏移的热误差实时补偿[J].中国机械工程,2003,14(14):1243-1246.
    [95]沈金华,李永祥,鲁志政,等.数控车床几何和热误差综合实时补偿方法应用[J].四川大学学报(工程科学版),2008,40(1):163-166.
    [96]张宏韬.双转台五轴数控机床误差的动态实时补偿研究[D].上海:上海交通大学博士学位论文,2011:105-116.
    [97]王建中,黄成军.大型落地铣镗床方滑枕精度变形补偿措施[J].制造技术与机床.2006,(7):61-76.
    [98]王景海.一种新的数控铣镗床滑枕变形补偿方法[J].机械工人.2003,(7):69-70.
    [99]朱德志,任璐,刘洪亮.数控落地铣镗床主轴箱平衡补偿系统及调试[J].制造技术与机床.2006,(3):48-50.
    [100] Li H B, Hestenes D, Rockwood A. A Universal Model for ConformalGeometries of Euclidean, Spherical and Double-Hyperbolic Spaces[M].Geometric Computing with Clifford Algebras, Berlin Heidelberg: Springer,2001:77-104.
    [101] Li H B. Hyperbolic conformal geometry with Clifford algebra[J]. Interna-tional Journal of Theoretical Physics,2001,40(1):79-91.
    [102] Lasenby A, Lasenby J. Surface Evolution and Representation Using Geo-metric Algebra[C]. Proceedings of the Mathematics of Surfaces IX, Cipolla R,Martin R, eds. London: Springer,2000:144-168.
    [103] Wareham R, Cameron J, Lasenby J. Applications of Conformal GeometricAlgebrain Computer Vision and Graphics[C]. Proceedings of ComputerAlgebra and Geometric Algebra with Applications, Heidelberg: Springer,2004,3519:329-349.
    [104] Doran C. Circle and Sphere Blending with Conformal Geometric Algebra
    [OL]. http://xxx.lanl.gov/abs/cs.CG/0310017.
    [105] Zaharia M, Dorst L. Modeling and Visualization of3D Polygonal MeshSurfaces Using Geometric Algebra[J]. Computers and Graphics,2004,28(4):519-526.
    [106] Hu L W, Hao K R, Huang X, et al. Individual three-dimensional humanmodel animation based on conformal geometric algebra[J]. Advances inIntelligent and Soft Computing,2012,114:417-424.
    [107] Bernal-Marin M, Bayro-Corrochano E. Integration of Hough Transform oflines and planes in the framework of conformal geometric algebra for2D and3D robot vision[J]. Pattern Recognition Letters,2011,32(16):2213-2223.
    [108] Rosenhahn B, Sommer G. Pose Estimation in Conformal Geometric Algebra,Part I: the Stratification of Mathematical Spaces[J]. Journal of MathematicalImaging and Vision,2005,22:27-48.
    [109] Rosenhahn B, Sommer G. Pose Estimation in Conformal Geometric Algebra,Part II: Real-time Pose Estimation Using Extended Feature Concepts[J].Journal of Mathematical Imaging and Vision,2005,22:49-70.
    [110] Sommer G. Applications of Geometric Algebra in Robot Vision[C]. Proc-eedings of Computer Algebra and Geometric Algebra with Applications,Heidelberg: Springer,2004,3519:258-277.
    [111] Bayro-Corrochano E, L pez-Franco C. Omnidirectional Vision: UnifiedModel Using Conformal Geometry[C]. Proceedings of European Conferenceon Computer Vision2004, Heidelberg: Springer,2004, I:536-548.
    [112] Bayro-Corrochano E, Reyes-Lozano L, Zamora-Esquivel J. Conformal Geom-etric Algebra for Robotic Vision[J]. Journal of Mathematical Imaging andVision,2006,24:55-81.
    [113] Banarer V, Perwass C, Sommer G. Design of a Multilayered Feed-forwardNeural Network Using Hypersphere Neurons[C]. Proceedings of the10thInternational Conference on Computer Analysis of Images and Patterns(CAIP2003). Heidelberg: Springer,2003,2756:571-578.
    [114] Yuan L W, Yu Z Y, Luo W, etal. A3D GIS spatial data model based onconformal geometric algebra[J]. Science China Earth Sciences,2011,54(1):101-112.
    [115]叶声华,秦树人.现代测试计量技术及仪器的发展[J].中国测试,2009,35(2):1-6.
    [116]周虎,邾继贵,张滋黎,叶声华.激光电子经纬仪动态跟踪引导系统的设计[J].光学精密工程,2011,19(11):2671-2678.
    [117] Lo C H, Yuan J X, Ni J. Optimal Temperature Variable Selection by GroupingApproach for Thermal Error Modeling and Compensation[J]. InternatinalJournal of Machine Tools&Manufacture,1999,(39):1383-1396.
    [118]王磊.重型数控落地铣镗床结构热变形误差预测技术的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010:24-35.
    [119] Ramesh R, Mannan M A. Error Compensation in Machine Tools-a Review(Part II): Thermal Errors[J]. International Journal of Machine Tool&Manufacture,2000,40(9):1257-1284.
    [120] Sinumerik. Sinumerik840D sl/840Di sl/840D/840Di/810D Extended Func-tions: Manual and Handwheel Travel (H1)[M]. Siemens,2006,44-46.