用户名: 密码: 验证码:
基于健康监测的钢桥面板疲劳寿命评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交异性钢桥面板的疲劳开裂事例在许多国家相继报道,该问题已经成为建设与管养单位面临的一道难题。面对钢桥面板疲劳开裂问题的巨大挑战,许多学者相继展开对钢桥面板疲劳问题的研究并发表了大量文章,取得了一定成果,然而我们的研究仍然有很大的提升空间,如何对正在运营的钢桥面板疲劳寿命进行科学评估,从而及时进行检测和预防性养护,对于提高钢桥面板的耐久性并节省高额维护费用,具有重要理论意义和工程实用价值。
     近年来,随着桥梁健康监测技术的快速发展和应用,通过在桥梁上布设传感器,提供了大量运营过程中的有用数据。本文以我国首座千米级钢桁梁悬索桥贵州坝陵河大桥长期健康监测系统为背景,研究合理的利用桥梁健康监测系统实测数据,对正交异性钢桥面板构造细部进行疲劳寿命评估。分别基于名义应力法、热点应力法、车辆荷载谱法和基于新型桥梁疲劳寿命计的方法,对钢桥面板的疲劳寿命进行评估,最后基于疲劳时变可靠度的方法,提出钢桥面板检查策略,达到降低检测成本和提高检测效率的目的。论文主要研究内容和取得的成果包括:
     1.概述了正交异性钢桥面板的发展历史,对其常见开裂部位进行了总结分析;对构造细节的演变进行了详细阐述,包括纵肋型式的演变、合理刚度的演变以及连接细节的演变。对钢桥面板疲劳监测前沿技术进行了概述总结,包括动态称重(WIM)系统、光纤光栅应变监测技术以及新型的桥梁疲劳寿命计技术等。
     2.对桥梁健康监测系统动应力监测数据的分析处理进行了研究。对钢桥面板名义应力监测测点布设、疲劳强度的选择、应力监测数据的分析以及名义应力疲劳寿命评估等进行了系统的研究。采用名义应力法理论和监测系统实测数据,实现了坝陵河大桥正交异性钢桥面板疲劳寿命的评估。结果表明,以目前的交通荷载,坝陵河大桥桥面板疲劳寿命满足设计要求。
     3.对基于热点应力法监测的疲劳寿命评估技术进行了研究。分析研究了钢桥面板各疲劳细节热点应力集中系数,并对钢桥面板热点应力监测测点布设、热点应力疲劳强度的推导、热点应力监测数据的分析以及热点应力疲劳寿命评估等进行了系统的研究和总结。在此基础上建立了基于热点应力监测的疲劳寿命评估步骤,采用监测系统实测数据,实现了坝陵河大桥正交异性钢桥面板疲劳寿命的评估。结果表明,采用热点应力方法,简化了焊接形式,减少了结果的分散性,比用名义应力具有一定的优越性。
     4.对基于车辆荷载监测的疲劳寿命评估技术进行研究。基于动态称重系统,统计分析桥梁车辆交通流量和车重,建立车重概率模型,采用泊松过程建立车辆间距概率模型,并采用蒙特卡罗理论模拟随机车队荷载作为疲劳设计荷载。推导了适用于西部山区高速公路桥梁的标准疲劳车、随机疲劳荷载和正交异性桥面板的车轴频值谱、随机车轴频值谱。对坝陵河大桥正交异性钢桥面板常见疲劳细节进行疲劳寿命评估,所得结果与基于应力监测的结果相近,在目前交通量情况下使用寿命高于设计寿命值。
     5.对基于新型疲劳寿命计的疲劳寿命评估技术进行了研究。提出基于新型疲劳寿命计的剩余寿命评估方法。通过与实测推导的标准疲劳车结合,推导并建立了疲劳计电阻变化值与累积损伤度的关系式,从而可直接通过疲劳计实测的电阻变化,基于规范推导疲劳寿命。成功安装于贵州坝陵河大桥钢桥面板上的疲劳寿命计和测量数据分析结果表明,疲劳计是一种具有疲劳载荷累积记忆功能的传感元件,其不可逆的电阻变化记录监测点的交变应变历程,适用于大型桥梁等结构的长期疲劳损伤监测。
     6.为钢桥面板的检测养护提供依据是进行疲劳监测与寿命评估的重要目的之一,为此论文提出了钢桥面板基于疲劳时变可靠度的检测策略。推导建立了钢桥面板疲劳极限状态方程,建立疲劳时变可靠指标计算公式进而对钢桥面板疲劳时变可靠指标进行计算;建立检测策略与疲劳可靠度之间的关系,为进行科学的检测策略提供参考依据。基于疲劳时变可靠度的检测方式,跟传统的定期检测相比,具有显著的优点。
Fatigue cracking problems in the orthotropic steel deck of bridges have been extensively reported in many countries, which have become a predicament during the bridge design, construction and maintenance. Facing great challenges, many scholars have carried out studies on fatigue problems of orthotropic steel deck, published numerous articles and acquired certain achievements. However, there is still a great space left for the further in-depth study. The problem of how to scientifically assess the fatigue life of a steel bridge deck in its operation stage so as to timely make corresponding inspection and preventive maintenance is of great theoretical significance in aspects of improving the durability of steel bridge deck and saving high maintenance cost, and also has practical values.
     In recent years, with the rapid development and wide application of the bridge health monitoring technique, vast numbers of useful data are obtained in the operating process via the sensors installed in the bridge. Based on the health monitoring system for Balinghe River Bridge in Guizhou Province, the study of how to make rational application of the measured data got from the health monitoring system to assess the fatigue life of structural details of orthotropic steel bridge deck is presented in this paper. The fatigue life evaluation of Balinghe River Bridge is intensively carried out based on the nominal stress method, hot spot stress method, the vehicle load spectrum method and the new fatigue life gauge method. At last, the time-dependent fatigue reliability method is adopted to decide on the orthotropic steel deck inspection strategy with the purpose of reducing inspection costs and enhancing inspection efficiency. The main work and obtained results are as follows:
     1. The history of the development of orthotropic steel deck is reviewed; the common cracking locations are summarized and analyzed. The evolution of the structural details are described in detail, including the evolution of the longitudinal rib type, a reasonable evolution of the stiffness and the evolution of the connection details. The latest techniques of orthotropic steel deck fatigue monitoring, including WIM system, FBG monitoring technique and fatigue life gauge technique are summed up.
     2. The analysis and process of the dynamic stress monitoring data for the bridge health monitoring system is studied. A systematic study is carried out for the layout of nominal stress monitoring testing points, the choice of the fatigue strength, the analysis of stress monitoring data and the fatigue life evaluation based on nominal stress. Based on the nominal stress method and the measured data from the monitoring system, the fatigue life evaluation of Balinghe River Bridge is realized. The results show that the fatigue life of Balinghe River Bridge meets the design requirements under the action of current traffic loads.
     3. Fatigue life evaluation technique based on the hot spot stress method is studied. The hot spot stress concentration factor of each and every fatigue details of steel bridge deck is analyzed. And a systematic study and summarization for the layout of the hot spot stress testing points, the derivation of the hot spot stress fatigue strength, the analysis of hot spot stress monitoring data and the fatigue life evaluation based on hot spot stress is conducted, upon which fatigue life evaluation procedures based on hot spot stress monitoring are established. By means of the measured data from the monitoring system, the fatigue life evaluation of the orthotropic steel bridge deck of Balinghe River Bridge is realized. The results indicate that the hot spot stress evaluation method simplifies the form of welding, reduces the dispersion of the results, and is superior to the nominal stress method.
     4. Fatigue life evaluation technique based on the vehicle load monitoring is studied. Based on WIM systems, the bridge vehicle traffic flow and vehicle weight are statistically analyzed and the vehicle weight probability model is established. The probability model of vehicle spacing is established based on Poisson process and the random team load as a fatigue design load is simulated by the Monte Carlo theory. The standard fatigue truck and the random fatigue load are selected for highway bridges in the western mountainous areas in China, the axle frequency value spectrum and random axle frequency value spectrum are derived for orthotropic bridge deck. The fatigue life of conventional fatigue details of the orthotropic steel deck of Balinghe bridge is evaluated. The results basically agree with the results based on the stress monitoring, under the current traffic condition, the actual service life is longer than the design life.
     5. Fatigue life evaluation technique based on the new fatigue life gauge is studied and the fatigue life evaluation method based on the new fatigue life gauge is proposed. Combined with the deduced standard fatigue truck, the relation of the change in resistance value and the cumulative damage is derived and established. And then, the fatigue life can be calculated based on the change of resistance value. The new fatigue life gauges installed in Balinghe River Bridge and the analysis of the measured data indicate that the fatigue life gauge is a sensor which has the capacity of fatigue load accumulation and memory, its irreversible resistance changes record alternating strain history of monitoring points, which is suitable for long-term fatigue damage monitoring of long-span bridges.
     6. One of the major purposes of fatigue monitoring and life evaluation is to provide references for the inspection and maintenance of steel bridge deck. Thereby, the inspection strategy based on fatigue dynamic reliability is proposed accordingly. The fatigue limit state equation is established, meanwhile, the formula of fatigue dynamic reliable indicator is proposed to calculate the time-dependent reliability index of steel bridge deck. The relation between the inspection strategy and fatigue reliability is built, so as to provide references for making scientific inspection strategy. Compared with the traditional regular inspections, the inspection method based on fatigue reliability has significant advantages.
引文
[1]童乐为.正交异性钢桥面板的疲劳研究:[博士论文].上海:同济大学,1995.
    [2]小西一郎[日].《钢桥》第一分册.北京:人民铁道出版社,1980.
    [3]Tim Gurney. TRL State of the Art Review 8:Fatigue of steel bridge decks[R],1992.
    [4]赵欣欣,刘晓光,张玉玲.正交异性桥面板设计参数和构造细节的疲劳研究进展.中国钢结构协会桥梁钢结构分会2010年学术年会论文集,武汉,2010,264-273.
    [5]史永吉.虎门大桥钢箱梁正交异性钢桥面板裂纹类别及其成因.中国铁道科学研究院报告,2007.
    [6]Cuninghame, J.R.:Strengthening fatigue prone details in a steel bridge deck[J]. Proc. of International Conference on Fat. of Welded Structures.1987.
    [7]党志杰.钢桥构造的疲劳开裂分析.中铁大桥局集团武汉桥梁科学研究院有限公司报告,2009.
    [8]徐海鹰,伍贤智.厦门滨海东大道马新大桥新型钢桥面铺装技术研究.中铁大桥局集团武汉桥梁科学研究院有限公司报告,2012.
    [9]任伟平.焊接钢桥结构细节疲劳行为分析及寿命评估:[博士学位论文].成都:西南交通大学,2008.
    [10]孙燕.公路钢桥疲劳状况实测与分析:[硕士学位论文].上海:同济大学,2007.
    [11]师义军.既有公路钢桥剩余疲劳寿命评估及疲劳可靠性研究:[硕士学位论文].西安:西安建筑科技大学,2005.
    [12]周太全.桥梁构件局部热点应力分析及其疲劳损伤累积过程模拟:[博士学位论文].南京:东南大学,2003.
    [13]CIDECT, X.L. Zhao, S. Herion, J.A. Packer, Design guide for circular and rectangular hollow section welded joints under fatigue loading, [S] 2001.
    [14]F.R. Mashiri, L. Zhao. Fatigue behavior of thin-walled tube-to-tube T-joints under in-plane bending [C]Tubular Structures Ⅸ 20001A.A.Balkema Publishers P259-268.
    [15]T. Partanen, E. Neimi. Hot spot stress approach to fatigue strength analysis of welded components:Fatigue test for steel plate thickness up to 10 mm. [J] Fatigue Fract. Engng Mater. Struct.1996,19(6):P.709-722.
    [16]P. Dong. A structural stress definition and implementation for fatigue analysis of welded joints [J] Int. J.Fatigue.200123 P.856-876.
    [17]S.B. Shin. The use of hot spot stress for estimating the fatigue strength of welded components [J] Steel Research 2000:71(11), P.466-473.
    [18]G. Savaidis, M. Vormwald. Hot spot stress evaluation of fatigue in welded structural connections supported by finite element analysis. [J] International Journal of Fatigue.2000.22:P.85-91.
    [19]周泳涛.公路钢桥标准疲劳车辆荷载研究.中国钢结构协会桥梁结构分会中国铁道学会桥梁工程委员会2010年学术论文集,2010,31~37.
    [20]苗闫闫.车辆荷载因素对公路桥梁疲劳可靠性影响的研究:[硕士学位论文].上海:同济大学,2009.
    [21]童乐为,沈祖炎,陈忠延.城市道路桥梁的疲劳荷载谱.土木工程学报,1997,30(5):20~27.
    [22]王荣辉,池春,陈庆中.广州市高架桥疲劳荷载车辆模型研究.华南理工大学学报(自然科学版),2004,32(12):94~96.
    [23]任剑,赵人达,毛学明.公路桥梁疲劳荷载谱初探.四川建筑科学研究,2007(01):34~37.
    [24]王硕.桥梁运营荷载状况研究:[硕士学位论文].上海:同济大学,2007.
    [25]胡明敏,陈杰,陶宝祺.疲劳寿命计性能研究.航空学报,1994,15(3):336~339.
    [26]尹福炎.应变电阻合金的电阻累积效应及疲劳寿命计.金属材料研究,1996,第1期:13~19.
    [27]肖丹.桥梁疲劳寿命计制备及性能研究:[博士学位论文]福州:福州大学,2009.
    [28]李飞.疲劳寿命计性能测试与钢桥疲劳寿命估算:[硕士学位论文].长沙:中南大学,2007.
    [29]陈格威.桥梁疲劳寿命计温度补偿性能研究:[硕士学位论文].长沙:中南大学,2010.
    [30]王春生.铆接钢桥剩余寿命与使用安全评估:[博士学位论文].上海:同济大学,2007.
    [31]Albrecht P.Fatigue reliability analysis of highway bridges[C].Probabilistic fracture mechanics and fatigue methods:application for structural design and maintence,ASTM STP 798,Bloom,J.M.and Ekvall, J.C.Eds.,ASTM: 184-204.1983.
    [32]MOSES F.New directions and research needs in system reliability research[J].Structural Safety,7(1):93-100.
    [33]Shahawy, M.A., and Arochiasamy, M. Field instrumentation to study the time-dependent behavior in Sunshine Skyway Bridge. I., Journal of Bridge Engineering, ASCE, Vol.1, No.2,76-86.1996.
    [34]Shahawy, M.A., and Arochiasamy, M., Analytical and measured strains in in Sunshine Skyway Bridge. Ⅱ., Journal of Bridge Engineering, ASCE, Vol.1, No. 2,87-97.1996.
    [35]Catbas, F.N., Grimmelsman, K.A., Barrish, R.A., Tsikos, C.J., and Aktan, A.E., Structural indentification and health monitoring of a long-span bridge, Structural Health Monitoring:Proceedings of the 2nd International Workshop on Structural Health Monitoring, F.K. Chang (ed.), Technomic, Lancaster, 419-429.1999.
    [36]Catbas, F.N., Grimmelsman, K.A., and Aktan, A.E., Structural identification of the Commodore Barry Bridge, Nondestructive Evaluation of Highway, Utilities, and Pipelines Ⅳ, A.E. Aktan and S.R. Gosselin (eds.), SPIE Vol.3995:84-97. 2000.
    [37]Kulcu, E., Qin, X., Barrish, R.A., and Aktan, A.E., Information technology and data management issues for health monitoring, Nondestructive Evaluation of Highway, Utilities, and Pipelines Ⅳ, A.E. Aktan and S.R. Gosselin (eds.), SPIE Vol.3995:98-111.2000.
    [38]Barrish Jr., R.A., Grimmelsman, K.A., and Aktan, A.E., Instrumented monitoring of the Commodore Barry Bridge, Nondestructive Evaluation of Highway, Utilities, and Pipelines Ⅳ, A.E. Aktan and S.R. Gosselin (eds.), SPIE Vol.3995:112-126.2000.
    [39]Aktan, A.E., Pervizpour, M., Catbas, N., Grimmelsman, K., Barrish, R., Curtis, J., and Qin, X., Information technology research for health monitoring of bridge systems, Structural Health Monitoring-The Demands and Challenges: Proceedings of the 3rd International Workshop on Structural Health Monitoring, F.K. Chang (ed.). CRC Press, Boca Raton, Florida, USA,1441-1465.2001.
    [40]Pervizpour, M., Curtis, J., Qin, X.; and Aktan, A.E., Data processing and quality assurance in health monitoring of constructed system, Health Monitoring and Management of Civil Infrastructure Systems, S.B. Chase and A.E. Aktan (eds.), SPIE Vol.4337:484-499.2001.
    [41]Catbas, F.N., and Aktan, A.E., Condition and damage assessment:issues and some promising indices, Journal of Structural Engineering, ASCE, Vol.128, No. 8:1026-1036.2002.
    [42]Aktan, A.E., Catbas, F.N., Grimmelsman, K., Pervizpour, M., Curtis, J., Shen, K., and Qin, X., Health monitoring for effective management of infrastructure, Smart Structures and Materials 2002:Smart Systems for Bridges, Structures, and Highways, S.C. Liu and D.J. Pines (eds.), SPIE, Vol.4696:17-29.2002.
    [43]Aktan, A.E., Ciloglu, K., Grimmelsman, K., Pervizpour, M., and Qin, X., Monitoring the operations, security and structural health of major long-span bridge hyper-systems, Structural Health Monitoring-From Diagnostics & Prognostics to Structural Health Management:Proceedings of the 4th International Workshop on Structural Health Monitoring, F.K. Chang (ed.), DEStech Publications, Lancaster, USA,188-196.2003.
    [44]Murugesh, G, Health monitoring of the New Benicia Martinez Bridge, Health Monitoring and Management of Civil Infrastructure Systems, S.B. Chase and A.E. Aktan (ed.), SPIE Vol.4337,256-267.2001.
    [45]Nimis, R., and Lwin, M., Field measurement of highway bridge, Structural Health Monitoring-The Demands and Challenges:Proceedings of the 3rd International Workshop on Structural Health Monitoring, F.K. Chang (ed.). CRC Press, Boca Raton, Florida, USA,517-533.2001.
    [46]Ozkan, E., Main, J., and Jones, N.P., Long-term measurements on a cable-stayed bridge, Proceedings of IMAC-XIX Conference, Kissimmee, Florida,518-523.2001.
    [47]Huang, M.J. and Shakal, A, Structural instrumentation in the California Strong Motion Instrumentation Program, Strong Motion Instrumentation for Civil Engineering Structures:Proceedings of the NATO Advanced Research Workshop on Strong Motion Instrumentation for Civil Engineering Structures, Edited by Erdik, M. etc, Istanbul, Turkey, June 2-51999.
    [48]Lenettm, M.S., Hunt, V, Helmichi, J., and Turer, A., Health-monitoring of the Ironton-Russell Bridge for rating purposes, Transportation Research Board: 80th Annual Meeting, January 7-11, Washington D.C.2001.
    [49]Smyth, A.W., Betti, R., Lus, H., and Masri, S.F., Global health monitoring and damage detection of the Vincent Thomas bridge, Structural Materials Technology IV:An NDT Conferenece, Feb.28-Mar.3, Atlantic, New Jersey, 399-404.2000.
    [50]Cheung, M.S., Instrumentation and field monitoring of the Confederation Bridge, Proceedings of the International Workshop on Response and Monitoring of Long Span Bridge, Hong Kong,109-118.2000.
    [51]Cheung, M.S., and Naumoski, N., The first smart long-span bridge in Canada-health monitoring of the Confederation Bridge, Structural Health Monitoring:Proceedings of the 1st International Workshop on Structural Health Monitoring of Innovative Civil Engineering Structures, A.A. Mufti (ed.), ISIS Canada Corporation, Winnipeg, Canada,31-44.2002.
    [52]Peter T., Johannio, M.C., Johannio, M.A., and Juan, C., Real time health monitoring of civil infrastructure systems in Colombia, Health Monitoring and Management of Civil Infrastructure Systems, S.B. Chase and A.E. Aktan (eds.), SPIE Vol.4337:113-121.2001.
    [53]Galindez, N., Marulanda, J., Thomson, P., Caicedo, J.M., Dyke, S.J., and Orezco, A., Implementation of a modal identification methodologies on the Pereira-Dos Quebradas cable-stayed Bridge,16th ASCE Engineering Conference, July 16-18 University of Washington, Seattle.2003.
    [54]Mortlock, J.D., The instrumentation of bridges for measurement of temperature and movement, Bridge Construction Division, Structures Department, Transport and Road Research Laboratory,1974.
    [55]Sloan, T.D., and Thomson, A., Development of an automatic data collection system for a major box-girder bridge, Computers & Structures, Vol.41, No.6, pp.1411-1416.2003.
    [56]Robison R., Saving Scotland's busiest bridge, Civil Engineering, Jan 1996; 66, 1,48-51
    [57]Curran, P., and Tilly, G, Design and Monitoring of the Flintshire Bridge, UK, Structural Engineering International, No.,3,225-228.1999.
    [58]Andersen, E.Y., and Pedersen, L., Structural health monitoring of the Great Belt East Bridge, Strait Crossing 94:Proceedings of the 3rd Symposium on Strait Crossings, J. Krokeborg (ed.), A.A. Balkema, Rotterdam, Netherlands, 189-195.1994.
    [59]田启贤,钟继卫,李星新.大跨度悬索桥变形与振动监测系统设计与实施.桥梁建设,2009,S2:101~105.
    [60]李星新,汪正兴,钟继卫.阳逻长江大桥损伤识别的静动力实用方法.第二届结构工程新进展国际论坛论文集,大连,2008.
    [61]钟继卫,李星新,史雪峰等.武汉军山长江大桥健康监测系统研究,中铁大桥局集团武汉桥梁科学研究院有限公司报告,2011.
    [62]李星新,郭翠翠,钟继卫等.贵州坝陵河大桥运营安全监测系统研究,中铁大桥局集团武汉桥梁科学研究院有限公司报告,2011.
    [63]罗晓光,任伟新.基于光纤光栅的弯板式桥梁动态称重传感装置的设计与静载试验研究,第17届全国结构工程学术会议论文集(第Ⅱ册),2008.
    [64]严义良.动态称重分析及其在高速公路中的应用.交通与计算机,2002,20(5),2-5。
    [65]汪兆栋.基于ARM的压电薄膜轴的车辆动态称重系统嵌入式研究与设计:[硕士学位论文].江门:五邑大学,2008.
    [66]Ono, T. et al. A dynamic Measurement Device of Mass'Utilizing a Microcomputer,, Systems and Control[J],1980,24(3),214-218.
    [67]史航.基于压电薄膜轴的动态称重系统:[硕士学位论文].江门:五邑大学,2006.
    [68]王慧晶.声发射技术在工程结构疲劳损伤监测中的应用和展望.振动与冲击,2007,26(6):157~160.
    [69]J.D.Prohaska,E.Snitze,B. Chen and M. H. Maher. Fiber Optic Brugg Grating Strain Sensor in Large Scale Concrete Structures. SPIE.1993,1798:286-294
    [70]A.T.Alavie,R.Maaskant and M. M. Ohn.Application and Characterization of Intracore Grating Sensors in A CFRP Prestressed Girder Concrete.SPIE.1994, 2191:103-110
    [71]T.H.T. Chan, L. Yu, H. Y. Tam. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge:Backgroud and experimental observation. Engineering Structures 28(2006)648-659.
    [72]方义庆.基于疲劳寿命计的大型钢桥疲劳检测关键技术研究:[硕士学位论文].南京:南京航空航天大学,2006.
    [73]British Standards BS5400(1978-1983). STEEL, CONCRETE AND COMPOSITE BRIDGE[S]. Chengdu:Southwest Jiaotong University Press, 1987:Part 10:Code of practice for fatigue,150-70.
    [74]美国各州公路和运输工作者协会(AASHTO),美国公路桥梁设计规范-荷载与抗力系数设计法(SI第一版,1974年).北京:人民交通出版社.
    [75]EN 1991-2:2003,Eurocode 1:Actions on Structures Traffic Loads on Bridge.
    [76]Cuninghame, T.R.:Fatigue classification of welded joints in or tho-tropic steel bridge decks, TRRL Research Report 259.1990.
    [77]钱冬生.关于正交异性钢桥面板的疲劳.桥梁建设,1996,2:8-13.
    [78]王春生.正交异性钢桥面板的疲劳研究综述.钢结构,2009,24(124):10~13.
    [79]童乐为,沈祖炎.开口纵肋的正交异性钢桥面板疲劳试验研究.中国公路学报,1997,10(3):59~65
    [80]党志杰.焊接残余应力与变形.中铁大桥局集团武汉桥梁科学研究院有限公司报告,2009.
    [81]李爱群,缪长青.桥梁结构健康监测.北京:人民交通出版社,2009.
    [82]T H T.Chan.Z X.Li J M Ko, Fatigue Analysis and Life Prediction of the Bridges with Health Monitoring Data-Part Ⅱ:Application 2001(01).
    [83]王滢,李兆霞.基于监测样本的大跨索桥疲劳应力概率分布函数的参数估计和检验.现代交通技术.2008,5(6):17~21.
    [84]高镇同.疲劳统计学.北京:国防工业出版社,1986.
    [85]徐海鹰.复杂焊接结构的疲劳问题探讨.钢结构,2007,22(95),15~17.
    [86]位立强.正交异性钢桥面板焊接构造疲劳性能研究:[硕士学位论文].南京:东南大学,2008.
    [87]ⅡW Commissions ⅩⅢ and ⅩⅤ. Recommendations concerning stress determination for fatigue.analysis of welded components.ⅡW Doc, Ⅹ 111-1458-92X V-797-92[S].1993.
    [88]CIDECT, x. L. Zhao, S. Herion, Design guide for circular and rectangular hollow section welded joints under fatigue loading[s].2001.
    [89]Fricke W. Recommended hot spot analysis procedure for structural details of FPSO s and ships based on round-robin FE analyses[J].International Journal of Offshore and Polar Engineering,2002,12(1):40-47.
    [90]Moddox S J. Hot-spot stress design curves for fatigue assessment of welded structures [J]. International Journal of Offshore and Polar Engineering, 2002,12(2):134-141.
    [91]Lotsberg I. Fatigue design of plated structures using finite element analysis [J]. Ships Offshore Structures,2006,1(1):45-54.
    [92]徐海鹰.福建省厦漳跨海大桥南汊主桥索-梁锚固结构足尺模型工艺性试验、分析及北汊主桥索-梁锚固结构理论计算研究.中铁大桥局集团武汉桥科学研究院报告,2011.
    [93]Fisher,J.W.Guide to 1974 AASHTO Fatigue Specifications[C].American Institute of Steel Construction,1974.
    [94]Laman J.a.,Nowak A.S.Fatigue-Load Models for Girder Bridges[J] Journal of Structural Engineering,1996,Vol.122(7):726.
    [95]Piya Chotickai. "Fatigue Life of Steel Bridges,Structural Evaluation and Reliability-Based Analysis Method",VDM Verlag DR.Muller,2009.
    [96]Fisher,J.W.,Kulak,G.L.,and Smith,IFC."A Fatigue primer for Structural", Engineers,National Steel Bridge Alliance.1998.
    [97]NEN 6788,The Design of Steel Bridge:Basic Requirements and Simple Rules[S].
    [98]李飞,肖丹,任伟新.新型桥梁疲劳寿命计精密合金箔材制备.第16届全国结构工程学术会议论文集,第Ⅲ册,2007:345~348.
    [99]戴恩斌.应变模态分析及参数识别:[硕士学位论文].长沙:中南大学,2010.
    [100]Schilling C.G, Hlippstein K.H, Barsom J.M. Fatigue of welded steel Bridge Members Under Variable-Amplitude Loadings, Cooperative Highway Research Program Report,1978.
    [101]American Association of State Highway and Transportation Officials(AASHTO) (1990). Guide Specifications for Fatigue Evaluation of Existing Steel Bridges.Washington, D. C.
    [102]欧洲钢结构协会.钢结构疲劳设计规范(史永吉,郑修麟译).西安:西北工业大学出版社,1989.
    [103]中交公路规划设计院.正交异性钢桥面系统的设计和基本维护指南(报批稿),2010.
    [104]毛文刚.起重机疲劳寿命估算与疲劳可靠性安全检测:[硕士学位论文]上海:上海交通大学,2006.
    [105]H.Alaylioglu,A.Alaylioglu,Finite element and experimental bases of a practical bridge management and maintenance system,Computers and structures, 1999 (73):281-293.
    [106]Toula Onoufriou Reliability based inspection planning offshore structures Marine Structures 12.521-539.1999.
    [107]孙晓燕,黄承逵,赵国藩等.基于动态可靠度和经济优化相结合的服役桥梁维修加固风险决策,工程力学,2004,10;5-10.
    [108]李星新,汪正兴,任伟新.基于迭代序列响应面的桥梁体系承载力可靠度评估.中国铁道科学,2009,30(3):40~44.
    [109]李星新,汪正兴,任伟新.钢筋混凝土桥梁疲劳时变可靠度分析.中国铁道 科学,2009,30(3):49~53.
    [110]Moses.F.Schilling,C.G.and Raju.K.S. Fatigue Evaluation Procedures for steel Bridges.NCHRP Report 299,Transportation Research Board,National Research Coucil,Washington,D.D.1987.
    [111]潘际炎,铁路钢桥可靠度疲劳设计方法-疲劳设计规范说明.铁道部科学研究院铁建所.1991.
    [112]H.Y.Chung.Fatigue reliability and optimal inspection strategies for steel bridges.PhD Dissertation,The University of Texas.
    [113]姚卫星.结构疲劳寿命分析.北京:国防工业出版社,2003.
    [114]Keating,P.B.and Fisher J.W..Evaluation of Fatigue Tests and Design Criteria on Welded Details.NCHRP Report 286,Transportation Research Board, Washington,D.C.1986.
    [115]Nyman,W.E.and Moses F. Calibration of Bridge Fatigue Design ModelJournal of Structural Engineering,ASCE,22.pp.1251-1256.
    [116]Raju S.K. Moses F.,Schilling C.G.Reliability Calibration of Fatigue Evaluation and Design Procedures.Journal of Structural Engineering,116,pp.1356-1369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700