巨型模锻液压机同步控制系统及其鲁棒控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨型模锻液压机是一种广泛应用于航空、汽车、船舶、电力工业等关键部件制造的核心加工装备,它是一个国家国防工业及重型机械制造业水平和能力的重要体现。巨型模锻液压机具有大惯性、大流量、负载复杂多变等特点,加之液压系统的非线性、时变性及多缸运动交叉耦合,以及模锻件的非对称性产生的偏心矩等影响,导致活动横梁在运行过程中发生倾斜,从而影响到模锻件的加工成型精度,甚至影响到液压机本体和模具的安全,因此,活动横梁的同步控制具有极其重要的意义,这也是自主研制必须突破的瓶颈。
     本文紧密结合巨型模锻液压机同步控制的实际应用问题,以满足我国国防、航空航天等工业对大型关键模锻构件制造高精度的要求为目标,以800MN模锻液压机同步控制系统为研究对象,综合运用液压流体力学、现代控制理论等知识,在理论建模、计算机仿真和实验研究的基础上,查找影响同步控制精度的因素并提出相应措施,寻找最佳控制策略,提高液压同步控制系统的同步跟踪精度、鲁棒性、稳定性等,解决传统的同步控制系统控制精度低、动态响应慢、实时性差的、抗干扰能力弱的缺点,有效地改善产品的加工精度,并实现复杂制造系统确定性平稳运动控制技术的自主创新,进一步达到国际先进水平。
     本文主要内容具体如下:
     1、以现有300MN模锻液压机同步控制系统为借鉴,针对800MN模锻液压机同步控制系统的特点,重新设计了新的液压同步控制方案。
     2、以锻件精化制造为目标,基于液压基础理论和动力学理论,建立了活动横梁运行时同步控制系统的数学模型,为研究同步控制系统的控制策略提供依据。同时,针对二种同步控制方案进行了对比仿真,仿真结果表明:新设计的800MN同步控制系统响应特性较原方案有较大幅度的改善,响应速度和动、静精度均有较大的提高,能满足当前我国航空航天、国防军工、冶金化工、能源动力等领域对大型构件的制造精度与内在性能提出的要求。
     3、研究了影响巨型模锻液压机同步控制性能的因素并提出了解决措施。应用MARC软件,分析了液压机本体刚度对同步控制性能的影响;分析了活动横梁与导向立柱之间的配合间隙以及同步控制系统提供的工作压力与回油背压的压差对同步控制性能的影响等。为巨型模锻液压机同步控制系统的设计及控制策略的应用提供了参考。
     4、分别研究了鲁棒H∞控制、基于干扰观测器鲁棒控制及模糊自适应鲁棒控制在同步控制系统上的应用。仿真结果表明:以上控制策略,可以有效地解决多缸驱动下的巨型模锻液压机被动同步控制的问题,具有极强的鲁棒性,能很好地抑制参数的不确定性、模型的不确定性对系统带来的影响,能有效抑制外部扰动所引起的动态误差,达到了提高同步控制系统的稳定性和动态精度的目的。
     5、参与了315T液压机实验平台研发,并进行了实验测试。实验结果表明,试验与仿真结果相互吻合,证明了所建系统数学模型的正确性,同时也论证了本文提出的控制策略的有效性与智能性。
The giant forging hydraulic press is the core processing equipment which widely used in aviation, automobile, shipbuilding, electric power industry and other key components manufacturing, it is the important embodiment of a national defense industry's and heavy machinery manufacturing's level and ability. The giant forging hydraulic press has large inertia, big flow, load characteristics such as complex and changeable, in addition to the hydraulic system of nonlinear time-varying, and cylinder cross coupling movement, and the influence of the asymmetry of the die forgings produce torque to the eccentricity, resulting in the moving beam happened tilt in the running, thus affecting die forging a processing precision molding, even affect the safety of hydraulic press's body and mould, therefore, moving beam of synchronous control has very important significance, this also is independent research must break the bottleneck.
     This paper closely combining the giant forging hydraulic press the practical application of synchronous control problems, in order to meet our country national defense, aerospace and other industrial for large drop forged components manufacturing high accuracy of the key requirements as the goal, the800MN die forging hydraulic press synchronous control system as the research object, the integrated use of fluid mechanics, modern control theory knowledge, on the basis of theoretical modeling, computer simulation and experimental research, to find out the influencing factors of synchronous control precision and puts forward the corresponding measures, to solve the traditional synchronous control system's shortcomings such as the low control precision, slow dynamic response, real-time poor, weak anti-jamming ability, effectively improve the product processing precision, and realize the complicated manufacturing system smooth motion control technology of independent innovation, and further reached the international advanced level.
     The main research achievements are as follows:
     1. Taking the existing300MN die forging hydraulic machine synchronous control system for reference, according to the800MN die forging hydraulic machine synchronous control system characteristics, to design a new hydraulic synchronization control system.
     2. To precision manufacture the forging as the goal, based on hydraulic theory and dynamics theory, establishing the model of the synchronization control system when moving beam running, to provide the basis for the research synchronous control system control strategy. On this basis, the two kinds of schemes are compared through simulation, the simulation results show that the new design of800MN synchronous control system response characteristics is substantial improvement, the response speed and dynamic&static precision are a large improvement, it can meet our country aerospace, defense industry, metallurgy industry, energy power fields of large components to manufacture precision and internal performance of the proposed more and more high demand.
     3. To study the effect of the giant die forging hydraulic press synchronous control performance factor and puts forward the solving measures. Using of MARC software, analysis of the hydraulic press body stiffness on the performance of synchronous control effect; analysis of moving beam and the fit clearance between the guide column and synchronous control system provides the work pressure and back pressure in the pressure difference on the synchronization control performance influence. To provide reference for the giant die forging hydraulic press synchronous control system design and the application for control strategy.
     4. H∞robust control, based on disturbance observer robust control and adaptive fuzzy robust control in synchronous control system application were studied. The simulation results show that:the above control strategys can effectively solve the passive synchronization control problems with the multi-cylinder driven by a giant die forging hydraulic press, it has strong robustness, can completely suppress the parameter uncertainty, uncertainty of model of the system, can effectively restrain the disturbance caused by the dynamic error, achieve to the purpose of improving the stability of the synchronization control system and the dynamic accuracy.
     5.Participate in researching and developing the315T hydraulic experiment platform, and conducted experiments to test.The experimental results show that, the results of the test and simulation are coincident with each other, which validates the correctness of the mathematical model of the system, and it is proved that the proposed control strategy is effective and intelligent.
引文
[1]姚保森.我国锻造液压机的现状及发展[J].锻压装备与制造技术,2005,(6):28-30
    [2]本刊辑.二重将制造世界上最大的模锻压机[J].机械研究与应用,2008,21(2):111
    [3]颜永年,刘长勇,张磊,等.坎合技术与航空模锻液压机[J].航空制造技术,2010,(8):26-28
    [4]俞新陆.液压机的设计与应用[M].北京:机械工业出版社,2006:1-2,16,543-560
    [5]荆宏善.八十年代国外重型锻压机械制造业及其产品技术[J].重型机械,1992,(4):37-45
    [6]于凤仁.当代锻造液压机的发展状况与现有液压机的改装[J].重型机械,1990,(1):1116
    [7]田依民,陈延杭.锻造液压机的发展动态[J].重型机械,1985,(8):14
    [8]蔡墉.世界大型自由锻和模锻液压机装备数量分布一览[J].锻造与冲压,2006,(8):85-86
    [9]李盛海.液压机构及其组合[M].北京:清华大学出版社,1992:22-23
    [10]俞新陆.液压机[M].北京:机械工业出版社,1990:15-58
    [11]中国机械工程学会塑性工程学会.锻压手册-锻压车间设备[M].北京:机械工业出版社,2007,10:111-122
    [12]Zhongwei Liu,ShaoJun Liu,Minghui Huang,etc. Optimization of the giant hydraulic press's synchronism-balancing control system[C].2009 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2009, vl,p 828-831
    [13]施光林,史维祥,李天石.液压同步闭环控制及其应用[J].机床与液压,1997,(4):3-6
    [14]李军伟,赵克定,吴盛林.双电液伺服马达同步模糊控制系统的研究[J].机床与液压,2003(1):115-116
    [15]倪敬.钢管包装电液伺服系统控制策略及其应用研究[D].杭州:浙江大学,2006:4,6,41-46
    [16]苏东海,韩国惠.伺服阀控制非对称液压缸同步控制性能分析[J].沈阳工业大学学报,2004(6):605-608
    [17]刘昊.液压位置保持系统控制策略及其应用[D].长沙:中南大学,2002: 8-12,22-59
    [18]Clinton,John.Beam Synchronization of Press Brakes. Sheet Metal Industries [J].1986,63(9):510-518
    [19]Pylajkin,P.A.Parameters Indication of Stamping press Hydraulic Synchronizing System[J].Kuznechno-Shtampovochnoe Proizvodstvo.1991, (12):19-22
    [20]俞新陆.液压机现代设计理论[M].北京:机械工业出版社,1987:5-77
    [21]钟掘,谭建平.大型模锻液压机同步系统控制系统特性仿真分析[J].中南工业大学学报,1995,5(增刊1):42-46
    [22]言坚.大型模锻液压机高精度同步控制系统的研究和设计[D].长沙:中南工业大学,1996:17-36
    [23]袁春.三万吨水压机的操作系统和同步平衡系统[D].长沙:中南工业大学,2002:35-55
    [24]中南大学.300MN模锻水压机同步控制系统[P].国家科技成果数据库.Nast序列号:943200100032
    [25]张友旺,谭建平.TEMPOSONICSIII位移感器及其在水压机平衡校正系统中的应用[J].机床与液压,2000(6):73-74
    [26]周俊峰,谭建平.300MN模锻水压机活动横梁同步检测系统设计[J].机械与电子,2004(8):51-53
    [27]谭建平,刘昊.溢流补偿型液压位置保持系统的研究及应用[J].机械工程学报,2004(3):119-123
    [28]A.hitchcox, J.Manji. PLCs Continue Their Move into Fluid Power Control[J]. Hydraulics & pneumatics, Cleveland, Ohio, USA,1993,46(5):30-32
    [29]LEE, C.B. WU, H.W.SELF-TUNING ADAPTIVE SPEED CONTROL FOR HYDROSTATIC TRANSMISSION SYSTE[J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY:1996,9(1):18-33
    [30]FU QING, LUO AN. DEVELOPMENT OF INTELLIGENT HYDRAULIC PRESSURE SELF-CONTROL SYSTEM. INSPEC ABSTRACT NUMBER[Z]: C2002-10-3260G-003
    [31]A hitchcox, J Manji. PLCs Continue Their Move into Fluid Power Control[J]. Hydraulics & Pneumatics, Cleveland, Ohio, USA,1993,6(5): 30-32
    [32]IZUMI EIKI (JP), WATANABE HIROSHI (JP). CONTROL SYSTEMF OR HYDROSTATIC POWER TRANSMISSION.EUROPEAN PATENT PUBLICATION NUMBER[P]:US4528813
    [33]韦巍,何衍.智能控制基础[M].北京:清华大学出版社,2008:1-2
    [34]陈永新.精校机电液位置伺服系统的研究[D].合肥:合肥工业大学.2004:28-61
    [35]王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005:5-11,
    [36]段俊,黄明辉,湛利华,等.运用PLC和PID的液压机同步平衡系统的研究[J].锻压技术,2010,35(1):77-80
    [37]胡代珍.基于模糊PID的模锻液压机控制系统研究[D].长沙:中南大学,2010:49-68
    [38]Liu G P, Daley S. Optimal-tuning Nonlinear PID Control of Hydraulic System[J]. Control Engineering Practice,2000, Vo18, pp:1045-1053
    [39]黄明辉,熊欢欢,赵啸林等.模糊PID在液压机位置控制系统中的应用[J].控制工程,2011,18(1):14-17
    [40]张广红,吴爱国,师素文.万吨液压机五缸同步控制系统设计[J].组合机床与自动化加工技术,2005(7):76-81
    [41]Yongho Lee, Mikhail Skliar and Moonyong Lee.Analytical method of PID controller design for parallel cascade control[J]. Journal of Process Control, Volume 16, Issue 8, September 2006, Pages 809-818.
    [42]Du Chunyan, Wu Aiguo, Zheng Aihong.The application of single neuron adaptive PID method to the speed control of isothermal forging processes [C]. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), v 2, Proceedings of the World Congress on Intelligent Control and Automation (WCICA),2006, p 8519-8522.
    [43]张广红,吴爱国.Fuzzy-PID控制在80MN液压机同步控制系统中的应用[J].机床与液压,2009,37(10):175-177
    [44]李潘伟,筒殉.基于PLC的复合模糊控制在液压伺服同步控制系统中的应用[J].机床与液压,2008,36(8):277-279
    [45]Teng F. C. Adaptive control scheme for a robot manipulator:Direct decoupler and PID controller[J]. Int. J. Syst. Sci.,1993,24 (2):315-327
    [46]A strom K J. Theory and applications of adaptive control[J]. A survery: Automatica,1983, (19):471-486
    [47]林建亚.电液位置伺服系统自适应控制律[J].信息与控制,1985(6):25-27
    [48]丁崇生等.模型跟踪自适应控制的方法及工程应用[J].西安交通大学学报,1991,24(4):51-57
    [49]李志峰,赵志诚.基于模型参考模糊自适应的多缸同步控制[J].太原科技大学学报,2010,31(4):266-270
    [50]杨俭.液压压力机模型参考自适应控制系统的研究[J].机床与液压,2009,37(6):83-85
    [51]KNOHL T, UNBEHAUEN H.Adaptive position control of electrohydraulic servo systems using ANN[J].Mechatronics,2000,10 (1):127-143
    [52]Sun Dong. Position Synchronization of Multiple Motion Axes with Adaptive Coupling Control[J]. Automatica.2003,39:997-1005
    [53]G. F. Zhao, G. L.Ma, J. Guo, et al. Adaptive synchronous control of servo system driven by two motors[C].2004 8th International Conference on Control Automation, Robotics and Vision, KunMing, China,2004:1990-1993
    [54]韩清娟.双缸同步系统自适应控制的研究[D].兰州:甘肃工业大学,2004:20-35
    [55]李孔语,丁崇生,李新忠,等.卧式双缸同步加载系统控制策略的研究[J].机床与液压,1994(2):88-91
    [56]逢波,王占林,白国长.工程机械液压底盘试验台双马达同步的研究[J].系统仿真学报,2007(5):2018-2021
    [57]刘伟,秦伟,王蜀霞.液压同步运动系统自适应学习控制策略和方法[J].中国机械工程,1996,7(1):38-40
    [58]Davison E J. The output control of linear time invariant multivariable systems with unmeasurable arbitrary disturbance[J]. IEEE Trans Automat Contr,1972, AC-17
    [59]Pearson J B, Staats P W. Roubust controllers for linear regulators[J]. IEEE Tram Automat Contr,1974, AC-19
    [60]Zames G.Feedback and optimal sensitivity model reference transformations, multiplicative seminorms, and approximation inverses[J]. IEEE Transactions on Automation and Control.1981,26(2):42-48
    [61]Doyle J. C., Stein G., Multivarible Feedback Design.Concepts for a Classical Modern Synthesis [J].IEEE Transactions on Automation Control,1981,26: 301-320
    [62]Glover K., Doyle J. C. State-space formular for all stabilizing controllers that satisfy an H-infinite norm bound and relations to risk sensivity[J]. System and Control Letter,1988,11:167-172
    [63]Doyle J. C., Glover K, Khargonekar P. P. Francis B. A. state-space solutions to Standard H-infinite and H-2 Control Problems [J].IEEE Transactions on Automation Control,1989,34:831-847
    [64]Zuo Liu,Fang Luo. QFT-Based Robust and Precision Motion Control System for a High Speed Direct-drive XY Table Positioning Mechanism[C].Industry Applications Conference.2003:293-300
    [65]Fanping Bu,Bin Yao.Adaptive Robust Control of Single-rod Cylinder Actuators:Theory and Experiments[J].IEEE/ASME Transaction on Mechtronics.2000,Vol5(1):76-91
    [66]Ingram A, Franchek A, Balakrishnan V. Robust SISO H∞ Controller Design for Nonlinear Systems[J]. Control Engineering Practice,2005,13:1413-1423
    [67]Laval L, SIRdi N, Cadiou J C. H∞ Force control of a Hydraulic Servo-actuator with Environmental Uncertainties[C].Proceeding of IEEE conference on Robotic and Automation,1996:1566-1571
    [68]Piche R, Ponjolaineus. Design of Robust Two-Degree-of Freedom Controllers for servos using H∞ Theroy[C].Proc, Instn. Mech.Engrs. Part 1.1991,205(14): 299-306
    [69]卜劭华.液压伺服驱动位置系统的鲁棒控制[D].秦皇岛:燕山大学,2001:56-82
    [70]Hung-Ching Lu and Wen-Chen Lin.Robust Controller with Disturbance Rejection for Hydraulic Servo Systems [J].IEEE Transactions on Industrial Electronics, 1993,40 (1):157-162
    [71]Bor-Sen Chen, Ching-Hsiang Lee,and Yeong-Chan Chang. H∞ tracking design of uncertain nonlinear SISO Systems:adaptive fuzzy approach[J].IEEE Trans. Fuzzy Syst.,1996,4(1):32-43
    [72]刘新良.巨型模锻液压机主动同步控制系统研究[D].长沙:中南大学,2010:31-50
    [73]周育才,刘少军,黄明辉,等.巨型模锻液压机主动同步系统的鲁棒控制研究[J].机械科学与技术,2011,30(3):501-506
    [74]张友旺.电液伺服系统的动态递归模糊神经网络辨识与鲁棒控制研究[D].长沙:中南大学,2006:94-101
    [75]Fu K S. Learning Control Systems and Intelligent Control Systems; An Intersection of Artificial Intelligence and Automatic Control [J]. IEEE Trans. Automat. Control,1971,AC-16(1):70-72
    [76]俞金寿.工业过程先进控制技术[M].上海:华南理工大学出版社,2008: 67-98
    [77]A.Luo, H.Hun. Intelligent Control for electro-hydraulic proportion position servo systems[C]. Proceedings of the 4th International Conference on Fluid Power Transmission and Control.Hangzhou,China,1997:246-250
    [78]王孙安,林廷圻,史维祥.液压伺服控制的新发展[J].机床与液压,1991,(1):8-14
    [79]YJen, C.Lee. Robust speed control of a pump controlled motor system[J]. IEE Proceeding-D,1992,139(6):503-510
    [80]李士勇,夏辰光.模糊控制和智能控制理论与应用[M].哈尔滨:哈尔滨工业大学出版社,1990:32-67
    [81]张化光,何希勤.模糊自适应控制理论及其应用[M].北京:北京航空航天大学出版社,2002:36-56
    [82]Zadeh L A.Fuzzy Set[J]. Information and control.1965,8(2):338-358
    [83]Zadeh L A.Outline of a new approach to the analysis of complex systems and decision processes[C]. IEEE Trans Syst, Man, Cybern,1973,SMC-3(1):28-44
    [84]E.H Mamdani. Applications of Fuzzy Algorithms for Control of Simple Dynamic Process[J]. Proc. Inst.Electr.Eng.,1974,121(12):1585-1588
    [85]King P J. The application of fuzzy control systems to industrial processes[J]. Automat.1977,13(3):235-242
    [86]Pappis C P.A fuzzy logic controller for a Traffic Junction[J]. IEEE Trans on System, man, and Cybernetics.1977, SMC-7(10):707-717
    [87]权太范,宗成阁,敖文仲,等.模糊控制技术在过程控制中的应用现状及前景[J].控制与决策,1988,3(1):59-62
    [88]Tobi T. The application of fuzzy control to a coke oven gas cooling plant[J]. Fuzzy Sets and Systems,1992,46:373-381
    [89]K.J.Hunt, D.Sbarbaro,R.Zbikowski&P.J.Gawthrop. Neural Networks for Control Systems[J].A survey Automation,1992,28 (6):1083-1112
    [90]A.U.Levin & K.S.Narendra.Control of Nonlinear Dynamieal Systems Using Neural Networks Partl1:Observability.Identification and Control[J],IEEE Trans. On Neural Networks,1996,17 (11):30-42
    [91]K.S.Narendra and K. Parthasarathy.Identification and control of dynamic systems using neural networks[J].IEEE Trans. Neural Netw.,1990,1(1):4-27
    [92]A.Karakasoglu,S.I.Sudhasanan,M.K.Sundareshan.Identification and decentralized adaptive control using dynamical neural networks with application to robotic manipulators[J]. IEEE Trans. Neural Netw,1993,4(6):919-930
    [93]L Jin, P.N.Nikiforuk, and M.M. Gupta. Dynamic recurrent networks for control of unknown nonlinear systems[J]. ASME J.Dyn.Syst., Meas., and Contr.,1994,116 (4):567-576
    [94]C.C.Ku, K.Y. Lee and R. M. Edwards. Improved nuclear reactor temperature control using diagonal recurrent networks[J]. IEEE Trans. Nucl Sci.,1992,39 (12):2298-2308
    [95]K.J.Astrom,AntonJ.J.,Arzen K.E..Expert Control[J]. Automatic,1986, (22): 277-286
    [96]袁艳.先进控制理论在复杂工业控制系统中的应用研究[D].长沙:中南大学,2006:6-12
    [97]张莉芳,王京鸣,张月林.专家系统技术在地面火炮总体方案设计中的应用初探[J].兵工自动化,1998(2):10-13
    [98]张孝临.磨矿过程专家系统研究与应用[D].长春:吉林大学,2010:9-50
    [99]师素文,张广红.模糊控制在万吨液压机同步控制系统中的应用[J].液压与气动,2006(1):28-30
    [100]黄元峰,刘源,谈宏华.液压平衡校正系统的自适应模糊神经网络控制[J].武汉理工大学学报,2007,29(11):84-88
    [101]符慧林,周育才,陈玲萍.800MN巨型模锻液压机基于仿人智能控制方法的纠偏策略研究[J].机械科学与技术,2011,30(3):482-487
    [102]Chen C Y,Liu L Q,Cheng C C,et al. Fuzzy controller design for synchronous motion in a dual-cylinder electro-hydraulic system[J].Control Engineering Practice,2008,16 (6):658-673.
    [103]Sergey Edward Lyshevski. Nonlinear Modeling and Robust Control of Synchronous Reluctance Motors[J].Energy Conversion and Management,2002, 43:523-536.
    [104]Sun Dong,Shao Xiaoyin,Gang Feng. A Model-Free Cross-Coupled Control for Position Synchronization of Multi-Axis Motion:Theory and Experiments[J].IEEE Transactions on control systems technology,2007,15 (2):306-314.
    [105]SUN Hong,CHIU G T.Motion synchronization for dual-cylinder electro hydraulic lift systems[J].IEEE/ASME Transactions on Mechatronics,2002,7 (2):171-181
    [106]Young-Hyun Lee and R. Kopp, Application of fuzzy control for a hydraulic forging machine[J].Fuzzy Sets and Systems,2001,118 (1):99-108
    [107]任金霞.基于神经网络的静力压桩机的液压同步控制系统[J].机床与液压,2006(12):185-186
    [108]陈晓冬,张科.基于Widrow-Hoff学习算法的液压系统同步控制策略研究[J].制造技术与机床,2009(3):44-48
    [109]N.J.Wilis. Artificial Neural Networks in Process Estimation and Control[J]. Automatica,1992,28 (5):1181-1187
    [110]J.Zhang, GGilbert,etal. Wavelet Neural Network for Function Learning[J]. IEEE Transaction on Signal Processing,1995,43 (6):1485-1497
    [111]S.Khanmohammadi,I.Hassanzadeh, M.B.B. Sharifian. Modified Adaptive Discrete Control System Containing Neral Estimator and Neural Controller [J]. Artificial Intelligence in Engeneering,2000, (14):31-38
    [112]张利平.液压控制系统及设计[M].北京:化学工业出版社,2005:5-6,225-258,268
    [113]张宏建,黄志尧,周洪亮等.自动检测技术与装置(第二版)[M].北京:化学工业出版社,2010:23-57
    [114]周亮.300MN模锻水压机主分配器及液压集成块优化设计[D].长沙:中南大学,2006:1-2
    [115]本刊辑.二重将制造世界上最大的模锻压机[J].机械研究与应用,2008,21(2):111
    [116]本刊辑.企业资讯:大型8万吨重型模锻液压机项目落户西安[J].现代机械,2007,3:24
    [117]张利平.液压传动系统设计与使用[M].北京:化学工业出版社,2010:20-49
    [118]张利平.液压传动系统及设计[M].北京:化学工业出版社,2005:173-205
    [119]南京工学院,西安交通大学.理论力学(下册)[M].北京:高等教育出版社,1984:76
    [120]刘鸿文.材料力学(上册)(第二版)[M].北京:高等教育出版社,1988:224-249
    [121]杨尚平,吴张永,杨晓玉等.粘性阻尼系数的动态测试法[J].机床与液压,2005,33(1):80-82
    [122]宋志安.基于MATLAB的液压伺服控制系统分析与设计[M].北京:国防工业出版社,2007:108,
    [123]刘忠伟.液压与气压传动(第二版)[M].北京:化学工业出版社,2011:51
    [124]邓奕,刘少军,刘忠伟等.300MN模锻水压机同步平衡控制系统可靠性分 析[J].机械设计与制造,2007(1):91-92
    [125]冯靖,彭光正.先导式比例流量阀控制系统的建模和仿真[J].机床与液压,2007,35(1):136-138
    [126]张弓,于兰英,吴文海,等.高速比例阀的统一建模与非量纲分析[J].系统仿真学报,2009,21(3):873-877
    [127]刘涛.50000KN整体式汽车大梁液压机液压控制系统的分析研究[D].杭州:浙江大学,2002:56-58
    [128]王亚军.大型组合承载结构整体建模及八万吨压机主机架结构分析与优化设计[D].长沙:中南大学,2008:
    [129]吴生富.150MN锻造液压机本体组合结构研究[D].秦皇岛:燕山大学,2006:87-100
    [130]路甬祥,胡大纮.电液比例控制技术[M].北京:机械工业出版社,1988:388-389
    [131]黄曼磊.鲁棒控制理论及应用[M].哈尔滨:哈尔滨工业大学出版社,2007:3-6,33-41,104-155
    [132]吴敏,桂卫华,何勇.现代鲁棒控制(第二版)[M].长沙:中南大学出版社,2006:4-6
    [133]褚健,俞立,苏宏业.鲁棒控制理论及应用[M].杭州:浙江大学出版社,2000:4-11
    [134]胡敬朋.基于H∞鲁棒控制理论的EPS控制策略研究[D].北京:中国矿业大学,2009:33-62
    [135]钟志勇,谢志棠,王克文.电力系统稳定器的最优鲁棒设计[J].电力系统自动化,1999,23(8):11-15
    [136]HongSun. Motion Synchronizaton of Multi-Cylinder Elector-Hydraulic lift System[D]. PhD Dissertation, Purdue University,2001,67(7):89-90
    [137]Hong Sun and George T C. Equalization of multi-cylinder electror-hydraulic systems[C].In:Proeeedings of the American control conference.Chicago:Illions, July 2000:4134-4138
    [138]杨盐生.不确定系统的鲁棒控制及其应用[M].北京:科学出版社,2004:30-150
    [139]吴士昌.自适应控制[M].北京:机械工业出版社,2005:15-79
    [140]程代展.应用非线性控制(英文版)[M].北京:机械工业出版社,2006:1-
    [141]诸静.模糊控制原理与应用[M].北京:机械工业出版社,2005:5-67
    [142]王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社,2005:25-78
    [143]F. Khaber, A. Hamzaoui, K. Zehary.New stable adaptive fuzzy approach to control uncertain nonlinear SISO systems[J].International Journal of Systems Science,2006(37):437-445
    [144]S. Tong, T. Chai.Direct adaptive control and robust analysis for unknown multivariable nonlinear systems with fuzzy logic systems [J].Fuzzy Sets and Systems,1999(106):309-319
    [145]C. Lin, L. Chen, C. Chen.RCMAC Hybrid Control for MIMO Uncertain Nonlinear Systems Using Sliding-Mode Technology[J].IEEE Transactions on Neural Networks,2007(18):708-720