四川裂腹鱼(Schizothorax kozlovi Nikolsky)种质特征及其遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四川裂腹鱼(Schizothorax kozlovi Nikolsky)隶属鲤形目、鲤科、裂腹鱼亚科、裂腹鱼属,主要分布于长江上游的乌江上游、赤水河上游、金沙江、雅砻江水系,是长江上游特有的地方经济鱼类。近年来由于遭受酷鱼滥捕和生境严重破坏的影响,其天然资源量已十分稀少。本文通过对乌江上游水系四川裂腹鱼形态特征、生长特点、肌肉营养成分、同工酶、核型和mtDNA标记等的研究,描述其种质特性,以期为制定该鱼种质标准提供基础资料,为保护、开发和利用野生四川裂腹鱼资源提供科学依据。主要研究结果如下:
     1.对采自乌江上游总稽河段、横江洛泽河上游支流羊街河段、金沙江干流攀枝花段、雅砻江上游雅江段等4个河段的78尾四川裂腹鱼标本进行性状分析,结果表明:各河段间,四川裂腹鱼种群的可数性状和可量比例性状存在不同程度的差异(P<0.05);4个河段四川裂腹鱼与采自岷江上游青衣江雅安段的31尾重口裂腹鱼标本进行比较,发现二者可数性状、可量比例性状和框架结构比较,多数指标差异极显著(P<0.01),不支持将二者合并为一个种。
     2.分别选择臀鳞、鳃盖骨、脊椎骨和耳石作为年龄鉴定材料,对四川裂腹鱼进行年龄鉴定。结果表明,与其它材料相比,耳石上呈现的年轮最为明显、清晰,几乎没有副轮,是较好的年龄鉴定材料。根据退算法原理,通过数学统计方法对乌江上游总稽河段50尾四川裂腹鱼的生长性能进行初步研究。结果表明:四川裂腹鱼体长(L,mm)与鳞径(R,mm)的关系式为L=27.009676R+107.260658(r=0.9591, N=50);体长(L,cm)和体重(W,g)的关系式为W=0.00002L2.9657(r=0.9719,N=50);3龄及以下的个体生长较快。
     3.测定了25尾四川裂腹鱼和26尾昆明裂腹鱼的肌肉成分,以了解和比较其种质特性。结果表明:四川裂腹鱼肌肉中蛋白质、脂肪、灰分含量分别为15.49%、1.03%和1.06%;肌肉中不饱和脂肪酸含量占脂肪酸总量的71.72%;18种氨基酸总含量75.20%(占肌肉干重),其中必须氨基酸含量为31.95%,占氨基酸总量的42.51%,鲜味氨基酸含量达30.03%,占氨基酸总量的39.97%。与昆明裂腹鱼的肌肉成分无显著差异。
     4.对四川裂腹鱼9种组织(眼球、肌肉、心脏、性腺、肝脏、鳃、脾脏、肾脏、大脑)进行了5种同工酶(乳酸脱氢酶-LDH、苹果酸脱氢酶-MDH、谷氨酸脱氢酶-GDH、乙醇脱氢酶-ADH、酯酶-EST)的研究,并对几种酶的同工酶位点及酶谱进行了分析,结果表明:四川裂腹鱼9种组织的5种同工酶系统具有明显的组织特异性。
     5.本试验采用植物血细胞凝集素(PHA)体内注射法,对四川裂腹鱼染色体核型进行初步研究,结果表明:四川裂腹鱼标本的染色体数2n=96,核型公式为:2n=36m+16sm+10st+34t,臂数NF=148。未发现异形性染色体、随体染色体及次级缢痕。
     6.本试验采用PCR扩增和直接测序法分析了乌江上游总稽河段、横江洛泽河上游支流羊街河段、金沙江干流攀枝花段、雅砻江上游雅江段的四川裂腹鱼4个种群,92尾个体mtDNA控制区的序列差异和遗传多样性。在这4个种群ntDNA控制区长度为834bp的同源序列中,共计有84个变异位点,占所测序列的10.07%。在其控制区序列共鉴定出32个单倍型。其中雅砻江种群内平均遗传距离(P)为0.030,攀枝花种群内平均遗传距离(P)为0.0240,总稽河种群内平均遗传距离(P)为0.007,羊街河种群内平均遗传距离(P)为0.0040。4个种群的平均核苷酸多样性(π)为0.02244,平均单倍型多样性(h)为0.951。四个种群中,羊街河种群具有最低的单倍型多样性和核苷酸多样性(h=0.704,π=0.00302);攀枝花河段种群具有最高的单倍型多样性(h=0.945);雅砻江河段种群具有最高的核苷酸多样性(π=0.02430)。本研究AMOVA分析结果显示,四川裂腹鱼群体遗传变异主要发生在种群间(50.16%),而种群内的遗传变异相对较小(49.84%)。
     7.不同种群间的遗传分化指数表明,从整体水平上看四川裂腹鱼的遗传分化比较显著;除雅砻江种群与攀枝花种群间的遗传分化水平不显著外,其余种群间的遗传分化均比较显著;表明该物种具有较明显的种群结构。基因流估计显示,各种群间(除雅砻江与攀枝花种群间)的基因交流受到了限制,表明四川裂腹鱼种群间具有非常高的遗传分化水平,或其种群间已发生隔离。雅砻江种群和攀枝花种群遗传距离较小(0.027),基因流值较大(28.72),遗传分化指数Fst也不显著(P>0.05),表明这两个种群间的遗传分化水平较低。不配对分布分析、Tajima's D检验和Fu's Fs检验表明,四川裂腹鱼在整体水平上没有经历过瓶颈效应,但羊街河种群受到由瓶颈效应或奠基者效应引起的遗传漂变的影响。
Schizothorax kozlovi Nikolsky is one of Schizothoracinae (Cypriniformes, Cyprinidae) fish species, which is widely distributed in the upstream of the Yangtze River (upstream of Wujiang, Hengjiang and Chishui, master stream of Jinsha and Yalong). It is one of the endemic large-scale commercial fishes in the upper section of the Yangtze River. In recent decades, the population sinks rapidly because of heavy fishing and habitat destruction, attracted a lot of attentions of the community, conservation scientists and other conservative organizations in the world. In order to design effective conservation strategies, this paper have did comprehensively research its Characters, Age&Growth, Nutritional Components, Isoenzyme, Karyotype and D-Loop of mitochondrial DNA on S. kozlovi. Genetic polymorphism of this species is also analyzed in our work. The major results are as follows:
     1. The Characters and morphology of78S. kozlovi specimens collected from Zongji River (the upper reach of Wujiang River), Yangjie River (the upper reach of Hengjiang River), Yalong River and Jinsha River were been analyzed using conventional methods. The results indicate that the countable and measurable characters differ in four different populations to varying degrees (P<0.05). By comparing to31S. davidi colected from Qingyi River(the upper reach of Minjiang River). The results show that, intra-specific variations of S. davidi and S. kozlovi were striking divergence (P<0.01) in most parameters and thus merging of the two species is not supported.
     2. By comparing with different age assessment materials (Buttocks scales, Opercular, Vertebra, Otolith), otolith is the most adequate for age assessment, because its annual rings was easy distinct and no accessory mark almost. This experiment usied computer technology and according to the principle of back-calculation. The growth performance of S. kozlov (50samples collected from upstream of Wujiang River) were been preliminary researched through mathematical statistical method.The relation equation between body length and scale radius is L=27.009676R+107.260658(r=0.959147, N=50) and the relation equation between body length and body weight is W=0.00002L29657(r=0.9719, N=50). Individuals below3years old grow quicker.
     3. In order to understand and compare the genetic characteristics, muscle nutritional components in5. graham (26samples) and S. kozlovi (25samples) were been measured through the gas chromatograph-mass spectrometer(GS-MS), automatic amino acid analyzer and conventional method. The content of protein, fat and ash is15.49%,1.03%and1.06%, respectively. Unsaturated fatty acid content takes up71.72%of total fatty acid. Total contents of18amino acids are75.20%(dry weight accounted for muscles) in which essential amino acids contents are31.95%, delicious amino acids contents are30.03%, each taking up42.51%and39.97%of total amino acids contents, respectively. No significant differences in muscle composition compare with S. grahami.
     4. Polyacrylamide gel electrophoresis is used to analyze five isozymes (lactic dehydrogenase-LDH, malic dehydrogenase-MDH, glutamic dehydrase-GDH, alcohol degydrase-ADH and esterase-EST) from nine tissues (eyeball, muscle, heart, gonad, liver, gill, kidney and brain). Isozymes loci and zymogram are also analyzed. The results indicate that five isozymes from nine tissues have apparent tissue specificity in S. kozlovi.
     5. Chromosome karyotype was preliminary researched on S. kozlovi through injected phytohemagglutinin (PHA) The chromosome number is2n=96and karyotype formula is2n=36m+16sm+10st+34t,NF=148. Heteromorphic sex chromosomes, satellite chromosome and secondary constriction were not been found.
     7. This experiment adopted the PCR amplification and direct sequencing method. The genetic structure and phylogenetic relationship of four wild populations (population of the Wujiang River upstream, population of the Hengjiang River upstream, population of the Yalong River, population of the Jinsha River) were examined according to mitochondrial DNA (mtDNA) control region. After being aligned,834bp sequences of mtDNA control region were acquired and revealed84variable sites in92samples, accounting for10.07%of the total number of sites. Among these polymorphic sites,17were singleton variable sites and67were parismony-informative sites. On average, base composition of all samples was T=33.4%, C=19.7%, A=33.1%, and G=13.7%. The mtDNA control region was an A+T-rich region of the mitochondrial genome. A total of32haplotypes were identified based on nucleotide variability. The total nucleotide diversity (%) and haplotype diversity (h) were0.951and0.02244, respectively. Haplotype and nucleotide diversities varied across the four populations. The geographic populations showed different genetic structure due to the influence of geographical isolation. Based on the Kimura2-parameter model, the overall average genetic distance among individuals was0.023. The overall mean intra-population genetic distance of the Yalong River Population (0.030) was the largest in the four populations, and that of Yangjie River Population (0.004) was the smallest. The neighbour-joining tree and the median-joining network which were constructed based on all haplotypes showed that the haplotypes from the Yalong and Panzhihua populations were promiscuously distributed, the Yangjiehe and Zongjihe populations were distributed similar. The Yalong population had a relatively distant relationship with the Panzhihua populations. The AMOVA revealed that most molecular variance was observed to occur among populations (50.16%), whereas variance within populations (49.84%) was relatively small.
     7. Pairwise Fsts demonstrated significant divergence between any two populations except between the Yalong and Panzhihua populations. Significant divergence across all samples was also observed, indicating a high level of geographical population structure. Gene flow (Nm) estimates among populations showed there were very limited genetic exchanges between any two populations except for the Yalong and Panzhihua populations. It appears that the level of divergence among populations (excluding Yalong and Panzhihua) was very high, and isolation has occurred among them. For the Yalong and Panzhihua populations, they had a low genetic distance (0.027), high gene flow (28.72), and no significant Fst (P>0.05), indicating a low level of divergence between them. The mismatch distributions, Tajima's D and Fu's Fs statistics showed that as a whole, Schizothorax kozlovi had not passed through a bottleneck, however, the Yanjiehe population had suffered a strong genetic drift might be related to a bottleneck or founder effect.
引文
[1]陈湘粦,乐佩琦,林人端.鲤科的科下类群及其宗系发生关系[J].动物分类学报,1984,9(4):442-440.
    [2]武云飞,吴翠珍.青藏高原鱼类[M].成都:四川科技出版社,1992,297-515.
    [3]武云飞.中国裂腹鱼亚科鱼类分类与系统关系研究[J].高原生物集刊,1984,(3): 119-139.
    [4]陈毅峰,曹文宣.裂腹鱼亚科[A].//乐佩琦.中国动物志:硬骨鱼纲鲤形目(下卷)[M].北京:科学出版社,2000,273-390.
    [5]Mirza M R. Freshwater fishes and zoogeography of Pakistan[J]. Bijdragen Tot Dierkunde,1975,45(2):144-180.
    [6]赵新全,祈得林,杨洁.青藏高原代表性土著分子进化和适应研究[M].北京:科学出版杜,2008,1-70.
    [7]祁得林,郭松长,唐文家,等.南门峡裂鱼亚科鱼类形态相似种的分类学地位形态趋同进化实例[J].动物学报,2006,52(5):86-87.
    [8]潘康成,方静.齐口裂腹鱼端脑形态和组织学研究[J].四川农业大学学报,2002,20(2):144-147.
    [9]谢林,方静.齐口裂腹鱼鳞片表面结构的扫描电镜观察[J].电子显微学报,2003,22(6):506-507.
    [10]方静,周毅.齐口裂腹鱼和重口裂腹鱼消化道形态和组织结构的观察[J].四川农业大学学报,1995,13(3):101-106.
    [11]方静,潘康成,邓天怀.齐口裂腹鱼鳃表面结构扫描电镜观察[J].四川农业大学学报,2004,22(2):196-198.
    [12]杨世勇,廖宇峰,杨坤,等.齐口裂腹鱼头骨系统解剖[J].西南农业学报,2012,25(4):1478-1482.
    [13]Mira M R A. Contribution to the systematics of the Schizothoracine fishes (Pisce: Cyprinidae)with the description of three new tribes, Pakistan[J]. Zool.1991, (23):339-341.
    [14]祁得林,郭松长,赵新全.青藏高原裸裂尻属鱼类两个疑难种的分子系统学[J].动物学报,2006b,52(6):1058-1066.
    [15]武云飞,谭齐佳.青藏高原鱼类区系特征及其形成的地史原因分析[J].动物学报,1991,37(2):135-152.
    [16]陈宜瑜,陈毅峰,刘焕章.青藏高原动物地理区的地位和东部界线问题[J].水生生物学报,1996,20(2):97-103.
    [17]方静,谢林,周毅.齐口裂腹鱼味蕾及上皮细胞的扫描电镜观察[J]. 四川动物,1995,14(3):105-106.
    [18]方静周毅.齐口裂腹鱼肠粘膜上皮超微结构研究[J].四川农业大学学报,1995,13(2):218-220.
    [19]潘康成,方静.齐口裂腹鱼胸腺组织学研究[J].四川农业大学学报,2002,20(3):262-266.
    [20]樊均德,方静,何敏.Glu细胞与5一HT细胞在两种裂腹鱼肠道的免疫组织化学研究[j].四川农业大学学报,2006,24(4):444-447.
    [21]方静,何敏,杜仲君,等.齐口裂腹鱼卵巢发育的组织学研究[J].四川农业大学学报,2007,25(1):89-93.
    [22]陈永祥,肖玲远,严太明,等.野生和养殖裂腹鱼血液学指标的比研究[J].水生生物学报,2009,33(5):905,910.
    [23]Singh N, K C Bhatt'Mlukesh K Bahuguna, et al. Fine structure of olfacttory epithelium inSchizothoraichthys progastus McClelland and Schizothorax richardsonii Gray(Cyprinidae:Teleostei) from Garhwal Himalaya (Idia) (J). J. Biosic.1995,20(3):385-396.
    [24]Singh N. scanning clectron microscopic study of the olfactory epithelium of four coldwater hilllstream teleosts form Garhwal hills (Idia) (J). J. Biosic.1994, 19(1):91-102.
    [25]潘康成,方静.齐口裂腹鱼端脑形态和组织学研究[J].四川农业大学学报,2002,20(2):144-147.
    [26]何敏,方静.重口裂腹鱼消化道内分泌细胞形态学及分布规律的研究[J]水利渔业,2006,26(4):5-6,34.
    [27]何敏,张宇,李宁娅,等.重口裂腹鱼消化道内分泌细胞的免疫组化定位[J].水利渔业,2008,28(1):22-23,55.
    [28]方静,何敏,崔恒敏.重口裂腹鱼消化道黏膜的超微结构[J].中国兽医学报,2008,28(7):812-819.
    [29]何敏,张宇,方静.重口裂腹鱼消化道定量组织学研究[J].山东农业大学学报(自然科学版),2010,41(2):229-233.
    [30]杨世勇,陈道春,杨淞,等.重口裂腹鱼精子的超微结构研究[J].安徽农业科学,2010,38(34):19504-19505,19508.
    [31]李晓莉,许映芳,方耀林,等.齐口裂腹鱼染色体核型和同工酶初步研究[J].淡水渔业,2010,40(1)::34-39.
    [32]方静樊均德陈碉.齐口裂腹鱼脑内5-羟色胺免疫组织化学的定位观察 [J].四川农业大学学报,2012,36(1):143-147.
    [33]方静,潘康成,邓天怀.齐口裂腹鱼肌肉营养成分分析[J].水产科学,2002,21 (1):17-19.
    [34]周兴华,郑曙明,吴青,等.齐口裂腹鱼肌肉营养成分的分析[J].大连水产学院学报,2005,20(1):20-24.
    [35]周兴华,向枭,陈建.重口裂腹鱼肌肉营养成分的分析[J].2006,28(6):536-537.
    [36]孟鹏,王伟继.孔杰,等.五条河流青海湖裸鲤的同工酶变异[J].动动物学报,2007,53(5):892-898.
    [37]祁洪芳.花斑裸鲤和极边扁咽齿鱼肌肉营养成分分析[J].水产科学,2009,28(3):187-192.
    [38]赵春彦,郭娟,李秀娟,等.齐口裂腹鱼肠道主要消化酶活性探研[J].通化师范学院学报,2010,31(2):42-44.
    [39]余祥勇,李渝成,周暾.中国鲤科鱼类染色体组型研究[J].武汉大学学报,1990,(2):98-104.
    [40]赵凯,杨公社,李俊兵,等.黄河裸裂尻鱼群体遗传结构和cyt 6序列变异[J].水生生物学报,2006,30(2):129-133.
    [41]陈自明,陈毅峰.RAPD技术对特化等级裂腹鱼类亲缘关系的探讨[J].动物学研究.2000,21(4):161-268.
    [42]于辉,李华,颜其贵,等.五种鲤科鱼类生长激素cDNA的克隆和序列分析[J].广东海洋大学学报,2008,28(4):1-5.
    [43]孟立霞.应用RAPD技术分析雅砻江5种裂腹鱼类的亲缘关系[J].水利渔业,2008,28(4):27-28.
    [44]林涛,吴蓉,颜其贵,等.齐口裂腹鱼生长激素基因cDNA克隆与序列分析[J].水生态学杂志,2009,2(4):79-83.
    [45]赵亚辉,张沽,张春光.青藏高原鱼类的多样性[J].生物学通报,2008,43(7):8-11.
    [46]祁得林,晁燕,郭松长,等.黄河裸裂尻鱼五种群mtDNA控制区的遗传结构[J].动物学报,2008,54(6):972-980.
    [47]阎学凤,杨金权,唐文乔,等.基于线粒体cyt6基因序列变异的克孜河塔里木裂腹鱼和斑重唇鱼遗传多样性[J].动物学杂志,2009,44(5):8-13.
    [48]宋君,张容,宋昭彬,等.采用AFLP分析齐口裂腹鱼DNA指纹的技术探讨[J].中国测试技术,2008,34(1):125-127.
    [49]晁燕,杨成,中志新,等.齐口裂腹鱼基于Cyt b基因序列多态性研究[J].水 产科学,2010,29(7):421-424.
    [50]李瑞文,林亚秋,郑玉才,等.齐口裂腹鱼PGC-1α基因编码区的克隆及其在肌肉组织中的表达[J].生物技术通讯,2013,24(1):71-75.
    [51]李正友,李建光,杨兴,等.贵州省主要经济鱼类种类及开发应用前景[J].贵州农业科学,2009,37(10):142-145.
    [52]伍律.贵州鱼类志[M].贵阳:贵州人民出版社,1989,188-189.
    [53]曹文宣、伍献文.四川甘孜阿坝地区的鱼类生物学及其渔业问题[J].水生生物学集刊,1962,(2):79-110.
    [54]陈永祥,罗泉笙.乌江上游四川裂腹鱼繁殖力的研究[J].动物学研究,1995,16(4):324,342,348.
    [55]胡思玉,肖玲远,赵海涛,等.四川裂腹鱼鱼苗耗氧率与窒息点的初步测定[J].毕节学院学报,2009,27(8):72-76.
    [56]邹习俊.四川裂腹鱼核型及遗传多样性研究[D].贵州大学硕士研究生论文.2009.
    [57]胡思玉,白建梅,葛传龙,等.两种裂腹鱼含肉率和肥满度的测定[J].安徽农业科学,2008,36(1):217-218.
    [58]范家佑,代应贵,张晓杰.四川裂腹鱼含肉率及肌肉矿质元素分析[J].广东农业科学,2010,(8):13-15,24.
    [59]陈永祥,胡思玉,赵海涛,等.乌江上游四川裂腹鱼和昆明裂腹鱼肌肉营养成分的分析[J].毕节学院学院,2009,27(8):67-71.
    [60]安苗,范家佑,黄保信,等.乌江上游四川裂腹鱼和昆明裂腹鱼5种同工酶的比较[J].贵州农业科学,2010,38(1):111-11.
    [61]代应贵、邹习俊、肖海.四川裂腹鱼乌江种群mtDNA控制区序列的遗传多样性分析[J].四川动物,2010,29(4):505-509.
    [62]张晓杰,代应贵.四川裂腹鱼摄食习性与资源保护[J].水生态学杂志,2011,32(2):110-114.
    [63]胡思玉,余志友,陈永祥,等.四川裂腹鱼消化系统脂肪酶活性研究[J].毕节学院学报,2011,29(8):94-97.
    [64]赵海涛、陈永祥、胡思玉,等.四川裂腹鱼与昆明裂腹鱼骨骼系统的比较研究[J].安徽农业科学.2011,39(22):13848-13854,13873.
    [65]冉光鑫,代应贵,岳晓炯.喀斯特地区四川裂腹鱼和光唇裂腹鱼的外形特征及差异性分析[J].江苏农业科学,2011,39(5):490-494.
    [66]施立明,贾旭.遗传多样性.1n:陈灵芝主编,中国的生物多样性[C].北京:科学出版社.1993,99-113.
    [67]刘旭.中国生物种质资源科学报告[M].北京:科学出版社.2004.110-130.
    [68]吴仲庆.论我国水产动物种质资源的保护[J].集美大学学报(自然科学版).1999,4(3):84-91.
    [69]Leslie A. Real. Ecological Genetics[M]. New Jersey:Princeton University Press.1994,171-175.
    [70]《产业透视》评论.种质资源已成为全球竞争的重要砝码.产业透视.2005,6:27.
    [71]蒋志刚,马克平,韩兴国.保护生物学[M].杭州:浙江科学技术出版社.1997,17-19.
    [72]Schaal B. A., Leverieh w. J., Rogstad S. H. Comparison of methods for assessing genetic variation in plant conservation biology Falk, D. A. & K. E. Holsingex (eds.). Genetics and Conservation of Rare Plants. New York: Oxford University Press.1991,123-34
    [73]Wendy Bickmore&JeffreyCraigi(房德兴等译)染色体带:基因组的图形[M].北京:科学出版社.2000,20-22
    [74]耿德贵,王景明,江山,等.鱼类染色体显带的研究进展[J].动物学杂志,1999,34(1):40-43
    [75 Brown A H D and Weir B S. Measuring genetic variation in plant population[C]. In:lsozyme in plant geneticsand breeding. (partA)(Tanksley SD. OrtonTJ eds.). Amsterdam Elsevier.1983,219-239.
    [76]Ryman N., Utter F. Population Gcneties and Fishery Management[M]. University of Washington Pres.Seattle.1987,420
    [77]Hillis D. M., Moritz C, Mable B. K.. Molecular Systematics[M],2nd ed. Sinauer Associams,Sunderland.1996,655
    [78]Murphy R. W., Sites J. W., Buth D. G., Hautler C. H. Proteins Ⅰ:lsozyme electrophoresis[C]. In:Hillis D.M., Moritz C., MableB. K. (Eds.), Molecular Sysmmatics,2nd ed. Sinancr Associates, Sunderland, MA.1996,51-132
    [79]Pasdar M., Philipp D. P., Whitt G. S. Linkage relationships of nine enzyme loci in sunfish (Lepomis Cenwarchidae)[J]. Goedcs.1984,107:435-446
    [80]May B.,Johnson k.R. Composite linkage map of salmonid fishes (Salvelinussalmo,and Oncorlwnchus)[C]. In:O'Brien,S. J. (Ed.), Genetic Maps: Locus Maps of Complex Genomes. Cold Spring Harbor.1993,4:309-317
    [81]邱芳,伏健民,金德敏,等.遗传多样性的分子检测[J].生物多样性,2000,8(1):143-150.
    [82]胡志昂.从知识创新展望21世纪生物多样性科学[J].生物多样性,1998,(2):36-40.
    [83]李思发.主要养殖鱼类种质资源研究进展[J].水生生物学报,1993,17(4):344-358.
    [84]《全国渔业资源调查和区划》编辑委员会.《中国渔业资源调查和区划》之一至六[M].杭州:浙江科学技术出版社.1987.
    [85]邓景耀,赵传茵.海洋渔业生物学[M].北京:农业出版社.1991,686 PP.
    [86]陈大刚.黄渤海渔业生态学[M].北京:海洋出版社.1991,504 PP.
    [87]李思发,吴力钊,王强等.长江、珠江、黑龙江鲢、鳙、草鱼种质资源研究[M].上海:上海科学技术出版社.1990,51-101.
    [88]赵金良.我国海水和咸淡水鱼类染色体组型研究概述[J].上海水产大学学报,2000,9(4):344-347.
    [89]王清印,余来宁,杨宁生.中国水产生物种质资源与利用[M].北京:海洋出版社.2005.
    [90]余先觉,周暾.李谕戚,等.中国淡水鱼类染色体[M]. 北京:科学出版社.1989,1-171
    [91]王蕊芳,马昆,施立明,等.尼罗罗非鱼染色体的C带、Ag带和减数分裂联会复合体的研究[J].动物学研究,1990,11(4):349-354
    [92]陈敏容.刘汉勤,官之梅,等.白暨豚的核型及其C-带棱型的研究[J].水生生物学报,1996,20(2):138-143
    [93]代应贵,肖海.裂腹鱼类种质多样性研究综述[J].中国农学通报,2011,27(32):38-46
    [94]邹佩贞,朱必凤,刘主.光倒刺鲃与中华倒刺鲃染色体组型研究[J].水产科学,2006,25(5):240-245
    [95]李渝成,李康,桂建芳,等.中国鲤科鱼类染色体组型的研究Ⅺ.裂腹鱼亚科二种鱼和鳅鮀亚科三种鱼的染色体组型(J).水生生物学报,1987,11(2):185-187
    [96]Chen Y F, He D K, Chen Y Y. Electrophoretic Analysis of Isozymes and Dicussion about Species Differentiation in Three Species of Genus Gymnocypris [J]. Zoological Resear.2001,22(3):9-19
    [97]权娅茹,张本.RAPD技术在我国鱼类研究中的应用[J].生物学通报,2005,40(2):15-17.
    [98]郑汗式,刘良国,易祖盛.RAPD分子标记与鱼类种质资源和遗传育种研究[J].广州大学学报(自然科学版),2003,2(6):518-524.
    [99]王志勇,王艺磊,林利民,等.福建官井洋大黄鱼AFLP指纹多态性的研究[J].中国水产科学,2002.9(3):198-202.
    [100]王志勇,王艺磊,林利民,等.利用AFLP指纹技术研究中国沿海真鲷群体的遗传变异和趋异[J].水产学报,2001,25(4):289-293.
    [101]刘必谦,董闻琦,王亚军,等.岱衢族大黄鱼种质的AFLP分析[J].水生生物学报,2005,29(4):413-416.
    [102]张俊彬,黄良民,陈真然.AFLP技术在笛蛸的仔鱼鉴定及其分类学上的研究[J].海洋学报,2005,27(2):165-17I.
    [103]Jeffreys A. J. Hypervariable "minisatellite" regions in human DNA [J]. Nature.1985,341:67473
    [104]Terry D. B. Chris C. W. Application of microsatellite DNA variation to estimation of stock composition and escapement of Nass River sockeye salmon (Oncorhynchus nerka)[J]. Can. J. Fish. Aquat Sci.1999,56:297-310.
    [105]McConnell S. K., O'reilly P'Hamilton L. et al. Polymorphic microsatellite loci from Atlantic salmo(Salmo salar):genetic differentiation of North American and European populations[J]. Can. J. Fish. Aquat. Sci.1995, 52:1863-1872.
    [106]申雪艳,宫庆礼,雷霁霖,等.进口大菱鲆Scophthalmus maximus L.苗种的遗传结构分析[J].海洋与湖沼,2004,(4):46-55
    [107]陈金平,董崇智,孙大江等.微卫星标记对黑龙江流域大麻哈鱼遗传多样性的研究[J].水生生物学报,2004,28(6):607-612
    [108]郭新红,刘少军,刘筠,等.鱼类线粒DNA研究新进展[J].遗传学报,2004,31(9):83-100
    [109]Akihisa Iwata, Takanori Kobayashi, Kazuho Ikeo,et al. Evolutionary aspects of gobioid fishes based upon a phylogenetic analysis of mitochondrial cytochrome b gene[J]. Gene.2000,259(1-2):5-15.
    [110]江世贵,刘红艳,苏天凤,等.4种鲷科鱼类的线粒体细胞色素b基因序列及分子系统学分析[J].中国水产科学.2003,10(3):184-188.
    [111]王伟,何舜平,陈宜瑜.线粒体DNAD. 100p序列变异与鳅蛇亚科鱼类系统发育[J].自然科学进展,2002,12(1):33-36.
    [112]周发林,江世贵,苏天凤,等.6种笛鲷属鱼类线粒体16S rRNA基因片段的序列比较[J].中国水产科学,2004,11(2):99-103.
    [113]蒙子宁,庄志猛,金显仕,等.黄海带鱼、小带鱼RAPD和线粒体16S rRNA基因序列变异分析[J].自然科学进展,2003,13(11):1170-1176.
    [114]孔晓瑜,刘亚军,喻子牛,等.牙鲆、石鲽和川鲽的线粒体16S rRNA基因片段的序列比较研究[J].青岛海洋大学学报,2001,31(5):713-717.
    [115]童金苟,吴清江.三个鲤品种线粒体基因片段序列保守性水生生物学报[J].2001,25(1):54-60
    [116]Saitoh K., Tanaka M., Ueshima R., et al. Preliminary data on restriction mapping and detection of letlgth variation in Japanese flounder mitochondrial DNA[J]. Aquaculture.1995.136(1):109-116.
    [117]Wirgin I.I., Stabile J. E., Waldman J. R. Molecular analysis in the conservation of sturgeons and paddlefish[J]. Env. Bi01. Fish.1997,48:385-398.
    [118]] Meyer A. DNA technology and phylogeny of fish[C]. In:A R Beaumont. Genetics and evolution ofaquatic organisms. Chapman and Hall.1994,219-249.
    [119]Bermingham E., Avise J. C. Molecular zoogeography offreshwater fishes in the Southeastern United States[J]. Genetics.1986-113:939-965.
    [120]Brown J. R. Mitochondrial DNA length variation and heteroplasmy in populations of white Sturgeon (Acipensertransmonlanus) [J]. Genetics.1992, 132:211-228.
    [121]Bermingham E., Avise J. C. Molecular zoogeography of freshwater fishes in the Southeastern United States [J]. Genetics.1986,113:939-965.
    [122]宋平,李晓迎,熊全沫.团头鲂线粒体DNA的限制性内切酶图谱[J].水生生物学报,1996,20(2):119-126.
    [123]王中铎,刘楚吾,郭昱嵩.5种笛鲷mtDNA及cyt b基因片段的RFLP比较[J].水产学报,2005,29(3):323-326
    [124]赵凯,李军祥,张亚平,等.青海湖裸鲤mDNA遗传多样性的初步研究[J].遗传,2001,23(5):445-448
    [125]李思发,吕国庆,贝纳切兹L.长江中下游鲢鳙草青四大家鱼线粒体DNA多态性分析[J].动物学报,1998,44(1):82-89.
    [126]邱芳,付健民,金德敏,等.遗传多样性的分子检测[J].生物多样性,1988,6(2):143-150
    [127]施立明.遗传多样性及其保护[J].生物科学信息,1990,2(1):158-164
    [1281尹绍武,黄海,张本,等.石斑鱼遗传多样性的研究进展[J].水产科学,2005,24(8):46-49
    [129]解新明,云锦凤.植物遗传多样性及其检测方法[J].中国草地,2000,6:51-59
    [130]Park P, Moran P. Developments in molecular genetic techniques[M]. Molecular genetics in Fisheries. Chapman & Hail(England, London).1995,1-28.
    [131]Mullis K.B., Faloona F. A.. Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction[J]. Methos Enzymol.1987,155:335-350.[132]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,4:1-9
    [133]Botstein D.R, White R. L, Skoinick M., et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. The American Journal of Human Genetics.1980,32:314-331
    [134]刘春华.达赉湖红鳍鲌种质指标的研究[D].内蒙古农业大学,2006.
    [135]王建勋.金头鲷的形态学及框架结构的研究[J].海洋水产研究,2006,27(3):14-20.[136] Winans, G.A. Using morphometric and meristic characters for identifying stock of Fish[C]. In:H. E. Kumpf(ed.):Proceeding of the Stock identification workshop, Vol.199, NOAA Tech Mem NMFS-SEFC 1987,135-146.
    [137]李思发,蔡完其,周碧云.团头鲂种群间的形态差异和生化遗传差异[J].水产学报,1991,15(3):204-221.
    [138]殷名称.鱼类生态学[M].北京:中国农业出版社,1995.
    [139]陈永祥,罗泉笙.四川裂腹鱼繁殖生态生物学研究(续)Ⅴ.繁殖群体和繁殖习性[J].毕节师专学报,1997,48(1):1-5.
    [140]刘志皋.食品营养学[M].北京:中国轻工业出版社,1991.
    [141]温安祥,曾静康,何涛.齐口裂腹鱼肌肉的营养成分分析[J].水利渔业,2003,23(1):13-15。
    [142]周兴华,向枭,陈建.重口裂腹鱼肌肉营养成分的分析[J].营养学报,2006,28(6):536-537
    [143]魏振邦,史建全,孙新,等.6个地区青海湖裸鲤肌肉营养成分分析[J].动物学杂志,2008,43(1):96-101。。
    [144]周兴华,郑曙明,吴青,等.齐口裂腹鱼肌肉营养成分的分析[J].大连水产学院学报,2005,20(1):20-24。
    [145]刘军,胡兵,李慧,等.长江水系中5种野生鱼类肌肉脂肪酸的研究[J].大连水产学院学报,2008,23(6):489-492
    [146]卢龙斗,常重杰,杜启艳,等..遗传学实验技术[M].合肥:中国科学技术大学出版社,1996.
    [147]葛颂,洪德元.泡沙参同工酶基因位点的遗传分析[J].植物学报,1986,431-438
    [148]姜建国,熊全沫,姚汝华.青鱼不同组织中同工酶的表达模式[J].水生生物学报.1997.21(4):353-358
    [149]张伟.鄱阳湖泥鳅细胞遗传与繁殖生物学研究[D].南昌:南昌大学硕士论文,2006
    [150]马波,石连玉.尹家胜.兴凯湖翘嘴红(?)同工酶的研究[J].水产学杂志.2000,13(2):63-68
    [151]唐文家,祁得林,杨成,等.黄河裸裂尻鱼乳酸脱氢酶同工酶研究[J].水产科学,2008,(1):40-41
    [152]刘鸿艳,谢从新.鱼类同工酶应用及研究进展[J].水利渔业,2008,(5):1-3
    [153]王金秋,石椿.松江鲈鱼(Trachidermus fasciatus)不同组织同工酶的研究[J].复旦学报(自然科学版),2001,(5):354-356
    [154]全成干,王军,丁少雄,等.大黄鱼养殖群体遗传多样性的同工酶研究[J].厦门大学学报(自然科学版).1999,(4):585-588
    [155]朱必凤,葛刚,彭志勤, 等.鄱阳湖鳜鱼、团头鲂肌肉四种同工酶研究[J].南昌大学学报(理科版).1999,(1):63-66
    [156]吴瑯虎,袁均林,张伟.高背银鲫、大口胭脂鱼及胭脂鲫(F1)不同组织的同工酶的表型分析[J].生物学杂志,2003,(2):19-21
    [157]吴兴兵.7种重要养殖鱼类的同工酶和ISSR分析[D].南京:南京师范大学硕士学位论文.2006
    [158]段彪,刘鸿艳.细鳞裂腹鱼同工酶组织特异性研究[J].西南大学学报(自然科学版),2010,32(6):27-30.
    [159]北京师范大学生物系生物化学教研室.基础生物化学实验[M].北京:北京高等教育出版社.1982,142-145
    [160]胡能书,万贤国.同工酶技术及其应用[M].长沙:湖南科技出版社,1985:86-126
    [161]何忠效,张树政.电泳(第二版)[M].北京:科学出版社.1999,284-308.
    [162]朱蓝菲,陈湘舜,王祖熊.20种鲤科鱼类同工酶的表型分析及有关进化问题的探讨.水产学报,1983,7(2):145-152
    [163]唐文家.黄河裸裂尻鱼遗传多样性研究[D].青岛:中国海洋大学,农业推广硕士学位论文,2008.
    [164]陈毅峰.裂腹鱼类的系统进化及资料生物学[D].武汉:中国科学院水生生物研究所理学博士论文,2000.
    [165]胡思玉,陈永祥,赵海涛,等.昆明裂腹鱼同工酶组织特异性研究[J].毕节学院学报,2011,29(4):100-105
    [166]吴仲庆.水产生物遗传育种学[M].厦门:厦门大学出版社.2000,7-25
    [167]咎瑞光,刘万国,宋峥.裂腹鱼亚科中的四倍体—六倍体相互关系[J].遗传学报,1985,12(2):137-142
    [168]乐佩琦.中国动物志·硬骨鱼纲·鲤形目(下卷)[M].北京:科学出版社.2000,273-336。
    [169]曹文宣,陈宜瑜,武云飞,等.裂腹鱼类的起源和演化及其与青藏高原隆起的关系[C].见:中国科学院青藏高原综合科学考察队编,青藏高原隆起的时代、幅度和形式问题.北京:科学出版社.1981,118-130
    [170]Wu Cuizhen, Wu Yunfei, Li Yanli et al.. Studies on the karyotypes of four species of fishes from the Mount Qomolangma region in China[J]. In:Li Deshang. Proceedings of the international Symposium on Aquacultrue. Qingdao:Qingdao Ocean University Press.1996,59-103.
    [171]祁得林.青海湖裸鲤染色体核型及多倍性的初步研究[J].青海大学学报(自然科学版),2004,22(2):44-47
    [172]武云飞,康斌,门强,等.西藏鱼类染色体多样性的研究[J].动物学研究,1999,(24):258-264.
    [173]陈燕琴,杨成,赵娟,等.黄河裸裂尻鱼染色体核型的初步研究[J].水产科学,2006,25(11):577-580.
    [174]Rishi K K, Singh J, Kaul M M. Chromosomal analysis of Schizothoraichthys progastus(McClelland)(Cyprinids:Cypriniformes)[J]. Chromosomes Information Services.1983,(34):12-13.
    [175]Khuda-Buksh A R, Naysk K. Karyomorphological studies in two species of hillstream fishes from Kashmir, India:Occurrence of a high number of chromosomes[J]. Chromosomes Information Services.1982, (33):12-14.
    [176]龚新勇,李敏,杨晓芬等.餐条的核型研究[J].贵州大学学报,2010,27(3):58-63.
    [177]孟庆磊,安丽,王成武,等.淡水黑鲷染色体核型分析[J].淡水渔业,2010,40(3):76-80.
    [178]舒琥,黄萃莹,张海发,等.长鳍篮子鱼的染色体组型研究[J].广州大学报,2010,9(1):90-93
    [179]张君,汤俊,沈颂东,等.河川沙塘鳢染色体核型研究[J].江苏农业科学,2010,(2):253-256.
    [180]胡国宏,孙广华,张雅斌,等.怀头鲇的核型分析[J].2005,20(4):318-321.
    [181]朱健,张成锋,闵宽洪,等.尼罗尖吻鲈和鳜鱼染色体组型分析及比较[J].水生生物学报,2009,33(2):195-199.
    [182]Yu Chunjin, Song Zhaobin, Yue Bisong. Taxonomic implications from phylogenetic relationships of subspecies of Schizopygopsis malacanthus (Pisces: Cyprinidae) based on sequence analysis of cytochrome b and mitochondrial DNA control region[J]. Journal Natural History.2006,40(44-46):2569-2576
    [183]陈毅峰,陈自明.裂腹鱼类系统发育和分布格局的研究[J].动物分类学报,1998,23(增):17-34.
    [184]陈永祥,罗泉笙.乌江上游四川裂腹鱼的胚胎发育[J].四川动物,1997,16(4):163-167.
    [185]赵海涛,陈永祥,周礼敬,等.昆明裂腹鱼畸形胚胎的形态观察[J].毕节学院学报,2007,25(4):72-76.
    [186]Thompson J D, Higgins D G, Gibson T J. Clustal W:improving the sensitivity and progressive multiple sequence alignment through sequencing weighting, position specific gap penalties and weight matrix choice[J]. Nucleic Acids Research.1994,22:4673-680
    [187]Kumar S, Tamura K, Nei M. MEGA3:integrated software for molecular evolutionary genetics analysis and sequence alignment[J]. Briefings in Bioinformatics.2004,5:150-163
    [188]Rozas J, Sanchez D J C, Messeguer X, et al.. DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatic.2003,19:2496-2497
    [189]Nei M. Molecular evolutionary genetics[M]. Columbia University Press, New York.1987.
    [190]Bandelt H, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies[J]. Molecular Biology and Evolution.1999, (16):37-48
    [191]Ecoffier L, Laval G, Schneider S. Arlequin Ver.3.0:an integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online.2005,(1):47-50
    [192]Excoffier L, Smouse P, Quattro J. Analysis of molecura variance inferred from metric distances among DNA haplotypes:application to human mitochondrial DNA restriction data[J]. Genetics.1992,131:479-491
    [193]Hudson R R, Slatkin M, Maddison W P. Estimation of levels of gene flow from DNA sequence data[J]. Genetics.1992,132:583-58
    [194]Weir B S, Cockerham C C. Estimating F-statistics for the analysis of population structure[J]. Evolution.1984,38:1358-1370
    [195]Rogers A, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences[J]. Molecular Biology and Evolution.1992,9: 552-569
    [196]Schneider S, Excoffier L Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA[J]. Genetics.1999,152:1079-1089
    [197]Tajima F. Statistical methods for testing the neutral mutation hypothesis for DN polymorphism[J]. Genetics.1989,123:585-595.
    [198]Fu Y X, Li W. Maximum likelihood estimation of population parameters[J]. Genetics.1993,134:1261-1270
    [199]Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics.1997,147:915-925
    [200]Aris-Brosou S, Excoffier L. The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism[J]. Molecular Biology and Evolution.1996,13:494-504
    [201]Weight S. Evolution and the genetics of population variability within and among natural population[M]. Chicago:University of Chicago Press.1978,4.
    [202]Grant W S, Bowen B W. Shallow population histories in deep evolutionary lineages of marine fishes:insights from sardines and anchovies and lessons for conservation [J]. Journal of Heredity.1998,89:415-426
    [203]Aboim M A, Menezes G M, Schlitt T, et al. Genetic structure and history of populations of the deep-sea fish Helicolenus dactylopterus (Delaroche,1809) inferred from mtDNA sequence analysis[J]. Molecular Ecology.2005,14: 1343-1354
    [204]Cano R L, Brown W M, Wilson AC Polymorphic sites and the mechanism of evolution in human mitochondrial DNA [J]. Genetics,1984,106:479-499.
    [205]Gatt M H, Ferguson M M, Liskauskas A P. Comparison of control region sequencing and fragment RFLP analysis for resolving mitochondrial DNA variation and phylogenetic relationships among Great Lakes Walleyes [J]. Trans American Fish So:,2000,129(6):1288-1299.
    [206]Zardoya R, Meyer A. Mitochondrial evidence on the phylogenetic position of caecilians(Amphiia:Gynnnophiona) [J]. Genetics,2000,2:765-775.
    [207]Neigel J E, Avise J C. Application of random walk model to geographic distributions of animal mitochondrial DNA variation [J]. Genetics.1993,135(4): 1209-1220.
    [208]周慧,李迪强,张于光,等.藏羚羊mtDNA D-loop遗传多样性研究[J].遗传,2006,28(3):299-305.
    [209]Lan H, Shi L M. The Origin and Genetic Differentiation of Native Breeds of pigs in Southwest China:An approach From Mitochondrial DNA Polymorphism [J]. Biochemical genetics.1993,31:51-60
    [210]王成辉 李思发 邹曙明.中国红鲤四群体线粒体DNA遗传多样性、起源及分化[J].水产学报,2004,28(6):540-544
    [211]李祥龙,张亚平,陈是偶,等.山羊mtDNA多态性及其起源分化研究[J].畜牧兽医学报,1999,30(4):313-319
    [212]谭婕.横江水电开发对水生生态环境影响分析[D].成都:西南交通大学工程硕士论文,2012.
    [213]陈大庆,张春霖,鲁成,等.青海湖裸鲤繁殖群体线粒体基因组D-loop区序列多态性.中国水产科学,2006,13(5):800-806
    [214]Song Z B, Song J, Yue B S. Population genetic diversity of Prenant's schizothoracin, Schizothorax prenanti, inferred from the mitochondrial DNA control region[J]. Environmental Biology of Fishes.2008,81(3):247-252.
    [215]Liu Q, Wang S, Zhang X Y, et al.. Limited genetic diversity of an endemic subspecies Schizopygopsis chengi baoxingensis as inferred from the mitochondrial DNA control region[J]. Hydrobiologia.2009,632:371-376