用户名: 密码: 验证码:
离轴非球面光学零件磁流变抛光关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代科学技术的飞速发展,使得基于离轴非球面光学零件的反射式光学系统在对空观测、对地观测、极紫外光刻等前沿领域得到了广泛应用。相比同轴光学零件而言,离轴非球面光学零件复杂的制造特征使得其制造过程不仅存在面形误差收敛特性、加工精度可达性等问题,而且面临特征量参数控制、面形误差检测以及高精高效工艺路线等难题。因此,离轴非球面光学零件的加工一直是现代光学制造领域的重点和难点问题。
     目前,现代光学系统对离轴非球面光学零件需求日益增长,传统光学零件加工技术已经无法满足实际应用需求。磁流变抛光技术作为一种新兴的光学加工方法,具有去除函数稳定可调、加工过程确定可控、加工结果精确可预测、边缘效应小、表面质量高、亚表面损伤低以及工艺适应性强等独特优势,在离轴非球面光学零件制造方面具有潜在的应用前景。本论文以离轴非球面光学零件的高精高效制造为需求牵引,针对离轴非球面磁流变抛光过程中的关键理论和工艺问题开展研究,旨在实现面形误差和特征量参数双重约束条件下的离轴非球面光学零件的磁流变抛光,形成基于磁流变抛光技术的加工工艺路线,从而提升我国离轴非球面光学零件的制造水平。
     论文的研究工作主要包括以下几个部分:
     1、基于离轴非球面的曲率半径连续变化、非线性、大矢高、大离轴量、大口径等制造特征,衍生出相关理论问题:变曲率去除函数建模、非线性成形过程建模、高动态性驻留时间模型及算法。通过这些理论问题的研究,旨在为离轴非球面光学零件磁流变抛光修形提供理论基础和工艺依据。
     2、在离轴非球面磁流变抛光修形理论的基础上,考虑磁流变抛光修形的实际应用,对离轴非球面磁流变抛光的修形工艺进行优化。通过优化离轴非球面的加工位姿,从而降低离轴非球面的加工难度,提高加工可达性和加工精度。通过离轴非球面的去除函数进行特性评估,形成离轴非球面磁流变抛光修形的两种优化补偿工艺—去除函数线性补偿修形工艺和去除函数非线性补偿修形工艺。本文的修形工艺研究为离轴非球面磁流变抛光修形提供了实现的技术途径。
     3、面形精度和特征量参数是离轴非球面的双重约束指标,因此在磁流变抛光修形的基础上,还需要对离轴非球面的特征量参数进行有效控制。通过建立离轴非球面光学零件关键特征量参数(离轴量、顶点曲率半径以及二次曲面常数等)的理论模型,可以实现加工过程中的特征量参数控制,保证特征量参数的指标要求。针对离轴非球面零位补偿测量中的两大关键问题:非线性畸变效应和调整量引入误差,分别提出非线性畸变误差控制模型和特征量参数公差域约束条件下的像差分离模型,能够实现离轴非球面面形误差的准确定位和合理评价。特征量参数的控制研究为离轴非球面的磁流变抛光修形提供了加工前提和约束依据。
     4、基于离轴非球面光学零件的传统加工工艺路线分析,建立基于磁流变抛光技术的创新工艺路线,并结合本文研究的理论和工艺对离轴非球面光学零件进行加工实验验证,最终加工得到同时满足面形精度和特征量参数公差要求的离轴非球面光学零件,为本文的研究结论提供了有效支撑。
With the rapid development of modern science and technology, lots of reflectingoptical systems based on off-axis aspheric optical elements are employed widely inmany leading edge fileds which includes space-based observation, ground-basedobservation, and extreme-ultraviolet lithography (EUVL) etc. Compared to theseon-axis optical elements, not only the convergence of surface form error and thereachability of figuring accuracy, but also the control of characteristic parameters, themetrology of surface form error and the high-precision and high-efficiency processingtechnics are all present in the process due to the complicated manufacturing features ofthe off-axis aspheric optical elements. Therefore, the fabrication of off-axis asphericoptical elements is always the emphasis and difficulty in the field of opticalmanufacturing.
     Nowadays, the requirement of off-axis aspheric optical elements increases a lot inmodern optical system, so the conventional machining methods can not satisfy therequirements of practical application. As one of these new optical machining methods,Magnetorheological Finishing (MRF) owns many unique advantages includinginvariable and controllable influence function, deterministic and controllable figuringprocess, accurate and forecast machining result, little edge effect, good surface quality,low sub-surface damage, as well as excellent flexibility of technics, which is proposedto be potentially applied in the fabrication of off-axis aspheric optical elements. Thisthesis focuses on the high-precision/high-efficiency fabrication of off-axis asphericoptical elements and the key theory and technology in MRF process, aims at thedouble-control of surface form accuracy and characteristic parameters, as well as theestablishment of technological chain, which should improve the national manufacturingability of the off-axis aspheric optical elements.
     This thesis’s outline is as follows:
     1、The complex manufacturing features of the off-axis aspheric optical elementsincluding the variant curvature, nonlinear forming, large sagitta, large off-axis distanceand large aperture etc produce lots of theoretical problems which are referred tocurvature-variant influence function model, nonlinear surfacing process model, and highdynamic dwell time model and algorithm. The study of these theoretical problemsprovides the theoretical basis and technology reference for MRF figuring of off-axisaspheric optical elements.
     2、Based on the MRF figuring theory and its application, the MRF figuringtechnics of off-axis aspheric optical elements are optimized. By means of optimizing themachining position-attitude model, the machining difficulty can be reduced; moreoverthe machining ability and accuracy should be improved. The influence function characteristic of off-axis aspheric optical elements is estimated in order to establish twocompensating figuring processes which refer to influence function linear-compensatedfiguring technology and influence function nonlinear-compensated figuring technology.The study of figuring technology provides the technical approach for MRF figuring ofoff-axis aspheric optical elements.
     3、Surface accuracy and characteristic parameters evaluate the quality of off-axisaspherical mirrors from two aspects, so we need to effectively control the characteristicparameters as well as the surface accuracy. Theoretical model describing the keycharacteristic parameters (off-axis distance, conic constant and vertex radius ofcurvature) of off-axis aspheric optical elements are established to achieve themonitorition and qualification of characteristic parameters. The nonlinear distortioneffect and the adjustment-induced aberration are two key problems presenting in thenull test of the off-axis aspheric optical elements. To realize the accuracy positioningand effective evaluation of surface form error, the nonlinear distortion control modeland the aberration-separated model of constrained characteristic parameters’ toleranceare both established. The control of characteristic parameters provides the machiningprecondition and constraint criteria for MRF of off-axis aspheric optical elements.
     4、Based on the analysis of conventional machining technological chain of theoff-axis aspheric optical elements, the novel technological chain with MRF is proposed.The theory and technology in this thesis are both applied in experimental validation, andthe surface form accuracy and tolerance of characteristic parameters are qualified finally,which provides an effective support for the study achievement of this thesis.
引文
[1]杨力.先进光学制造技术[M].北京:科学出版社,2001.
    [2]杨力.现代光学制造工程[M].北京:科学出版社,2009.
    [3]解旭辉.大口径离轴非球面磁流变和离子束复合短流程加工关键工艺与技术[Z].国家自然科学基金项目,2011.
    [4] Cole G C, Garfield R, et al. An overview of optical fabrication of the JWSTmirror segments at tinsley[C]. Proc. of SPIE,2006,6265:1~9.
    [5] Atkinson C, Texter S, et al. Status of the JWST optical telescope element[C].Proc. of SPIE,2006,6265:1~10.
    [6] ESO the European ELT. The European Extremely Large Telescope project[Z].2009, http://www.eso.org/sci/facilities/eelt/.
    [7] E-ESO-SPE-300-0150Issue1, Specifications for the call for tenders “supply of7prototype segments of the42M diameter E-ELT primary mirror at a firm fixed price of€5.000.000”[Z].2009.
    [8]潘君骅.光学非球面的设计、加工与检验[M].苏州:苏州大学出版社,2004.B.Braunecker, R.Hentschel, H.Tiziani. Advanced optics using aspherical elements
    [M]. Bellingham, Washington USA, SPIE press,2007.
    [9] Vick Charles P. KH-12Improved Crystal[Z].2007, http://www.globalsecurity.org/space/systems/kh-12.htm.
    [10] Seok-Hwan O. Immersion Lithography: Now and the Future[C]. The3rdInternational Symposium on Immersion Lithography. Japan,2006.
    [11] Peter Kuerz, Thure Boehm, et al. Optics for EUV lithography[Z]. EUVSymposium,2008, Lake Tahoe.
    [12] Donis G.Flagello, Bill Arnold. Optical lithography for nanotechnology[C].Proc. of SPIE,2006,6327:63270D.
    [13] EUVL-getting ready for volume introduction[Z]. SEMICON West,2010,Hans Meiling.
    [14]张峰.磁流变抛光技术研究[D].长春:中国科学院长春光学精密机械研究所,2000.
    [15]彭小强.确定性磁流变抛光的关键技术研究[D].长沙:国防科学技术大学,2004.
    [16] Don Golini, W.I.Kordonski, et al. Magnetorheological finishing (MRF) incommercial precision optics manufacturing[C]. Proc. of SPIE,1999,3782:80-91.
    [17] Prokhorov I V, Kordonsky W I, et al. New high-precisionmagnetorheological instruments-based method of polishing optics[C]. OSA OF&TWorkshop Digest24,1992,134~136.
    [18]辛企明.光学塑料非球面制造技术[M].北京:国防工业出版社,2005.
    [19] R.A.Jones. Computer controlled polisher demonstration[J]. Appl. Optics,1980,19(2):2072-2076
    [20] R.A.Jones. Automated optical surfacing[C]. Proc. of SPIE,1990,1293:704-710.
    [21]冯永涛.大型非球面镜抛光过程智能控制策略研究[D].重庆:重庆大学硕士学位论文,2010.
    [22] H.M.Martin, J.H.Burge, et al. Manufacture of a1.7m prototype of the GMTprimary mirror segments[C]. Proc. of SPIE,2006,6273:62730G.
    [23] H.M.Martin, J.H.Burge, et al. Manufacture of a combined primary andtertiary mirror for the Large Synoptic Survey Telescope[C]. Proc. of SPIE,2008,7018:70180G.
    [24] D.D.Walker, S.W.Kim, et al. Computer controlled Polishing ofModerate-Sized General Aspherics for Instrumentation[C]. Proc. of SPIE,1998,3355:947-954.
    [25] D.D.Walker, D.Brooks, et al. First aspheric form and texture results from aproduction machine embodying the Precessions process[C]. Proc. of SPIE,2000,4451:267-276.
    [26] Lynn N.Allen, Henry W.Romig. Demonstration of an ion figuring process[C].Proc. of SPIE,1990,1333:22-33.
    [27] Roland GEYL, Andre RINCHET, et al. Large optics Ion Figuring[C]. Proc.of SPIE,1999,3739:161-166.
    [28]周林.光学镜面离子束修形理论与工艺研究[D].长沙:国防科学技术大学博士学位论文,2008.
    [29] R. Geyl. From VLT to GTC and the ELTs[J]. SPIE,2005,5965:25.
    [30] J. H. Burge. Mirror Technologies for Giant Telescopes[Z]. The University ofArizona: Tucson.
    [31] H.M.Martin, J.H.Burge, et al. Progress in manufacturing the first8.4moff-axis segment for the Giant Magellan Telescope[C]. Proc. of SPIE,2008,7018:70180C.
    [32] Richard Freeman. Corrective Polishing Machines[Z]. Zeeko Ltd,2010.
    [33] Lynn N. Allen, John J. Hannon, and Richard W. Wambach. Final surfaceerror correction of an off-axis aspheric petal by ion figuring[C]. Proc. of SPIE,1991,1543:190-200.
    [34] Rufino Diaz-Uribe and Alejandro Cornejo-Rodriguez, Conic constant andparaxial radius of curvature measurements for conic surfaces[J]. Appl. Optics,1986,25(20):3731-3734.
    [35] Ying Pi, Patrick J. Reardon, Determining parent radius and conic of anoff-axis segment interferometrically with a spherical reference wave[J]. Optics Letters,2007,32(9):1063-1065.
    [36]程灏波,王英伟,冯之敬,冯志伟,张锐.光学非球面二次曲面常数及顶点曲率的研究[J].光学技术,2004,30(3):311-317.
    [37]罗勇.二次非球面镜参数求解模型及求解算法研究[J].科学技术与工程,2010,10(36):8968-8971.
    [38]吴高峰,陈强,侯溪,范斌.干涉法测量非球面顶点半径和二次常数[J].光学学报,2009,29(10):2804-2807.
    [39]张峰.高精度离轴凸非球面反射镜的加工及检测[J].光学精密工程,2010,18(12):2557-2563.
    [40] Marc Tricard, Paul Dumas, Greg Forbes. Sub-aperture approaches forasphere polishing and metrology[C]. Proc. of SPIE,2005,5638:284-299.
    [41] H.M.Pollicove. Magnetorheological Finishing (MRF)[Z]. Rochester, NewYork,2000.
    [42] Song Ci, Dai Yifan, Peng Xiaoqiang. Polishing parameters ofmagnetorheological finishing for high-precision optical surfaces[J]. Nanotechnologyand Precision Engineering,2008,6(6):424-429.
    [43] Dai Yifan, Hu Hao, Peng Xiaoqiang, et al. Research on errors control andcompensation in magnetorheological finishing[J]. Appl. Optics,2011,50(19):3321~3329.
    [44] A.B.Shorey. Mechanisms of the material removal in magnetorheologicalfinishing (MRF) of glass[D]. New York: Dissertation of University of Rochester,2000.
    [45] A.B.Shorey. Understanding the mechanism of glass removal in magneto-rheological finishing (MRF)[J]. LLE Review,2001,83:1~15.
    [46]张峰,张学军,余景池,王权陡,郭培基.磁流变抛光数学模型的建立[J].光学技术,2000,26(2):190-192.
    [47]彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型[J].机械工程学报,2004,40(4):37-70.
    [48] J.E.DeGroote. Surface interactions between nanodiamonds and glass inmagnetorheological finishing (MRF)[D]. New York: Dissertation of University ofRochester,2007.
    [49] J.E.DeGroote, A.E.Marino, J.P.Wilson, A.L.Bishop, J.C.Lambropoulos, andS.D.Jacobs. Removal rate model for magnetorheological finishing of glass[J]. Appl.Optic,2007,46(32):7927–7941.
    [50] C.Miao, S.N.Shafrir, et al. Shear Stress in Magnetorheological Finishing forGlasses[J]. Appl. Optics,2009,48(13):2586-2594.
    [51] C.Miao. Frictional Forces in Material Removal for Glasses and CeramicsUsing Magnetorheological Finishing[D]. New York: Dissertation of University ofRochester,2009.
    [52] C.Miao, S.N.Shafrir, et al. Normal Force and Drag Force inMagnetorheological Finishing[C]. Proc. of SPIE,2009,7426:74260C.
    [53]石峰,戴一帆,彭小强,宋辞.磁流变抛光过程的材料去除三维模型[J].中国机械工程,2009,20(6):644-648.
    [54]石峰.高精度光学镜面磁流变抛光关键技术研究[D].长沙:国防科学技术大学,2009.
    [55] S.R.Arrasmith, I.A.Kozhinova, et al. Details of the polishing spot inmagnetorheological finishing (MRF)[C]. Proc. of SPIE,1999,3782:92-100.
    [56] Markus Schinhaerl, Gordon Smith, Richard Stamp, Rolf Rascher, LyndonSmith, Elmar Pitschke, Peter Sperber, and Andreas Geiss. Mathmatical modeling ofinfluence functions in computer-controlled polishing: Part I. Applied MathematicalModelling,2008,32(12):2888-2906.
    [57] Markus Schinhaerl, Gordon Smith, Richard Stamp, Rolf Rascher, LyndonSmith, Elmar Pitschke, Peter Sperber, and Andreas Geiss. Mathmatical modeling ofinfluence functions in computer-controlled polishing: Part Ⅱ. Applied MathematicalModelling,2008,32(12):2907-2924.
    [58] Aspden Ronald, McDonough Ralph, and Nitchie Francis R. Nitchie, Jr.Computer assisted optical surfacing[J]. Appl. Optics,1972,11(12):2739-2747.
    [59] R.A.Jones. Optimization of computer controlled polishing[J]. Appl. Optics,1977,16(1):218-224.
    [60] S.R. Wilson, J.R. McNeil. Neutral ion beam figuring of large opticalsurfaces[C]. Current Developments in Optical Engineering Ⅱ, Proc. of SPIE,1987,818:320-324.
    [61] T.W.Drueding, T.G.Bifano, and S.C.Fawcett. Contouring algorithm for ionfiguring[J]. Precision Engineering,1995,17(1):10-21.
    [62] Prashant M.Shanbhag, Michael R.Feinberg, Guido Sandri, MarkN.Horenstein, and Thomas G.Bifano. Ion beam machining of millimeter scale optics[J].Appl. Optics,2000,39(4):599-611.
    [63] L.N.Allen, R.E.Keim. An ion figuring system for large optic fabrication[C].Current Developments in Optical Engineering and Commercial Optics,1989,1168:30-50.
    [64] T.Hansel, A.Nickel, H.J.Thomas, A.Schindler, R.Schwabe. Local thicknesscorrection of nanometer thin films by means of ion beam etching[C]. OSA TechnicalDigest, Optical Fabrication and Testing, Tucson, Arizon, June3-52005(OWB2).
    [65] C.Xu, I.Aissaoui, S.Jacquey. Algebraic analysis of the Van Cittert iterationmethod of deconvolution with a general relaxation factor[J]. Journal of the OpticalSociety of America A,1994,11:2804-2802.
    [66] Changjun Jiao, Shengyi Li, and Xuhui Xie. Algorithm for ion beam figuringof low-gradient mirrors[J]. Appl. Optics,2009,48(21):4090-4096.
    [67]焦长君.光学镜面离子束加工材料去除机理与基本工艺研究[D].长沙:国防科学技术大学,2008.
    [68] C.L.Carnal. Advanced matrix-based algorithm for ion beam milling ofoptical components[C]. Proc. of SPIE,1992,1752:54-62.
    [69] Zhou Lin, Dai Yifan, Xie Xuhui, Jiao Changjun, Li Shengyi. Model andmethod to determine dwell time in ion beam figuring[J]. Nanotechnology and PrecisionEngineering,2007,5(2):107-112.
    [70] Deng Weijie, Zheng Ligong, Shi Yali, Wang Xiaokun, Zhang Xuejun. Dwelltime algorithm based on matrix algebra and regularization method[J]. Optics andPrecision Engineering,2007,15(7):1009-1015.
    [71] Jianfen Wu, Zhenwu Lu, Hongxin Zhang, and Taisheng Wang. Dwell timealgorithm in ion beam figuring[J]. Appl. Optics,2009,48(20):3930-3937.
    [72] Hongyu Li, Wei Zhang, and Guoyu Yu. Study of weighted spacedeconvolution algorithm in computer controlled optical surfacing formation[J]. ChineseOptics Letters,2009,7(7):627-631.
    [73]石峰,戴一帆,彭小强,宋辞.基于矩阵运算的光学零件磁流变加工的驻留时间算法[J].国防科技大学学报,2009,31(2):103-106.
    [74] J.A.Menapace, B.Penetrante, et al. Combined Advanced Finishing andUV-Laser Conditioning for Producing UV Damage Resistant Fused SilicaOptics[EB/OL]. Uhttp://www.llnl.gov/tid/Library.htmlU, UCRL-JC-144396.
    [75] I.A.Kozhinova, S.R.Arrasmith, et al. Exploring anisotropy in removal rate forsingle crystal sapphire using MRF[C]. Proc of SPIE,2001,4451:277-285.
    [76] S.R.Arrasmith, S.D.Jacobs, et al. The use of magnetorheological finishing torelieve residual stress and subsurface damage on lapped semiconductor siliconwafers[C]. Proc of SPIE,4451:286-294.
    [77] Don Golini, Mike DeMarco, et al. MRF Polishes Calcium to High Quality[C].Optoelectronics World,2001.
    [78] Marc Tricard, Mike DeMarco, Don Golini. Polishing high aspect ratiosubstrates for optics, telecommunications, and microelectronics applications usingmagnetorheological finishing (MRF)[C]. OSA Technical Digest,2002.
    [79] H.M.Pollicove, E.M.Fess, J.M.Schoen. Deterministic manufacturing processfor precision optical surfaces[C]. Proc. of SPIE,2003,5078:90-96.
    [80] J.A.Menapace, S.N.Dixit, et al. Magnetorheological Finishing for ImprintingContinuous Phase Plate Structure onto Optical Surfaces [EB/DL].Uhttp://www.llnl.gov/tid/Library.htmlU, UCRL-CONF-153850.
    [81] J.E.DeGroote, H.J.Romanofsky, et al. Polishing PMMA and other opticalpolymers with magnetorheological finishing[C]. Proc. of SPIE,2003,5180:123-134.
    [82] P.E.Murphy, J.T.Mooney, T.P.Courtney. Fabrication of components withMRF[C]. Proc. of SPIE,2003,5193:29-38.
    [83] Paul Dumas, Don Golini, Marc Tricard. Improve figure and finish ofdiamond turned surfaces with magnetorheological finishing (MRF)[C]. ASPE AnnualMeeting,2004.
    [84] I.A.Kozhinova, H.J.Romanofsky, S.D.Jacobs. Polishing of pre-polished CVDZnS flats with altered magnetorheological (MR) fluids[C]. OSA Technical Digest,2004.
    [85]王慧军.超声波磁流变复合抛光关键技术研究[D].哈尔滨:哈尔滨工业大学,2007.
    [86]孙希威,张飞虎,董申.磁流变抛光去除模型及驻留时间算法研究[J].新技术新工艺,2006(2):73-75.
    [87]程颢波.基于空间频率评价磁流变抛光非球面中频误差[J].哈尔滨工业大学学报,2006,38(6):917-919.
    [88] Yifan Dai, Ci Song, Xiaoqiang Peng, Feng Shi. Calibration and prediction ofremoval function in magnetorheological finishing[J]. Appl. Opt,2010,49(3):298-306.
    [89]宋辞,戴一帆,彭小强,石峰.基于去除函数预测模型的磁流变抛光工艺优化研究[J].国防科技大学学报.2009,31(4):20-25.
    [90] Hao Hu, Yifan Dai, Xiaoqiang Peng, and Jianmin Wang. Research onreducing the edge effect in magnetorheological finishing[J]. Appl. Optics,2011,50(9):1220-1226.
    [91] Hao Hu, Yifan Dai, Xiaoqiang Peng. Restraint of tool path ripple based onsurface error distribution and process parameters in deterministic finishing[J]. Opt.Express,2010,18(22):22973-22981.
    [92]胡皓.高精度光学零件磁流变可控补偿修形关键技术研究[D].长沙:国防科学技术大学,2011.
    [93] Bob Hallock, Bill Messner, Chris Hall, Chris Supranowitz. Improvements inLarge Window and Optics Production[C]. Proc. of SPIE,2007,6545:654519.
    [94] Paul Dumas, Chris Hall, Bob Hallock, Marc Tricard. Complete sub-aperturepre-polishing&finishing solution to improve speed and determinism in aspheremanufacture[C]. Proc. of SPIE,2007,6671:667111.
    [95] Marc Tricard. Status of Sub-Aperture Finishing and MetrologyDevelopment[Z]. Mirror Technology SBIR/STTR Workshop,2009.
    [96] M.Y.Yang, H.C.Lee. Local material removal mechanism consideringcurvature effect in the polishing process of the small aspherical lens die[J]. Journal ofMaterials Processing Technology,2001,116:298-304.
    [97]李圣怡,戴一帆等.大中型光学非球面镜制造与测量新技术[M].北京:国防工业出版社,2011.
    [98] Mo Jalie, Aspheric lenses thinner and lighter by design[J]. ContinuingEducation and Training,2005:38-46.
    [99] M.T.Tuell. Novel tooling for production of aspheric surfaces[D]. Tucson:University of Arizona,2002.
    [100]廖文林.高精度球体类零件离子束确定性修形技术研究[D].长沙:国防科学技术大学,2010.
    [101]周林,解旭辉,戴一帆,焦长君,李圣怡.光学平面镜面离子束修形中速度模式的实现[J].机械工程学报,2009,45(7):152-156.
    [102]张光澄.非线性最优化计算方法[M].北京:高等教育出版社,2005.
    [103]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997.
    [104]陈宝林.最优化理论与算法[M].北京:清华大学出版社,2005.
    [105] Bazaraa M S, Shetty C M. Nonlinear programming: theory andalgorithms[M]. New York: Wiley,1979.
    [106] Avriel M. Nonlinear programming: analysis and methods[M]. Prentice-Hall,Inc,1976(中译本:非线性规划—分析与方法.上海:上海科学技术出版社,1980).
    [107] Powell, M.J.D. Nonlinear Optimization[M]. London: Academic press,1982.
    [108] R.H.Byrd, J.C.Gilbert, J.Nocedal. A trust region method based on interiorpoint techniques for nonlinear programming[J]. Math. Program,2000,89:149-185.
    [109] R.H.Byrd, M.E.Hribar, J.Nocedal. An interior point algorithm forlarge-scale nonlinear programming[J]. SIAM J.Optim,1999,9:877-900.
    [110] R.H.Byrd, Robust trust region methods for constrained optimization[C].SIAM conference on Optimization, Houston, Tex,1987.
    [111]周旭升.大中型非球面计算机控制研抛工艺方法研究[D].长沙:国防科学技术大学,2007.
    [112] Rufino Diza-Uribe, and Alejandro Cornejo-Rodriguez. Conic constant andparaxial radius of curvature measurements for conic surfaces[J]. Applied Optics,1986,25(20):3731-3734.
    [113]周洋,李新南.离轴二次曲面型参数测量归算方法的研究[J].天文研究与技术,2008,5(3):307-311.
    [114] J.W.Foreman, Jr. Simple numerical measure of the manufacturability ofaspheric optical surfaces[J]. Appl. Opt,1986,25(6):826–827.
    [115] J.W.Foreman, Jr. Mercier’s aspheric manufacturability index[J]. Appl. Opt,1987,26(22):4711–4712.
    [116] Marc Tricard, Paul Dumas, and Greg Forbes. Sub-aperture approaches forasphere polishing and metrology[C], invited talk, Photonics Asia, Beijing, China,2004,8-11, November.
    [117]郑立功.离轴非球面CCOS加工过程关键技术研究[D].长春:中国科学院长春光学精密机械与物理研究所,2003.
    [118] QED Application Note1008. Minimizing Mid-Spatial Frequency Errors[Z].
    [119] Yifan Dai, Ci Song, Xiaoqiang Peng, Feng Shi. Calibration and predictionof removal function in magnetorheological finishing[J]. Appl. Opt,2010,49(3):298-306.
    [120]宋辞,戴一帆,彭小强,石峰.基于去除函数预测模型的磁流变抛光工艺优化研究[J].国防科技大学学报,2009,31(4):20-25.
    [121]王权陡.计算机控制离轴非球面制造技术研究[D].长春:中国科学院长春光学精密机械与物理研究所,2001.
    [122] Michael T. Heath著.张威,贺华,冷爱萍译.科学计算导论[M].北京:清华大学出版社,2005.
    [123]范俊玲.大口径非球面检测方法研究[D].哈尔滨:哈尔滨工业大学,2007.
    [124] Burke Jan, Wang Kai, Bramble Adam. Null test of an off-axis parabolicmirror.I. Configuration with spherical reference wave and flat return surface[J]. Opt.Express,2009,17(5):3196-3210.
    [125]郭培基.补偿法检测非球面的若干关键技术研究[D].长春:中国科学院长春光学精密机械与物理研究所,2000.
    [126]李锐钢,郑立功,薛栋林,张学军.大口径高次、离轴非球面干涉测量中投影畸变的标定方法[J].光学精密工程,2006,14(4):532-538.
    [127]罗勇,孙胜利,王敬,陈桂林.非球面零位补偿检测中非线性误差的影响及去除[J].科学技术与工程,2007,7(16):4150-4162.
    [128]程灏波.零补偿干涉检测实现及误差量规律[J].哈尔滨工业大学学报,2006,38(8):1247-1250.
    [129]程灏波,冯之敬.波像差法构建非球面干涉检测的误差分离模型[J].清华大学学报(自然科学版),2006,46(2):187-190.
    [130]李俊峰,宋淑梅.离轴抛物镜检测中调整误差对波前畸变的影响[J].光学精密工程,2011,19(8):1763-1770.
    [131]陈钦芳,李英才,马臻,李旭阳,郭永祥.离轴非球面反射镜补偿检验的计算机辅助装调技术研究[J].光子学报,2010,39(12):2220-2223.
    [132]陈钦芳,李英才,马臻,李旭阳,郭永祥.利用调整技术补偿离轴抛物面反射镜面形误差[J].光子学报,39(9):1578-1581.
    [133]杨晓飞,韩昌元.利用计算机辅助装调检测矩形大口径离轴非球面的方法研究[J].光学技术,2004,30(5):532-534.
    [134]薛栋林,郑立功,王淑平,张学军.离轴二次非球面补偿检验计算机辅助调整技术研究[J].光学精密工程,2006,14(3):380-385.
    [135]郑立功,张学军,张峰.矩形离轴非球面反射镜的数控加工[J].光学精密工程,2004,12(1):113-117.
    [136] Paul Dumas. Magnetorheological Finishing (MRF)[Z]. QED Technologies,2010. Uhttp://www.qedmrf.comU.
    [137]久米保.高精度非球面の研磨と測定技術[Z]. QED Technologies,2010.Uhttp://www.qedmrf.comU.
    [138]程灏波.精研磨阶段非球面面形接触式测量误差补偿技术[J].机械工程学报,2005,41(8):228-232.
    [139]王卓.光学材料加工亚表面损伤关键技术研究[D].长沙:国防科学技术大学,2008.
    [140] Wang Zhuo, Wu Yulie, Dai Yifan, Li Shengyi. Subsurface damagedistribution in the lapping process[J]. Appl. Optics,2008,47(10):1417-1426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700