Galectin-3siRNA和pIRES-IL-24-TRAIL的构建及其对乳腺癌细胞增殖和凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     乳腺癌是女性最常见的恶性肿瘤之一。在我国占全身各种恶性肿瘤的7%-10%。近年来在我国,特别是在一些大城市及沿海经济发展较快的地区,发病率呈迅速上升趋势,是危害妇女健康的主要疾病。回首过去的二十年,乳腺癌的诊治取得了长足的进展,尤其是在外科治疗方面的发展取得了较好的效果。与此同时,对乳腺癌生物学行为的认识也不断深入,利用现代分子生物学技术对肿瘤的发生、发展进行了进一步的阐述,针对乳腺癌的预后,尤其是已发生侵袭转移的晚期患者预后较差,侵袭转移机制亦已成为当今的研究热点。众所周知,恶性肿瘤的侵袭转移是个多因素、多步骤的进展过程,但其具体机制仍不清楚。
     全世界每年约有120万妇女患上乳腺癌,占所有女性肿瘤的18%,其中超过17万的患者是三阴性乳腺癌(triple-negative breast cancer, TNBC),占乳腺癌患者的10%-23.8%。TNBC具有侵袭性强、复发早、进展快、生存时间短等特殊临床生物学行为,且对大多数内分泌治疗及乳腺癌的靶向治疗(针对HER-2过表达和雌孕激素受体表达阳性)不敏感,预后较其他类型乳腺癌差。传统的肿瘤治疗模式(手术、放疗、化疗)依然是目前肿瘤治疗的主要手段。然而,随着对肿瘤细胞生长、增殖、凋亡的分子机制研究的深人,伴随着分子生物学革命性的进展,肿瘤的治疗已进人生物治疗时代,使人类靶向性治疗肿瘤成为可能。靶向治疗用肿瘤细胞可以表达,而正常细胞很少或不表达的特定基因或基因的表达产物,形成相对或绝对靶向,最大限度地杀伤肿瘤细胞,而对正常细胞损伤很小的治疗方法。乳腺癌分子靶向治疗是指针对乳腺癌发生、发展有关的癌基因及其相关表达产物进行治疗。用于治疗乳腺癌的分子靶向药物通过阻断肿瘤细胞或相关细胞的信号转导,来控制细胞基因表达的改变,而产生抑制或杀死肿瘤细胞。由于三阴乳腺癌组织学分级较差,不表达ER,PR和HER-2,且多伴有p53突变、EGFR的表达,目前较常用的分子靶向药物不针对这个亚型,尽管该亚型对新辅助化疗有较高的总反应率和病理缓解率,但总体预后仍为最差。目前尚无TNBC的治疗指南,其治疗一般按常规治疗标准进行。近年来,许多研究者启动了多个国际、多中心临床研究,认为三阴乳腺癌主要选择紫杉类、铂类、蒽环类及分子靶向治疗药物。目前寻找TNBC的新治疗靶点是当今世界研究的难点和热点。
     近年有多项研究表明抑制Galectin-3表达可以影响肿瘤细胞的增殖凋亡,鲜有针对乳腺癌尤其是三阴性乳腺癌的研究。Galectin-3是一种半乳糖苷结合蛋白,属于凝集素家族,它在细胞与细胞间及细胞基质相互作用、细胞生长、细胞周期调控、细胞凋亡、细胞损伤和修复过程,肿瘤转化、转移等过程中扮演了一个重要角色。近年来,几项研究证明了Galectin-3在人类肿瘤中过度表达,包括大细胞淋巴瘤、结直肠癌、乳腺癌、肝癌、脑部肿瘤、黑色素瘤、甲状腺癌。Survivin是一个调亡抑制基因,具有调节细胞增殖和调亡的能力,位于人类染色体17q25,有4个外显子和3个内含子,编码全长1417kb。研究发现Survivin表达在所有常见的人类肿瘤内,从35%的胃癌患者到几乎100%的恶性黑色素瘤患者中均可检测到。在大多数病例中,Survivin的表达预示着较差的预后。,Survivin主要表达于胚胎、发育的胎儿组织和大多数肿瘤组织内,而不表达于成熟的正常组织。Ki-67表达在细胞周期的所有阶段除了Go,它可以用来评估生物行为和增殖活性的细胞。这种过度表达的Ki-67已经被观察到在许多恶性肿瘤。自从1980年代早期被发现以来,Ki-67一直是肿瘤增殖标志物的研究热点,尤其在淋巴瘤、乳腺癌、内分泌和脑癌。它常作为一个补充的分级系统,包括提示增殖信号的有丝分裂计数。Ki-67是Oncotype评分中的五个扩散基因之一,此外还有16个癌症相关基因,共同检测肿瘤复发。本课题首先从半乳糖凝集素-3(Galectin-3)、生存蛋白(Survivin)、Ki-67的角度研究乳腺癌侵袭转移的机制,以指导临床上的诊断、分类、预后和治疗。本实验接着从RNA干扰的角度探讨经过干扰后Galectin-3与三阴性乳腺癌增殖和凋亡的关系,了解Galectin-3在三阴性乳腺癌中的生物学作用,为其能否作为三阴性乳腺癌的基因诊断和治疗的靶点提供依据。
     此外,乳腺癌5年生存率约50~60%,近50%患者治疗后复发转移,而晚期乳腺癌患者平均生存时间仅18~30个月。治疗乳腺癌虽然有多种方案可选择,然而预后均不理想,副作用大,且乳腺癌易乳腺外转移,因而成为治疗上最困难的肿瘤之一。传统的治疗方法仅能杀死肿瘤细胞中处于分裂期的细胞,一旦治疗停止,肿瘤干细胞仍会继续增殖和分化,导致肿瘤的复发或转移,这就是“蒲公英”现象。2003年,Al-Hajj等在乳腺癌患者的原发病灶中进行了分子标记,发现具有CD44+/CD24-/Lineage-表型的乳腺癌细胞在免疫缺陷动物模型中具有显著的致瘤能力,其移植瘤的细胞组成与原发灶肿瘤相同,在经过多代细胞培养之后,还具有较强的致瘤性,提示这类细胞具有与乳腺干细胞类似的自我更新和分化的本质,将其称为乳腺癌干细胞。乳腺癌干细胞(breast cancer stem cells, BCSCs), BCSCs被认为是肿瘤发生、发展与维持的基础,与肿瘤的复发、转移和对治疗的耐受有关。目前研究认为只有少数BCSCs进入细胞周期,而多数BCSCs处于静止状态,故BCSCsRg常规的化疗药物并不敏感。现有的物理、化学药物治疗手段所针对的是大多数的肿瘤细胞,对肿瘤中少数的BCSCs无法达到最有效的杀灭效果,不能防止恶性肿瘤的复发及转移,而肿瘤的复发与转移是患者死亡的主要原因。现有的乳腺癌治疗方法多旨在尽可能杀死或清除一切肿瘤细胞,但是对存在于肿瘤中的数量稀少的干细胞样细胞群却作用甚微,治疗后残存肿瘤干细胞的增殖,足以促使肿瘤复发和转移。乳腺癌干细胞高表达表面标志物ABC蛋白、MDR. ABCG2等,但是目前尚未找到特异性的靶向治疗标志物。
     目前,乳腺癌干细胞的靶向治疗研究主要有:(1)DNA损伤修复阻断剂,如ADP核糖聚合酶1(PARPI)阻断剂;(2)细胞表面受体,如EGFR、C-Kit;(3)血管表皮生长因子受体vascular endothelial growth factor(VEGF) receptor抑制剂;(4)Src激酶抑制剂;(5)哺乳类动物雷帕霉素靶蛋白mammalian target of rapamycin(roTOR);(6)白细胞介素IL;(7)肿瘤坏死因子相关凋亡诱导配体tumor necrosis factor-related apoptosis inducing ligand(TRAIL)等。人类黑色素瘤分化相关基因-7/白介素-24(Melanoma diffrentiation-associated gene-7/interleukin-24, MDA-7/IL-24)是一个新型的、具有细胞因子样特性的肿瘤抑制基因,是IL-10细胞因子家族的新成员。它编码分泌型蛋白产物(secreted MDA-7/IL-24protein, sMDA-7/IL-24),与免疫系统的白介素功能相同,并具有抑制肿瘤生长及特异性诱导肿瘤细胞凋亡的能力。目前的实验研究表明IL-24在抑制和分化肿瘤细胞,促进肿瘤细胞凋亡;同时抑制肿瘤周围血管形成;增强肿瘤细胞对放疗、化疗的敏感性;抑制肿瘤细胞的侵袭和转移等方面具有重要作用。IL-24具有多效性、选择性、重叠性、协同性、拮抗性和网络性双重性作用特点。但在研究中发现IL-24并不能完全消灭种植在裸鼠身上的肿瘤。解决这一问题的方法有二种:(1)与其他细胞因子联合;(2)使细胞因子可以稳定高效地表达作用在肿瘤部位。有报道指IL-24能诱导并增强肿瘤坏死因子相关的凋亡诱导配体(Tumor Necrosis Factor-related related apoptosis inducing ligand, TRAIL)的活性。肿瘤坏死因子相关凋亡诱导配体(Tumor necrosis factor-Related Apoptosis Inducing Ligand, TRAIL)或称凋亡素2配体(Apo-2ligand, Apo2L)是由Wiley等从人心肌cDNA文库中克隆出来的,因其氨基酸顺序具有TNF超家族的结构特征并能诱导Jurkat细胞和EB病毒转化的人类淋巴细胞凋亡而得名,因其能诱导不同来源的肿瘤细胞以及病毒转化的细胞发生凋亡,而对正常组织细胞不具有毒性,不会导致正常细胞发生凋亡,同时与其它抗肿瘤药物联合应用能协同杀伤肿瘤细胞,所以成为肿瘤治疗领域的研究热点,是一种新型的抗肿瘤药物。目前的研究认为TRAIL主要通过位于细胞膜的死亡受体DR4和DR5通过其胞外区与TRAIL结合后活化,其胞内死亡功能域DD传导凋亡信号,活化了细胞内的FADD-caspase途径,激活线粒体非依赖性和线粒体依赖性二种途径介导凋亡的发生。本课题最后拟重组构建IL-24-TRAIL的基因载体,尝试解决细胞因子在治疗乳腺癌干细胞中存在的疗效差、副作用大以及安全性不保障等方面的缺点,为乳腺癌干细胞的基因治疗提供新的实验和理论依据,使广大的乳腺癌患者尤其三阴耐药乳腺癌因本项目而受益。本项研究具有潜在的巨大社会效益和经济效益。
     方法
     1. Galectin-3在乳腺癌组织中的表达及与Survivin、Ki-67的相关性
     1.1采用免疫组化SP法检测120例乳腺癌组织,120例癌旁乳腺正常组织中Galectin-3、Survivin、Ki-67的表达。
     1.2比较Galectin-3、Survivin和Ki-67表达水平与乳腺癌临床病理特征的关系。
     1.3Spearman秩检验分析乳腺癌中Galectin-3和Survivin表达的相关性。
     1.4Spearman秩检验分析乳腺癌中Galectin-3和Ki-67表达的相关性。
     1.5Spearman秩检验分析乳腺癌中Survivin和Ki-67表达的相关性。
     2.RNA干扰技术抑制Galectin-3表达对三阴性乳腺癌细胞MDA-MB-231增殖、凋亡和侵袭的影响
     2.1设计并化学合成Galectin-3小干扰片段并瞬时转染乳腺癌细胞系MDA-MB-231(为Galectin-3siRNA组)。
     2.2以未转染细胞为空白对照,以转染无关siRNA为阴性对照,荧光倒置显微镜观察感染效率,实时定量PCR检测干扰结果。
     2.3XTT方法观察干扰后24,48,72和96h各组细胞增殖吸光度(A值),流式细胞仪检测各组细胞凋亡情况。
     2.4划痕实验和Transwell实验比较不同组间细胞迁移和侵袭情况。
     3. IL-24-TRAIL基因载体的构建及其对乳腺癌干细胞迁移和凋亡的影响
     3.1以人胎盘组织总RNA为模板,采用RT-PCR二步法,扩增TRAIL的cDNA序列,将其克隆入pIRES载体。
     3.2扩增IL-24的cDNA序列,将其克隆入pIRES-TRAIL载体,构建其真核瞬时表达载体pIRES-IL-24-TRAIL。
     3.3以Lipofectamine2000转染技术,将TRAIL、IL-24基因导入乳腺癌干细胞MCF-7和MDA-MB-231。
     3.4流式细胞仪检测两组细胞凋亡情况。
     3.5划痕实验比较不同组间细胞迁移情况。
     4.统计分析
     均采用SPSS13.0统计学软件包分析和处理实验结果数据,采用Chi-square test分析Galectin-3、Survivin、Ki-67蛋白表达与临床病理资料(包括病人年龄、性别、肿瘤分级及TNM分期)之间的联系。用Pearson列联系数(C)和配对资料的卡方检验,进一步分析Galectin-3、Survivin、Ki-67蛋白三者的相关性。细胞实验数据均以x±s表示,多组间比较采用单因素方差分析(one-way ANOVA):进行方差齐性检验,各组间反应变量为方差齐性,则组间比较采用LSD法,若方差不齐采用近似方差分析Brown-Forsythe法进行校正,采用析因分析明确分组与时间点之间是否存在交互作用,以P<0.05确定为差异具有显著性,双侧检验。
     结果
     1. Galectin-3在乳腺癌组织中的表达及与Survivin、Ki-67的相关性
     1.1120例乳腺癌组织中Galectin-3和Ki-67在乳腺癌组织中表达高于癌旁正常组织(75.00%VS8.33%,χ2=109.70,P<0.001;62.50%VS6.67%,χ2=82.68,P<0.001),并与乳腺癌病理分级、腋窝淋巴结转移有关(χ2=8.571,P=0.014;χ2=4.444,P=0.035;χ2=6.834,P=0.033;χ2=18.809,P<0.001),差异具有统计学意义,但与年龄、肿瘤大小无显著相关(χ2=0.012,P=0.913;χ2=0.212,P=0.645;χ2=0.192,P=0.661;χ2=0.042,P=0.837)。
     1.2Survivin蛋白的阳性表达率为70.83%,显著高于癌旁正常组织5.00%(χ2=110.50,P<0.001),且与淋巴结转移有关(χ2=9.076,P<0.001),差异具有统计学意义,但与年龄、肿瘤大小,肿瘤组织分级均无显著相关性(χ2=0.003,P=0.959;χ2=0.156,P=0.925;χ2=0.048,P=0.827)。
     1.3乳腺癌组织中Galectin-3、Survivin和Ki-67三者间两两呈正相关(χ2=24.27,C=0.41,P<0.001;χ2=27.23,C=0.43,P<0.001;χ2=26.18,C=0.42,P<0.001)。
     2.RNA干扰技术抑制Galectin-3表达对三阴性乳腺癌细胞MDA-MB-231增殖、凋亡和侵袭的影响
     2.1转染后24h,荧光倒置显微镜显示转染效率为80.60±5.62%,实时定量PCR提示Galectin-3siRNA转染后相应Galectin-3的表达显著下降(0.077±0.003VS0.072±0.004VS0.016±0.001,F=479.7,P<0.001)。
     2.2干扰后24,48,72和96h空白组和阴性对照组细胞继续生长,Galectin-3siRNA组细胞生长抑制,数量逐渐减少(1.61±0.05、1.86±0.04、2.04±0.26、2.80±0.07VS1.60±0.07、1.77±0.10、2.01±0.37、2.49±0.15VS1.18±0.04、0.97±0.02、0.68±0.15、0.46±0.12),干扰时间和实验分组之间存在交互效应(F=39.18,P<0.001)。
     2.3流式细胞术分析发现,Galectin-3siRNA组比空白对照组、阴性对照组凋亡率高(36.99%±0.27%VS2.22%±0.03%VS3.84%±0.05%),差异有统计学意义(F=44058.82,P<0.001)。
     2.4Transwell侵袭实验显示转染Galectin-3siRNA的乳腺癌细胞浸润穿过Matrigel膜的细胞数比空白对照组和阴性对照组的细胞数(154.70±24.01VS465.00±31.76VS322.30±23.18),差异有统计学意义(F=102.30,P<0.001)。细胞划痕实验显示Galectin-3siRNA组细胞迁移能力显著低于空白对照组和阴性对照组(愈合率:48.39%±1.63%VS92.62%±2.88%VS88.49±2.25%,F=308.80,P<0.001)。
     3. IL-24-TRAIL基因载体的构建及其对乳腺癌干细胞迁移和凋亡的影响
     3.1克隆到TRAIL、IL-24基因的cDNA序列,成功构建其真核表达载体。
     3.2流式细胞仪发现,MDA-MB-231细胞组结果显示转染组比空白对照组、阴性对照组凋亡坏死率高,差异有统计学意义(27.91%±1.05%,68.81%±5.53%VS10.54%±1.13%,9.52%±0.95%,F=272.90,P<0.001)。MCF-7细胞组结果显示转染组比空白对照组、阴性对照组凋亡坏死率高,差异有统计学意义(13.69%±1.09%,58.71%±3.03%VS3.31%±0.22%,4.32%±0.47%,F=774.60,P<0.001)。
     3.3分别对MDA-MB-231、MCF-7细胞进行划痕实验,结果发现48h后空白对照组和阴性对照组细胞运动迁移基本上覆盖了大部分划痕区(愈合率:91.77%±2.25%、87.54%±2.93%;93.34%±2.33%、89.54%±2.15%),而转染组划痕区依然显著存在(愈合率:37.47%±1.53%、30.21%±1.29%;39.8%±1.22%、31.85%±1.33%),表明细胞迁移能力下调(F=716.40,P<0.001;F=848.10,P<0.001)。
     结论
     1. Galectin-3在乳腺癌组织中的表达及与Survivin、Ki-67的相关性
     Galectin-3、Survivin、Ki-67蛋白相互协同作用,通过抑制细胞凋亡,对乳腺癌发生和发展起重要作用。
     2.RNA干扰技术抑制Galectin-3表达对三阴性乳腺癌细胞MDA-MB-231增殖、凋亡和侵袭的影响
     RNA干扰能抑制Galectin-3的表达以及MDA-MB-231细胞的增殖,并诱导细胞凋亡、降低其迁移侵袭能力。
     3. IL-24-TRAIL基因载体的构建及其对乳腺癌干细胞迁移和凋亡的影响
     pIRES-IL-24-TRAIL构建成功,并能诱导乳腺癌干细胞凋亡、降低其迁移能力。
     创新之处
     1.乳腺癌的发生发展涉及多个基因及各种调控因子的相互作用,是一个复杂的过程,Galectin-3、Survivin及Ki-67与乳腺癌的预后有显著的相关性,可作为乳腺癌的预后指标,有待进一步研究探讨三者具体的作用机制,为乳腺癌靶向治疗提供了新的靶点。
     2.乳腺癌的侵袭转移是一个多因素、多步骤的进展过程,本项目从临床、分子细胞学两方面研究乳腺癌侵袭转移的机制,用RNA干扰技术、免疫组化、RT-PCR、凋亡分析等技术进行研究,很有深度和广度,目前国内外有许多关于Galectin-3siRNA在呼吸、消化道等肿瘤治疗上的研究,但少有关于三阴性乳腺癌的研究,本课题具有重大应用价值和理论意义。
     3.虽然国际上已经开始利用重组IL-24或TRAIL治疗某些恶性肿瘤的实验研究,但是尚未有联合在乳腺癌方面运用的报道,本研究项目拟采用pIRES作为IL-24和TRAIL基因的载体,构建pIRES-IL-24-TRAIL,使其在肿瘤内长时间表达具有生物学活性的IL-24和TRAIL,以提高肿瘤治疗效果,而且因为其具有人源化、分子量小、穿透力强、免疫原性弱和易于大规模制备的特点,在发挥生物导弹强大威力的同时达到较理想的安全性。通过文献检索,目前尚无类似报道。此药物能成功上市将会为广大乳腺癌患者带来福音,具有极大的经济及社会效益。
Background and objective
     Breast cancer is one of the most common malignant tumor in women. In our country it is accounted for7%~10%of whole body various malignant tumors. During recent years, in our country, especially in some big cities and coastal economic rapid development areas, the incidence is rising rapidly. It becomes the main disease of harming to women health. Since the past two decades, great progress has been made in the diagnosis and treatment of breast cancer, whose development has been achieved good results especially in the surgical treatment. At the same time, the further understanding of the biological behavior of breast cancer has been made, and the occurrence and development of tumor are further described by modern molecular biology techniques. According to the prognosis of breast cancer, especially the patient with advanced invasion and metastasis who has poor prognosis, invasion and metastasis mechanism has also become the researching hot pot today. It is well known that the invasion and metastasis of malignant tumor has a multi-factor, multi-step process, but the specific mechanism remains unclear.
     About1.2million women developed breast cancer in the world each year, accounting for18%of all female cancers, in which more than170000are triple-negative breast cancer (TNBC), accounting for10%-23.8%of the patients with breast cancer. TNBC has aggressive, early recurrence, progress fast, short survival time, special clinical biological behavior, and unsensitive for most endocrine therapy and targeted therapy of breast cancer (for its Her-2expression and female progesterone receptor positive expression), worse prognosis than other types of breast cancer. Traditional mode of cancer therapy (surgery, radiotherapy, chemotherapy) still is the principal means of cancer treatment. However, as for further research in the molecular mechanism of tumor cell growth, proliferation, and apoptosis, with the revolutionary progress of molecular biology, treatment of tumor has been into the era of human biological treatment, make human targeted treatment of tumor to be realization. Targeted therapy is a relative or absolute targeted therapy, by using certain genes or gene expression product who can express in tumor cells, but not in normal cells to kill tumor cells maximally and damage to the normal cells minimally. Molecular targeted therapy of breast cancer is a pointer to the breast cancer occurrence and development of cancer gene expression and its related product for treatment.The treatment of breast cancer molecular targeted drugs by blocking tumor cells or related cell signal transduction, to control the change of cell gene expression, and inhibit or kill tumor cells. Because TNBC have poor histologic classification of breast cancer, no expression of ER, PR and its HER-2, and associated with p53mutations, the expression of EGFR, at present the common molecular targeted drugs are useless for this subtype, although the subtypes of neoadjuvant chemotherapy with higher total response rate and pathological response rate, overall is still the worst prognosis.There is currently no TNBC treatment guidelines, and its treatment generally carried out according to the conventional treatment standards. In recent years, many researchers have launched multiple international, multicenter clinical study, think that triple negative breast cancer mainly choose Paclitaxel and cisplatin,, anthracycline-based and molecular targeted therapy drugs. Currently looking for TNBC new therapeutic targets is a difficulty and focus of research in the world.
     In recent years, several studies have shown that inhibition of Galectin-3expression can influence the proliferation and apoptosis of tumor cells, but few studies for breast cancer, especially triple-negative breast cancer. Galectin-3(Gal-3) is a member of the carbohydrate-binding protein family known as lectins. It plays a role in cell-cell and cell-matrix interactions, cell growth, cell-cycle regulation, apoptosis, cell damage and repair processes, neoplastic transformation, and metastasis. In recent years, several studies have documented overexpression of Gal-3in different human tumors, including large-cell lymphoma, colorectal carcinoma, breast carcinoma, hepatocellular carcinoma, brain tumors, melanoma, and thyroid carcinoma.Survivin is an inhibitor-of-apoptosis gene,described as capable of regulating both cell proliferation and apoptotic cell death. Mapped to chromosome17q25, survivin consists of four exons and three introns, encoding1417kb message. Studies of common human cancers have shown survivin protein expression in all cancer types, ranging from approximately35%survivin-positive patients in gastric to approximately100%in malignant melanomas. In the majority of cases, survivin protein has been associated with poorer prognosis. In comparison to fetal and cancer cells, relatively little expression of survivin has been detected in many normal adult tissues. Ki-67is expressed in all phases of the cell cycle except GO, and it can be used to evaluate the biologic behavior and proliferation activity of cells. The overexpression of Ki-67has been observed in many malignant tumors. Since its discovery in the early1980s, there has been interest in the role of Ki-67as a proliferation marker in cancer, particularly lymphomas, breast, endocrine and brain cancers. It is commonly used as a complement to grading systems that include mitotic counting as a sign of proliferation. Ki-67is one of the five genes of proliferation that contributes an importance weight to the Oncotype score, out of16cancer-associated genes. First, this topic study the invasion and metastasis of breast cancer mechanism by Survivin, Galectin-3and Ki-67, to guide the clinical diagnosis, classification, prognosis, and treatment. This experiment explores the relationship between SiRNAGalectin-3and TNBC in proliferation and apoptosis by RNA interference, and understands the role of Galectin-3playing in biology behavior of TNBC, which supports it becoming the new target for gene diagnosis and treatment of TNBC.
     In addition,5-year survival rate of breast cancer is about50%-60%, in which nearly50%patients relapse after treatment. Average survival time of the patients with advanced breast cancer is only18-30months. Although there are many alternative treatment of breast cancer, poor prognosis, side effects, and easily invading outside the mammary gland make it become one of the most difficult treating tumors. Traditional treatment only can kill tumor cells in splitting phase, once treatment stops, cancer stem cell will continue to proliferate and differentiate, which leads to tumor recurrence or metastasis. This is the "dandelion" phenomenon.In2003, Al-Hajj, etc in the primary lesion of patients with breast cancer molecular markers, found with CD44+/CD24-/Lineage-phenotype of breast cancer cells in the immune deficiency animal model has significant tumorigenic ability, the transplanted tumor cells and primary focal tumor are the same, after multiple generation cell culture, but also has strong tumorigenicity, indicating that this type is similar to mammary gland stem cell self-renewal and differentiation of the essence, it is called breast cancer stem cells. Breast cancer stem cells (breast cancer stem cells, BCSCs), BCSCs is considered is the basis of tumor occurrence, development and maintenance, and tumor recurrence and metastasis, and resistance to therapy. Current research suggests only a handful of BCSCs enter the cell cycle, and most of BCSCs in static state, so the BCSCsRg conventional chemotherapy drugs is not sensitive. Existing physical, chemical and drug treatment for the majority of tumor cells, the tumor in a handful of BCSCs can't achieve the most effective to kill effect, can prevent malignant tumor recurrence and metastasis, and tumor recurrence and metastasis is the leading cause of death in patients. Existing breast cancer treatments designed to kill or remove all the tumor cells as much as possible, but for the few stem cells exist in the tumors in the cells, but to little effect, after treatment residual cancer stem cell proliferation, enough to make tumor recurrence and metastasis. Breast cancer stem cell surface markers CD44expression, high protein, MDR, ABC ABCG2, etc., but has yet to find specific targeted therapy of markers.
     At present, breast cancer stem cell targeted therapy research mainly has:(1) the DNA damage repair blockers, such as ADP ribose polymerase1(PARPI) blockers;(2) the cell surface receptors, such as EGFR, C-Kit;(3) vascular epidermal growth factor receptor vascular endothelial growth factor (VEGF) receptor inhibitors;(4) the Src kinase inhibitors;(5) mammals rapamycin target protein in mammalian target of rapamycin (roTOR);(6) interleukins IL;(7), tumor necrosis factor related apoptosis inducing ligand tumor necrosis factor-related apoptosis inducing ligand (TRAIL), etc. IL-24(Melanoma diffrentiation-associated gene-7/interleukin-24, MDA-7/IL-24) is a new, cell factor characteristics of the tumor suppressor genes, is IL-10new members of the family of cytokines. Its code is secreted protein product(secreted MDA-7/IL-24protein, sMDA-7/IL-24), same as interleukin function of the immune system, and can inhibit tumor growth and specific ability to induce tumor cell apoptosis. The present experimental study showed that IL-24in inhibition and differentiation of tumor cells, promote tumor cell apoptosis; Inhibition of tumor angiogenesis around at the same time; Enhance the sensitivity of tumor cells to radiotherapy and chemotherapy; Inhibition of tumor cell invasion and metastasis plays an important role. IL-24has pleiotropic, selective, overlapping, collaborative, antagonistic, and network duality function characteristics. But in the study found that IL-24is not entirely eliminate cancer grown in nude mice. To solve this problem there are two ways of:(1) and other cytokines joint;(2) make cytokines can efficiently express stable role in the tumor site. Reports to IL-24can induce and enhance the Tumor Necrosis Factor related apoptosis inducing ligand (Tumor Necrosis Factor-related related apoptosis inducing ligand, TRAIL) activity. Tumor necrosis factor Related Apoptosis Inducing Ligand (Tumor necrosis factor-Related Apoptosis Inducing Ligand, TRAIL) element2Ligand or Apoptosis (Apo-Ligand2, Apo2L) is a myocardial cDNA library by Wiley, etc from the cloned, because of its amino acid sequence with TNF superfamily structure characteristics and can induce Jurkat cells and EB virus transformation of human lymphocytes Apoptosis and its name, because of their different sources can be induced by Tumor cells and virus into cells Apoptosis, and has no toxicity to the cells of normal tissue, won't cause normal cells Apoptosis, and coordination with other antitumor drugs combined application can kill Tumor cells, and so become a research hotspot in the field of Tumor treatment, is a new type of antitumor drugs. Current research think TRAIL through the main death receptor DR4and DR5in cell membrane by its extracellular region combined with TRAIL after activation, the function of intracellular death domain DD signal conduction, apoptosis, and activate the intracellular FADD-caspase pathway, activation of independence in mitochondria and mitochondrial dependent two pathways mediated apoptosis.This experiment intends to restructure an IL-24-TRAIL gene vecter, and try to solve the shortcomings of cytokine treatment for breast cancer stem cells such as poor curative effect, great side effect and unguarantee safety and so on, which provides new experimental and theoretical basis for breast cancer stem cell gene therapy. Make breast cancer patients especially triple negative breast cancer benefit from this project. This study has potential huge social benefit and economic benefit.
     Methods and materials
     1. The Expression of Galectin-3in Breast Cancer and the correlation of Galectin-3, Survivin and Ki-67.
     1.1The expression of Galectin-3. Survivin and Ki-67in breast cancer (120cases) and paracacinoma normal tissues(120cases) were evaluated by SP immunohistochemistry.
     1.2The relationship between the expression level of Galectin-3, Survivin and Ki-67, and the clinical and pathological features of breast cancer.
     1.3The correlation of Galectin-3and Survivin expression in breast cancer was analysis Spearman rank test.
     1.4The correlation of Galectin-3and Ki-67expression in breast cancer was analysis Spearman rank test.
     1.5The correlation of Survivin and Ki-67expression in breast cancer was analysis Spearman rank test.
     2. Influences of Inhibiting Galectin-3expression by RNA Interference Technique on the Proliferation, Apoptosis and Invasion of Triple-negative Breast Cancer Cells MDA-MB-231
     2.1Galectin-3small interfering RNA (siRNA) was constructed by chemistry synthesis. Effective siRNA was transfected into breast cancer cell MDA-MB-231(as Galectin-3siRNA group).
     2.2Non-transfected cells were used as blank control and negative RNA as negative control. Inverted fluorescence microscope and RT-PCR was used to verify the interference result.
     2.3Cellproliferation (absorbance value) was observed by XTT after interference for24,48,72and96hours. Cell apoptosis was measured with flow cytomter.
     2.4Wound healing test and transwell test were performed for cell motility and invasion assay.
     3. Construction of IL-24-TRAIL vector and its influences on the motility and apoptosis of Breast Cancer Stem Cells
     3.1cDNA fragment encoding human TRAIL gene were amplified by reverse transcriptase-polymerase chain reaction (RT-PCR) with the total mRNA isolated from human placenta tissue as template. The PCR amplified fragment of TRAIL gene was cloned into pIRES vector.
     3.2cDNA fragment encoding human IL-24gene were amplified. The PCR amplified fragment of IL-24gene was subcloned into the recombinant eukaryotic expression vector pIRES-TRAIL to construct pIRES-IL-24-TRAIL plasmid after sequencing.
     3.3Plasmid DNA of pIRES-IL-24-TRAIL was transfected into Breast Cancer Stem Cells MCF-7and MDA-MB-231with the help of Lipofectamine2000transfection reagent.
     3.4Cell apoptosis was measured with flow cytometer.
     3.5Wound healing test was performed for cell motility assay.
     4. statistical analysis
     Adopt SPSS13.0statistical software analysis the experimental results. analysis the relationship betewwn Galectin-3, Survivin, Ki-67protein expression and clinical pathological data (including the patient's age, sex, tumor grade and TNM stage) by the Chi-square test. Using Pearson column connection number (C) and Chi-square test for paired data, analysis further the correlation of Galectin-3, Survivin, Ki-67protein. Experimental data are list as x±s, using one-way ANOVA comparing between groups: homogeneity test for variance first, if the variance is homogeneity, choose LSD method, if the variance is not homogeneity, Brown-Forsythe approximate variance analysis method is used for calibration, using factorial ANOVA analysis whether there is interaction between teams and time points, with P <0.05has significant difference, two tailed test.
     Results:
     1.The Expression of Galectin-3in Breast Cancer and the correlation of Galectin-3, Survivin and Ki-67.
     1.1The expression of Galectin-3and Ki-67in breast cancer was also significantly higher than that in paracacinoma normal tissues (75.00%VS8.33%, χ2=109.70, P<0.001;62.50%VS6.67%, χ2=82.68, P<0.001). The expression of Galectin-3and Ki-67was correlated with the pathological grade and node metastasis (χ2=8.571, P=0.014;χ2=4.444, P=0.035;χ2=6.834, P=0.033;χ2=18.809, P<0.001). There were no correlations among their expressions and the age or tumor size (χ2=0.012, P=0.913;χ2=0.212, P=0.645;χ2=0.192, P=0.661;χ2=0.042, P=0.837)
     1.2The positive rates of Survivin were70.83%in breast cancer,5.00%in nomal tissues. The positive rate of Survivin expression was significantly higher in breast cancer than that in normal tissues (χ2=110.50, P<0.001), and was correlated with node metastasis (χ1=9.076, P<0.001). There were no correlations between the expression o f Survivin and the age, histological grade or tumor size (χ2=0.012, P=0.913;χ2=0.212, P=0.645;χ2=0.192, P=0.661;χ2=0.042, P=0.837)
     1.3The expression of Galectin-3was positively correlated with Survivin and Ki-67(χ2=24.27, C=0.41, P<0.001; χ2=27.23, C=0.43, P<0.001; χ2=26.18, C=0.42, P<0.001)
     2. Influences of Inhibiting Galectin-3expression by RNA Interference Technique on the Proliferation, Apoptosis and Invasion of Triple-negative Breast Cancer Cells MDA-MB-231
     2.1After transfected24hours, the transfection efficiency rate by inverted fluorescence microscope was80.60±5.62%. RT-PCR showed that the expression of Galectin-3was markedly decreased in Galectin-3siRNA group after transfected (0.077±0.003VS0.072±0.004VS0.016±0.001, F=479.7, P<0.001)
     2.2Cells proliferated still in the blank group and negative contro group after24,48,72and96hours, but cells grew inhibited and declined gradually in Galectin-3siRNAgroup(1.61±0.05、1.86±0.04、2.04±0.26、2.80±0.07VS1.60±0.07、1.77±0.10、2.01±0.37、2.49±0.15VS1.18±0.04、0.97±0.02、0.68±0.15、0.46±0.12).There was the interaction effect between the interference time and the experiment group (F=39.18, P<0.001)
     2.3The apoptosis rate by flow cytomter was slight higher in the Galectin-3siRNA group than the normal and blank controlgroup (36.99%±0.27%VS2.22%±0.03%VS3.84%±0.05%, F=44058.82, P<0.001)
     2.4The results of Transwell experiment indicated that the number of cells in down-pore of micro-membrane in the transfected group was less than that in the control group(154.70±24.01VS465.00±31.76VS322.30±23.18, F=102.30, P<0.001). Wound-healing assay shows that cell motility could be effectively suppressed by Galectin-3siRNA (Healingrate:48.39%±1.63%VS92.62%±2.88%VS88.49±2.25%, F=308.80, P<0.001)
     3. Construction of IL-24-TRAIL vector and its influences on the motility and apoptosis of Breast Cancer Stem Cells
     3.1cDNA sequence encoding human TRAIL and IL-24gene were successfully cloned, and recombinant eukaryotic expression vector pIRES-IL-24-TRAIL was constructed.
     3.2The apoptosis rate of MDA-MB-231by flow cytomter was higher in the transfected group than the controlgroup (27.91%±1.05%,68.81%±5.53%VS10.54%±1.13%,9.52%±0.95%, F=272.90, P<0.001). The apoptosis rate of MCF-7by flow cytomter was higher in the transfected group than the controlgroup(13.69%±1.09%,58.71%±3.03%VS3.31%±0.22%,4.32%±0.47%, F=774.60, P<0.001)
     3.3Wound-healing assay shows that cell motility could be more effectively suppressed in the transfected group than the controlgroup (MDA-MB-231:7.47%±1.53%,30.21%±1.29%VS91.77%±2.25%,87.54%±2.93%, F=716.40, P<0.001; MCF-7:39.8%±1.22%,31.85%±1.33%VS93.34%±2.33%,89.54%±2.15%, F=848.10,P<0.001)
     Conclusion
     1. The Expression of Galectin-3in Breast Cancer and the correlation of Galectin-3, Survivin and Ki-67.
     Galectin-3, Survivin and Ki-67may play an important role in the carcinogenesis and progress of breast cancer through the inhibition of apoptosis. They may play synergetic roles in the process of carcinogenesis of breast cancer.
     2. Influences of Inhibiting Galectin-3expression by RNA Interference Technique on the Proliferation, Apoptosis and Invasion of Triple-negative Breast Cancer Cells MDA-MB-231
     The interference of RNA inhibits the expression of the Galectin-3and the proliferation of MDA-MB-231cells significantly, while it promotes the apoptosis of tumor cells and impede tumour cell invasion.
     3. Construction of IL-24-TRAIL vector and its influences on the motility and apoptosis of Breast Cancer Stem Cells
     pIRES-IL-24-TRAIL was constructed successfully, and it can promotes the apoptosis of tumor cells and impede tumor cell motility.
     Innovation
     1. Breast cancer development involving multiple genes and various regulatory factors interaction, is a complex process. Survivin, Galectin-3and Ki-67have obvious relevance the prognosis of breast cancer, which can be used as prognostic indicators of breast cancer. Further research in the specific inner mechanism of them is needed,which provides a new target therapy for breast cancer.
     2. The invasion and metastasis of breast cancer is a multi-factor and multi-step process. The project researchs in mechanism of invasion and metastasis in breast cancer by clinical and molecular biology aspects, using RNA interference technique, immunohistochemistry, RT-PCR, apoptosis and analysis technology to research, which is of great depth and breadth. There are many research about the Galectin-3SiRNA in the treatment of respiratory and digestive tract tumor at home and abroad, but there are few studies on triple-negative breast cancer. This reseach has important application value and theoretical significance.
     3. Although international has started using recombinant IL-24or TRAIL to treat some malignant tumors in experimental studies, but there is no joint used in breast cancer. This research project is proposed pIRES as a carrier of the IL-24and TRAIL gene, building pIRES-IL-24-TRAIL, which can express has activity-biology IL-24and TRAIL in the tumour for a long time, to improve the effect of tumor therapy, and because it is humanized, small molecular weight, strong penetrating power, weak immunogenicity and the characteristics of easy to large-scale preparation, it can achieve the ideal security while exerting biological missile power. Through literature search, there is no similar report. The drug listed successfully will brought good news the patients of breast cancer, which has great economic and social benefits.
引文
[1]Ortega N, Behonick DJ, Colnot C, et al. Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation[J]. Mol Biol Cell,2005,16(6):3028-3039.
    [2]Ahmad N, Gabius HJ, Andre S, et al. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes[J]. J Biol Chem,2004,279(12):10841-10847.
    [3]Morris S, Ahmad N, Andre S, et al. Quaternary solution structures of galectins-1,-3, and-7[J]. Glycobiology,2004,14(3):293-300.
    [4]Birdsall B, Feeney J, Burdett ID, et al. NMR solution studies of hamster galectin-3 and electron microscopic visualization of surface-adsorbed complexes:evidence for interactions between the N-and C-terminal domains[J]. Biochemistry,17,40(15):4859-4866.
    [5]Shimura T, Takenaka Y, Fukumori T, et al. Implication of galectin-3 in Wnt signaling[J]. Cancer Res,2005,65(9):3535-3537.
    [6]Shimura T, Takenaka Y, Tsutsumi S, et al. Galectin-3, a novel binding partner of beta-catenin[J]. Cancer Res,2004,64(18):6363-6367.
    [7]Lotz MM, Andrews CW Jr, Korzelius CA, et al. Decreased expression of Mac-2 (carbohydrate binding protein 35) and loss of its nuclear localization are associated with the neoplastic progression of colon carcinoma[J]. Proc Natl Acad Sci U S A,1993,90(8):3466-3470.
    [8]Enrico Saggiorato, Susanna Cappia, Paolo De Giuli, et al. Galectin-3 as a Presurgical Immunocytodiagnostic Marker of Minimally Invasive Follicular Thyroid Carcinoma[J]. The Journal of Clinical Endocrinology & Metabolism, 2001,86(11):5152-5158.
    [9]Castronovo V, van den Brule FA, Jackers P, et al. Decreased expression of galectin-3 is associated with progression of breast cancer[J]. J Pathol,1996, 179(1):43-48.
    [10]Platt D, Raz A. Modulation of the lung colonization of B16-F1 melanoma cells by citrus pectin[J]. J Natl Cancer Inst,1992,84(6):438.
    [11]Iurisci I, Tinari N, Natoli C, et al. Concent rations of galectin-3 in the sera of normal cont rols and cancer patients[J]. Clin Cancer Res,2000,6(4):1389.
    [12]Colnot C, Fowlis D, Ripoche MA, et al. Embryonic implantation in galectin 1/galectin 3 double mutant mice[J]. Dev Dyn,1998,11(4):306.
    [13]Bruno S, Darzynkiewicz Z. Cell cycle dependent expression and stability of the nuclear protein detected by Ki-67 antibody in HL-60 cells[J]. Cell prolif,1992, 25(1):31-40.
    [14]Schluter C, Duchrow M, Wohlenberg C, et al. The cellproliferation-associated antigen of antibody Ki-67:a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins[J]. J Cell Biol,1993,123(3):513-522.
    [15]Tan P H, Bay B H, Yip G, et al. Immunohistochemical Detection of KI67 in Breast Cancer Correlates with Transcriptional Regulation of Genes Related to Apoptosis and Cell Death[J]. Mod Pathol,2005,18(3):374-381.
    [16]潭敏,宾晓农,何青莲,等.各种病理类型乳腺癌组织中细胞增殖抗原标记物、血管内皮生长因子的表达及意义[J].中国现代医学杂志,2006,16(18):273-277.
    [17]李宝江,朱志华,王军业,等.K167、P53、VEGF和C-erbB-2在乳腺癌组织中表达的相关性研究及其临床意义[J].癌症,2004,23(10):1176-1179.
    [18]何振宇,李彪,胡英,等.K167在乳腺癌组织中的表达及临床病理分析[J].中国初级卫生保健,2005,19(12):94-95.
    [19]Ambrosin G, Adida C, Altierid DC. A novel anti-apoptosis gene, Survivin, expressed in cancer and Iymphoma[J]. Nat Med,1997,3(8):917-921.
    [20]Verdecia MA, Huang H, Dutil E, et al. Structure of the human anti-apoptotic protein Survivin reveals a dimeric arrangement[J]. Nat Struct Biol,2000,7(7): 602-608.
    [21]Vischioni B, van der Valk P, Span S w, et al. Expression and localization of inhibitor of apoptosis proteins in normal tissues[J]. Hum Pathol,2006,37(1): 78-86.
    [22]Borbely AA, Murvai M, Konya J, et al. Effects of human papillomavirus type 16 oncoproteins on Survivin gene expression[J]. J Gen Virol,2006,87(pt2): 287-294.
    [23]Kennedy SM, O'Driscoll L, Purcell R, et al. Prognostic importance of Survivin in breast cancer[J]. Br J Cancer,2003,88(7):1077-1083.
    [24]Tanaka K, lwamoto S, Gon G, et al. Expression of survivin and its relationship to loss of apoptosis in breast carcinom as [J]. Clin Cancer Res,2000,6:127.
    [25]Nasu S, Yagihashi A, Izawa A, et al. Survivin mRNA expression in patients with breast cancer[J]. Anticancer Res,2002,22(3):1839-1843.
    [26]韩康朝,邹继彬.Survivin和Bcl-2蛋白在乳腺癌中的表达及临床意义[J].海南医学,2005,16(4):144-145.
    [27]Nasu S, Yaghashi A. Survivin mRNA expression in patients with breast cancer[Jj. Anticancer Res,2002,22:2965.
    [28]Zhang SQ, Qiang SY, Yang WB, et al. Expression of Survivin in different stages of carcinogenesis and progression of breast cancer[J]. Al Zheng,2004, 23(6):697-700.
    [29]Izawaa, Kobayashi D, Nasu S, et al. Relevance of cerbB2, PLU-1 and survivin mRNA expression to diagnostic assessment of breast cancer [J]. Anticancer Res,2002,22:2965.
    [30]Form by B, Wiley TS. Bcl-2, survivin and Variant of CD44V7-10 are downregulated and p53 is upregulated in breast cancer cells by progesterone: inhibition lof cell growth and induction of apoptosis[J]. Molcell Biochem, 1999,2003(1-2):53-59.
    [31]Gordana Radosavljevic, Vladislav Volarevic, Ivan Jovanovic, et al. The roles of Galectin-3 in autoimmunity and tumor progression[J]. Immunol Res,2012, 52:100-110.
    [32]韩玉贞,吕增华,朱玉红等.Galectin-3、VEGF,Ki-67、MVD在青年乳腺癌淋巴结转移灶中的表达及意义[J].中国肿瘤临床,2008,35(5):874-876.
    [33]Hughes, R. C. Galectins as modulators of cell adhesion[J]. Biochimie,2001, 83:667-676.
    [34]Yu L G, Andrews N, Zhao Q, et al. Galectin-3 interaction with thorn sen-friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion[J]. J Biol Chem,2007,282(1):773-781.
    [35]Oka N, Nakahara S, Takenaka Y, et al. Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by activating Akt in human bladder carcinoma cells[J]. Cancer Res,2005,65(17):7546-7553.
    [36]Nangia-Makker P, Honjo Y, Sarvis R, et al. Galectin-3 induces endo the lial cell morphogenesis and angiogenesis[J]. Am J Pathol,2000,156(3):899-909.
    [37]Dumic J, Lauc G, Flogel M. Expression of galectin-3 in cells exposed to stress-roles of Jun and NF-kappa B[J]. Cell Physiol Biochem,2000,10(3): 149-158.
    [38]Hoyer KK, Pang M, Gui D, et al. An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas[J]. Am J Pathol,2004,164(3):893-902.
    [39]Jessup JM, Battle P, Waller H, et al. Reactive nitrogen and oxygen radicals formed during hepatic ischemia-reperfusion kill weakly metastatic colorectal cancer cells[J]. Cancer Res,1999,59:1825-1829.
    [40]Kim HR, Lin HM, Biliran H, et al. Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells[J]. Cancer Res,1999,59(16): 4148-4154.
    [41]Lin HM, Moon BK, Yu F, et al. Galectin-3 mediates genistein-induced G(2)/M arrest and inhibits apoptosis[J]. Carcinogenesis,2000,21(11):1941-1945.
    [42]Qi Bao, R. Colin Hughes. Galectin-3 expression and effects on cyst enlargement and tubulogenesis in kidney epithelial MDCK cells cultured in three-dimensional matrices in vitro[J]. Journal of Cell Science,1995,108: 2791-2800.
    [43]Glinskii OV, Huxley VH, Glinsky GV, et al. Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs[J]. Neoplasia,2005,7(5):522-527.
    [44]Glinsky VV, Glinsky GV,,Rittenhouse-Olson K, et al. The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium[J]. Cancer Res,2001,61(12):4851-4857.
    [45]Jun Zou, Vladislav V, Glinsky, et al. DeutscherlPeptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion[J]. Carcinogenesis,2005,26(2):309-318.
    [46]Pratima Nangia-Makker, Yuichiro Honjo, Rebecca Sarvis.Galectin-3 Induces Endothelial Cell Morphogenesis and Angiogenesis[J]. American Journal of Pathology,2000,156:899-909.
    [47]Fukushi J, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3betal integrin[J]. Mol Biol Cell,2004,15(8):3580-3590.
    [48]Nangia-Makker P, Honjo Y, Sarvis R, et al. Galectin-3 induces endo the lial cell morphogenesis and angiogenesis[J]. Am J Pathol,2000,156(3):899-909.
    [49]Kelly RJ, Lopez-Chavez A, Citrin D, Janik JE, Morris JC. Impacting tumor cell-fate by targeting the inhibitor of apoptosis protein survivin[J]. Mol Cancer.2011,10:35-46.
    [50]刘春富,董琦,纪艳超,等.乳腺癌组织中Survivin表达及其与预后的关系[J].临床与实验病理学杂志,2009,25(3):267-269.
    [5l]宫惠琳,张锁平,张冠军等.Survivin、MMP-2在乳腺癌中的表达及其相关性研究[J].重庆医科大学学报,2012,37(2):106-109.
    [52]Xiaopeng Cai, Shuai Ma, Ming Gu, et al. Survivin regulates the expression of VEGF-C in lymphatic metastasis of breast cancer[J]. Diagnostic Pathology, 2012, doi:10.1186/1746-1596-7-52
    [53]Chunsen Xu, Mutsuko Yamamoto-Ibusuki, Yutaka Yamamoto, et al. High survivin mRNA expression is a predictor of poor prognosis in breast cancer:a comparative study at the mRNA and protein level[J]. Breast Cancer,2012, doi: 10.1007/s12282-012-0403-9.
    [54]Suzuki A, Hayashida M, Ito T, et al. Survivin initiates cell cycle entry by the competitive interaction with CDK4/p16(INK 4a)and CDK2/cyclin E complex activative[J]. Oncogene,2000,19(29):3225-3232.
    [55]Skoufias DA, Mollinari C, Lacroix FB, et al. Human survivining is a Kinetochore-associated passenger protein [J]. J Cell Biol,2000,15(7): 1575-1582.
    [56]Cohen C, Lohmann CM, CotsonisG, et al. Survivin expression in ovarian carcinoma:correlation with apoptotic markers and prognosis[J]. Modem Pathology,2003,6(6):574-583.
    [57]Blance-Brude OP, Mesri M, Wall NR, et al. Therapuetic targeting of the Survivin pathway in cancer:mitiation of mitochondrial apoptosis and suppression of rum or associated angiogenesis[J]. Clin cancer Res,2003, 9(7)2683-2692.
    [58]Suzuki A, Ito T, Kawano H, et al. Survivin initates procaspase 3/p21 complex Formation as a result of interaction with Cdk4 to resist Fas-mediated cell death[J]. Oncogene,2000,19(10):1346-1353.
    [59]Shin S, Sung BJ, Cho YS, et al. An anti-apoptoric protein human survivin is a direct inhibitor of caspase-3 and-7 [J]. Biochemistry,2001,40(4):1117-1123.
    [60]Mirza A, MeGuirk M, Hockenberry TN, et al. Human surviving is negatively regulated by wild-type P53 and participattes in P53-dependent apoptotic pathway [J]. Oncogene,2001,21(17):2613-2622.
    [61]O Connor DS, Schechner JS, Adida C, et al. Control of apoptosis during angiogenrsis by surviving expression in endothelial cells [J]. Am J Pathol, 2000,156(2):393-398.
    [62]Franco Lumachi, Rocco Orando, Filippo Marino, et al. Expression of p53 and Ki-67 as Prognostic Factors for Survival of Men with Colorectal Cancer[J]. Anticancer Res,2012,32:3965-3968.
    [63]Wang Ou, Wang Chun-yan, Shi Jie. Expression of Ki-67, galectin-3, fragile histidine triad, and parafibromin in malignant and benign parathyroid tumors[J]. Chinese Medical Journal 2012,125(16):2895-2901.
    [64]Mariantonietta C, Angelo S, Piccart-Gebhart M, et al. Value of Ki-67 in breast cancer:the debate is still open[J]. Lancet Oncol,2010,11(5):414-415.
    [65]Rinat Y, Ryan W, Peter MR, et al. Ki-67 in breast cancer:prognostic and predictive potential[J]. Lancet Oncol,2010,11(2):174-183.
    [66]Vincen Salomon A, Roussean A, Jonve M, et al. Proliferationmarkers predicitive ofthe pathological response and disease outcomeof patients with breast carcinomas treated by anthracycline basedpreoperative chemotherapy [J]. Eur J cancer,2004(40):1502-1508.
    [67]Bottini A, Berrutia A, Bersiga A, et al. Relmionship between tumour shrinkage and reduction in Ki67 expression after primary chemotherapy in human breast cancer[J]. Br J Cancer.2001,85(8):1106-1112.
    [68]刘鹏熙,陈前军等.新辅助化疗对乳腺癌p170、Ki67、p53的影响[J].肿瘤.2006,26(2):160-170.
    [69]Vincent-Salomon A, Roussean A, Jonve M, et al. Proliferation markers predicitive of the pathological response and disease outcome of patients、析tll breast carcinomas treated by anthracycline-based preoperative chemotherapy[J]. Eur J cancer.2004,40(10):1502-1508.
    [70]Rayband-Diogene H, Fortin A, Moreney R, et al. Markers of Radioresistance in squamous cell carcinomas of the Head and neck:A Clinic pathologic and Immunohistochemical study[J]. Clin Oncology.1997,15(3):1030-1038.
    [71]桑占发,王兴,齐玉新,赵国清.Survivin在乳腺癌中的表达及其与Ki-67和cerbB-2表达的关系[J].肿瘤防治研究,2010,37(7):773-776.
    [1]Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer [J]. N Engl J Med,2010,363(20):1938-1948.
    [2]O'Shaughnessy J, Osborne C, Pippen JE, et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer[J]. N Engl J Med,2011, 364(3):205-214.
    [3]Metzger-Filho O, Tutt A, de Azambuja E, et al. Dissecting the heterogeneity of triple-negative breast cancer[J]. J Clin Oncol,2012,30(15):1879-87.
    [4]Bauer KR, Brown M, Cress RD, et al. Descriptive analysis of estrogen receptor(ER)-negative, progesterone receptor(PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype:a population-based study from the California Cancer Registry[J]. Cancer,2007, 109(9):1721-1728.
    [5]Millikan RC, Newman B, Tse CK, et al. Epidemiology of basal-like breast cancer[J]. Breast Cancer Res Treat,2008,109:123-139.
    [6]Kim MJ, Ro JY, Ahn SH, et al. Clinicopathologic significane of the basal-like subtype of breast cancer:A conparison with hormone receptor and Her2/ neuover expressing phenotypes[J]. Hum Pathol,2006,37(9):1217-1226.
    [7]Sara M, Bando Y, Takahashi M, et al. Screening for basal marker expression is necessary for decision of the rapeutic strategy for triple-negative breast cancer [J]. J Surg Oncol,2008,97(1):30-34.
    [8]Liu Z B, Liu G Y, Yang W R, et al. Triple-negative breast cancer types exhibit a distinct poor clinical characteristic in lymph node-negative Chinese patients[J]. Oncol Rep,2008,20(4):987-994.
    [9]罗湘,史艳侠等.三阴乳腺癌的临床病理特征和预后分析[J].中国癌症杂志,2009,19(7):517-522.
    [10]Rakha EA, El-Sayed ME, Green AR, et al. Prognostic markers in triple-negative breast cancer[J]. Cancer,2007,109(1):25-32.
    [11]Almndag K, Harpufluolu H, Aksos, et al. Potmtial chemotherapy options in the triple negative subtype of breast cancer[J]. Clin Oncol,2007,25(10):1924.
    [12]Piskin E, Dincer S, Turk M. Gene delivery:intelligent but just at the beginning [J]. J Biomater Sci Polym Ed,2004,15(9):1181-1202.
    [13]Fire A, Xu S, Montgomery MK, etal. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998, 391(6669):806-811.
    [14]Montgomery MK, Xu S, Fire A, etal. RNA as a target of double-stranded RNA-medimed genetic interference in Caenorhabditis elegans[J]. Proc Natl Acad Sci U S A,1998,95(26):15502-15507.
    [15]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature,2001, 411(6836):494-498.
    [16]Boutros M, Kiger AA, Armknecht S, et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells[J]. Science,2004,303(5659):832-835.
    [17]Kim JK, Gabel HW, Kamath RS, et al. Functional Genomic Analysis of RNA Interference in C. elegans[J]. Science,2005,308(5725):1164-1167.
    [18]管海涛,薛兴欢,王西京等.靶向survivin的siRNA抑制乳腺癌MCF-7细胞增殖并诱导其凋亡[J].中华肿瘤杂志,2006,5(1):326-329.
    [19]张淑华,葛银林,罗达亚等.小干扰RNA靶向VEGF基因体内外抑制乳腺癌细胞MCF-7的增殖.中国生物化学与分子生物学报,2007,23(1):68-73.
    [20]Newlaczyl AU, Yu LG. Galectin-3 a jack of all trades in cancer[J]. Cancer Lett, 2011,313(2):123-128.
    [21]Barrow H, Rhodes JM, Yu LG, et al. The role of galectins in colorectal cancer progression[J]. Int J Cancer,2011,129(1):1-8.
    [22]Kim SJ, Choi IJ. Cheong TC, et al. Galectin-3 increases gastric cancer cell motility by up-regulating fascin-1 expression[J]. Gastroenterology,2010,138: 1035-1045.
    [23]林道浙,徐定银,陈积贤等.乳腺癌组织Galectin-3和OPN表达及其临床意义的研究[J].中华肿瘤防治杂志,2010,17(7):504-506.
    [24]Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers[J]. J Control Release,2012, 161(2):554-565.
    [25]Buyens K, De Smedt SC, Braeckmans K, et al. Liposome based systems for systemic siRNA delivery:stability in blood sets the requirements for optimal carrier design[J]. J Control Release,2012,158(3):362-370.
    [26]Kanasty RL, Whitehead KA, Vegas AJ, et al. Action and reaction:the biological response to siRNA and its delivery vehicles[J]. Mol Ther,2012, 20(3):513-524
    [27]Mette MF, Matzke AJ, Matzke MA. Resistance of RNA-mediated TGS to HC-Pro, a viral suppress or of PTGS, suggests alternative pathways for dsRNA processing[J]. CurrBiol,2001:11(14):1119-1123.
    [28]Mette MF, Aufsatz W, vander Winden J, et al. Transcriptional silencing and promoter methylation triggered by double-stranded RNA[J]. EMBOJ,2000, 19(19):5194-5201.
    [29]Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa[J]. Nature,2001,414(6861):277-283.
    [30]Martinez J,Tuschl T. RISC is a 5'phosphomonocster-producing RNA endonuclease[J]. Genes Dev,2004,18(9):975-980.
    [31]Pham JW, Pellino JL, Lee YS, et al. A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophil[J]. Cell,2004,117(1):83-94.
    [32]Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells[J]. Nature, 2000,404(6775):293-296.
    [33]Holen T, Amarzguioui M, Wiiger MT, et al. Positional effects of short imerfering RNAs targeting the human coagulation trigger Tissue Factor[J]. Nucleic Acids Res,2002,30(8):1757-1766.
    [34]Lagos-Quintana M, Rauhut R, Lendeekel W, et al. Indentification of novel gene coding for small expressed RNA[J]. Seienee,2001,294(5543):853-858.
    [35]Zeng Y, Wagner EJ, Cullen BR. Both natural and designed microRNAs can Inhibit the expression of cognatemRNAs when expressed in human cells[J]. M Cell,2002,9(6):1327-1333.
    [36]Hut Vagner G, Zamore PD. A micro-RNA in a multi-pie turn over RNAi enzyme-complex[J]. Science,2002,297(5589):2002-2003.
    [37]Nishikura K. A short primer on RNAi:RNA-directed RNA Polymerase acts as a key catalyst[J]. Cell,2001,107(4):415-418.
    [38]Elbashir SM, Harborth J,Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature,2001, 411(6836):494-498.
    [39]Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs(shRNAs) induce sequence specific silencing in mammalian cells[J]. GenesDev,2002:1 6(8):948-958.
    [40]Wiedersehain D, Wee S, Chen L, et al. Single-vector inducible lentiviral RNAi system for oncology target validation[J]. Cell Cycle,2009:8(3):498-504.
    [41]Herzer K, Hofinann TG, Teufel A, et al. IFN-alpha-induced apoptosis in Hepatocellular carcinoma involves Promyelocytic leukemia protein and TRAIL independently of P53[J]. Cancer Res,2009:69(3):855-862.
    [42]Hua J, Chen D, Fu H, et al. Short hairpin RNA-mediated inhibition of S100A4 promotes apoptosis and suppresses proliferation of BGC823 gastric cancer cells in vitro and in vivo[J]. Cancer Lett.2009,292(1):41-47.
    [43]Honjo Y, Nangia-Makker P, Inohara H, et al. Down-regulation of Galectin-3 suppresses tumorigenicity of human breast carcinoma cells[J]. Clin Cancer Res,2001,7(3):661-8.
    [44]Mazurek N, Byrd JC, Sun Y, et al. A galectin-3 sequence polymorphism confers TRAIL sensitivity to human breast cancer cells [J]. Cancer,2011,117 (19):4375-4380.
    [45]Cheng YL, Huang WC, Chen CL, et al. Increased galectin-3 facilitates leukemia cell survival from apoptotic stimuli[J]. Biochem Biophys Res Commun,2011, 412 (2):334-340.
    [46]Nakahara S, Raz A. Regulation of cancer-related gene expression by galectin-3 and the molecular mechanism of its nuclear import pathway [J]. Cancer Metastasis Rev,2007,26 (34):605-610.
    [47]李春红,曹鸿艳,蔡莉等.Galectin-3的抗凋亡机制及其在肺癌中的研究[J].国际免疫学杂志,2008,31(3):229-232.
    [48]Kobayashi T, Shimura T, Yajima T, et al. Transient gene silencing of galectin-3 suppresses pancreatic cancer cell migration and invasion through degradation of beta-catenin[J]. Int J Cancer,2011,129 (12):2775-2786.
    [49]万黎,王建军,周雪峰等.针对半乳糖凝集素-3的siRNA抑制CD133+肺腺癌细胞体外诱导CD8+T细胞凋亡[J].中华实验外科杂志,2010,27(3):366-368.
    [1]DeSantis C, Siegel R, Bandi P, et al. Breast cancer statistics,2011 [J]. CA Cancer J Clin,2011,61 (6):409-418.
    [2]Visvader JE, Lindeman GJ. Cancer stem cells:current status and evolving complexities[J]. Cell Stem Cell,2012,10 (6):717-728.
    [3]沈镇宙,邵志敏.21世纪乳腺癌治疗的展望[J].中国癌症杂志,2005,15(5):405-407.
    [4]Sell S. Stem cell origin of cancer and differentiation therapy [J]. Crit Rev Oncol Hematol,2004,51(1):1-28.
    [5]Al-Hajj M, Wicha MS, Benito-Hemandez A. et al. Prospective identification of tumorigenic breast cancer cells [J]. Proc Natl Acad Sci USA,2003,100(7): 3983-3988.
    [6]Cariati M, Naderi A, Brown J P, et al. Alpha-6 integrin is necessary, for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line[J]. Int J Cancer,2008,122(2):298-304.
    [7]Phillips T M, Mcbride W H, Pajonk F. The response of CD24 (-/low)/ CD44+breast cancer-initiating cells to radiation [J]. J Natl Cancer Inst,2006, 98(24):1777-1785.
    [8]Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance[J]. Nat Rev Cancer,2005,5(4):275-284.
    [9]Donnenberg V S, Donnenberg A D. Multiple drug resistance in cancer revisited:the cancer stem cell hypothesis[J]. J Clin Pharmacol,2005,45(8): 872-877.
    [10]沈坤炜,沈镇宙.乳腺癌术后系统辅助治疗的现状和展望[J].中国癌症杂志,2003,13(4):289-292.
    [11]Shafee N, Smith CR. Wei S. et al. Cancer stem cells contribute to cisplatin resistance in Brcal/p532/mediated mouse mammary tumors [J]. Cancer Res, 2008,68(9):3243-3250.
    [12]Engelmann K. Shen H. Finn OJ. MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1[J]. Cancer Res,2008,68(7):2419-2426.
    [13]Shi H, Guo J, Duff DJ, et al. Discovery of novel epigenetic markers in non-Hodgkin's lymphoma [J]. Carcinogenesis,2007,28(1):60-70.
    [14]Taylor KH, Pena-Hernandez KE, Davis JW, et al. Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia[J]. Cancer Res,2007,67(6):2617-2625.
    [15]Feodorova V A, Devdariani Z L. Development, characterisation and diagnostic application of monoclonal antibodies against Yersinia pestis fibrinolysin and coagulase[J]. J Med Microbiol,2000,49:261-269.
    [16]Hainsworth J D. Monoclonal antibody therapy in lymphoid malignancies[J]. Oncologist,2000,5:376384.
    [17]Dickman S. Antibodies stage a comeback in cancer treatment[J]. Science, 1998,280:1196-1197.
    [18]Weiner L M. An overview of monoclonal antibody therapy of cancer[J]. Sem in Oncol,1999,26:41-50.
    [19]Niculescu-Duvaz I. Technology evaluation:gemtuzumab ozogamicin, celltech group[J]. Curr Opin Mol Ther,2000(2):691-696.
    [20]Guang Xu, Howard L M. Strategies for enzyme/prodrug cancer therapy[J]. Clinical Cancer Research,2001(7):3314-3324.
    [21]Napier M P, Sharma S K. Antibody-directed enzyme prodrug therapy:efficacy and mechanism of action in colorectal carcinomal[J]. Clinical Cancer Research,2000(6):765-772.
    [22]Vrouenraets M B, Gerard W M. Targeting of Aluminum(Ⅲ) phthalocyanine tetrasulfonate by use of internalizing monoclonal antibodies:improved efficacy in photodynamic therapy [J]. Cancer Research,2001,61(5):1970-1975.
    [23]熊玉宁,杨科.郑杰.免疫毒素的研究进展.国外医学肿瘤学分册,2001,28(2):95-97.
    [24]Hao Wang, Shuichuan Song, Geng Kou, et al. Treatment of hepatocellular carcinoma in a mouse xenograft model with an immunotoxin which is engineered to eliminate vascular leak syndrome. Cancer Immunol Immunother, 2007,56:1775-1783.
    [25]Cohen K. A, Liu T. F, Cline J. M, et al. Safety evaluation of DT388 IL3, a diphtheria toxin/interleukin fusion protein, in the cynomolgus monkey. Cancer Immunol Immunother,2005,54(8):799.
    [26]王飞,董军,黄强,等.转基因完全人抗体的制备及其抗肿瘤作用研究[J].中华神经外科疾病研究杂志,2002,1(1):90-91.
    [27]Kim J A. Targeted therapies for the treatment of cancer[J]. Am J Surg,2003, 186(9); 264-268.
    [28]Nicolini A, Ferrari P, Fini M, et al. Stem cells:their role in breast cancer development and resistance to treatment[J]. Curr Pharm Biotechnol,2011,12 (2):196-205.
    [29]Sampieri K, Fodde R. Cancer stem cells and metastasis[J]. Semin Cancer Biol, 2012,22 (3):187-193.
    [30]Charafe-Jauffret E, Ginestier C, Iovino F, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature[J]. Cancer Res,2009,69(4):1302-1313.
    [31]Zhao L, Dong A, Gu J, et al. The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer[J].Cancer Gene Ther, 2006,13 (11):1011-1022.
    [32]Cai Y, Liu X, Huang W, et al. Synergistic antitumor effect of TRAIL and IL-24 with complete eradication of hepatoma in the CTGVT-DG strategy[J].Acta Biochim Biophys Sin (Shanghai),2012,44 (6):535-543.
    [33]Zhao L, Dong A, Gu J, et al. The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer[J].Cancer Gene Ther, 2006,13 (11):1011-1022.
    [34]Dent P, Yacoub A, Hamed HA, et al. The development of MDA-7/IL-24 as a cancer therapeutic[J]. Pharmacol Ther,2010,128 (2):375-384.
    [35]Dash R, Bhutia SK, Azab B, et al.mda-7/IL-24:a unique member of the IL-10 gene family promoting cancer-targeted toxicity[J]. Cytokine Growth Factor Rev,2010,21 (5):381-391.
    [36]李畅,梁光辉,赵军,等.腺病毒介导的IL-24对人大细胞肺癌NCI-H460细胞的体外抑制效应[J].肿瘤防治杂志,2012,39(3):250-255.
    [37]Margue C, Kreis S.IL-24:physiological and supraphysiological effects on normal and malignant cells [J]. Curr Med Chem,2010,17 (29):3318-26.
    [38]Moira S, Gopalkrishnan RV, Devanand S, et al. MDA-7/IL-24:novel cancer growth suppressing and apoptosis inducing cytokine. Cytokine & Growth Factor Reviews,2003,14(1):35-51.
    [39]Pankaj G, Su ZZ, Lebedeva IV, et al. mda-7/IL-24:Multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacology&Therapeutics, 2006,111(3):596-628.
    [40]Gopalkrishnan RV, Moira S, Fisher PB, et al. Cytokine and tumor cell apoptosis inducing activity of mda-7/IL-24. International Immunopharmacology, 2004,4(5):635-647.
    [41]Jiang H, Lin JJ, Su ZZ et al. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. J Oncogene,1995,11(12): 2477-2486.
    [42]Caudell EG, Mumm JB, Poindexter N, et al. The protein product of the tumor suppressor gene, melanoma differentiation associated gene-7, exhibits immuno. stimulatory activity and is designated IL-24. J Immunol,2002, 168(12):6041-6046.
    [43]Huang EY, Madireddi MT, Gopalkrishnan RV, et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated(mda-7)gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene,2001,20(48): 7051-7063.
    [44]Blumberg H, Conklin D, Xu WF, et al. Interleukin 20:discovery, recaptor identification, and role in epidermal function Cell,2001,104(1):9-19.
    [45]Gallagher G, Dickensheets H, Eskdale J, et al. Cloning, expression and initial characterization of interleukin 19(IL-19), a novel homologue of human interleukin 10(IL-10). Genes Immun,2000,1(7):442-450.
    [46]MhashIL KAM, Schrock RD, Hindi M, et al. Melanoma differentiation associated gene 7(MDA-7):a novel anti tumor gene for cancer gene therapy. Mol Med,2001,7(4):271-282.
    [47]Miyahara R, Banerjee S, Kawano K, et al. Melanoma differentiation-associated gene-7 (mda-7)/interleukin (IL)-24 induces anticancer immunity in a syngeneic murine model. Cancer Gene Ther,2006,13(8):753-761.
    [48]Fisher PB. Is mda-7/IL-24 a "Magic Bullet" for Cancer? Cancer Res,2005, 65(22):10128-10138.
    [49]Saeki T, Mhashilkar A, Swanson X, et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene,2002,21(29):4558-4566.
    [50]Rahman M, Pumphrey JG, Lipkowitz S. The TRAIL to targeted therapy of breast cancer[J]. Adv Cancer Res,2009,103:43-73.
    [51]Wang S. TRAIL:a sword for killing tumors[J]. Curr Med Chem,2010,17 (29):3309-3317.
    [52]Yin S, Xu L, Bandyopadhyay S, et al. Cisplatin and TRAIL enhance breast cancer stem cell death[J]. Int J Oncol,2011,39 (4):891-898.
    [53]Kruyt FA. TRAIL and cancer therapy [J]. Cancer Lett,2008,263(1):14-25.
    [54]Koschny R, Walczak H, Ganten TM. The promise of TRAIL-potential and risks of a novel anticancer therapy[J]. Mol Med,2007,85(9):923-935.
    [55]Jin H, Yang RH, Fong S, et al. Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand cooperates with chemotherapy to inhibit orthotopic lung tumor growth and improve survival [J]. Can Res,2004,64(14): 900-4905.
    [56]Wiley S, Schooley K, Smolak P, et al. Identification and characterization of a new member of the TNF family that induces apoptosis[J]. Immunity 1995,3(3):673-682.
    [57]Pitti R, Marsters S, Ruppert S, et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family[J]. Biol Chem, 1996,271(22):12687-12690.
    [58]叶子茵,林汉良.细胞对RAIL诱导凋亡敏感性的调控机制[J].临床与实验病理学杂志,2006,22(5):608-610.
    [59]Emery JG, McDonnell P, Burke MB, et al. OsteoProtegerin is a receptor for the cytotoxic ligand TRAIL[J]. Biol Chem,1998,273(23):14363-14367.
    [60]Yoo NJ, Kim HS, Kim SY, el al. Immunohistochemical analysis of Smac/ DIABIO expression in human carcinomas and sarcomas [J]. APMIS,2003, 111(3):382-388.
    [61]Ashkenazi A, Holland P, Eckhardt SG. Ligand-based targeting of apoptosis in cancer:the potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL)[J]. Clin Oncol,2008,26(21):3621-3630.
    [62]Huang X, Lin T, Gu J, et al. Combined TRAIL and Bax gene therapy prolonged survival in mice with ovarian cancer xenograft [J]. Gene Ther,2002, 9(20):1379-1386.
    [63]Goke R, Goke A, Goke B, et al. Regulation of TRAIL induced apoptosis by transcrip tion factors[J]. Cell Immunol,2000,201(2):77-82.
    [64]Ehrhardt H, Fulda S, Schmed I, et al. TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF kappaB[J]. Oncogene,2003,22:3842-3852.
    [65]Yoo NJ, Kim HS, Kim SY, el al. Immunohistochemical analysis of Smac/DIABIO expression in human carcinomas and sarcomas [J]. APMIS, 2003,111(3):382-388.
    [66]Sinicrope FA, Penington RC, Tang XM. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis is inhibited by Bcl-2 but restored by the small molecule Bel-2 inhibitorHA 14-1, in human colon cancer ceils[J]. Clin Cancer Res,2004; 10(24):8284-8292.
    [67]高显峰,王广义,吕国悦,等.胰腺癌细胞对TRA IL耐药机制的研究进展[J].吉林医学,2010,31(5):665-666.
    [68]梁建华,何超.TRAIL诱导肿瘤细胞凋亡及药物干预研究[J].国外医学外科学分册,2003:201-204.
    [69]Pan G, Ni J, wei YF, et al. An antagonist decoy receptor and a death domain-containing receptor for TRAIL[J]. Science,1997,277(5327):815.
    [70]Constantine S, Mitsiades, Steven P, et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications [J]. Blood,2001,98(3):795-804.
    [71]Marion M. TRAIL-induced signaling and apoptosis[J]. Toxicol Lett,2003, 139(2-3):89-97.
    [72]Nagane M, Pan G, Emergy J, et al. Increased death recap-tor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor related apoptosis-inducing ligand in vitro and in vivol[J]. Cancer Res,2000,60(4):847-853.
    [73]LeBlanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors[J]. Cell Death Differ,2003,10(1):66-75.
    [74]Carlo-Stella C, Lavazza C, Locatelli A, et al. Targeting TRAIL agonistic receptors for cancer therapy[J]. Clin Cancer Res,2007,13(8):2313-2317.
    [75]Bremer E, Kijlen J, Samplonius D, et al. Target cell restricted and enhanced apoptosis induction by an scFv:TRAIL fusion protein with specificity for the pancarcinoma associatedantigen EGP2[J]. Intl J Cancer,2004,109(2): 281-290.
    [76]Bremer E, Samplonius D, Kroesen B J, et al. Exceptionally poten anti-tumor by stander activity of an scFv:Strail fusion protein with specificity for EGP2 toward target antigen-negative tumor cells [J]. Neopasia,2004,6(5):636-645.
    [77]Bremer E, Samplonius D, van Gennel, et al. Simultaneous inhibition of EGFR signaling and enhanced activation of TRAIL receptor mediated apoptosis induction by an scFv:sTRAIL fusion protein with specificity for human EGFR[J]. J Biol Chem,2005,280(11):10025-10033.
    [78]Zhao L, Dong A, Gu J, et al. The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer. Cancer Gene Ther,2006, 13(11):1011-1122.
    [1]Sell S. Stem cell origin of cancer and differentiation therapy[J]. Crit Rev Oncol Hematol,2004,51(1):1-28.
    [2]Al-Hajj M, Wicha MS, Benito-Hemandez A. et al. Prospective identification of tumorigenic breast cancer cells [J]. Proc Natl Acad Sci USA,2003,100(7): 3983-3988.
    [3]Cariati M, Naderi A, Brown J P, et al. Alpha-6 integrin is necessary, for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line[J]. Int J Cancer,2008,122(2):298-304.
    [4]Phillips T M, Mcbride W H, Pajonk F. The response of CD24 (-/low)/ CD44+breast cancer-initiating cells to radiation [J]. J Natl Cancer Inst,2006, 98(24):1777-1785.
    [5]Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance[J]. Nat Rev Cancer,2005,5(4):275-284.
    [6]Donnenberg V S, Donnenberg A D. Multiple drug resistance in cancer revisited:the cancer stem cell hypothesis[J]. J Clin Pharmacol,2005,45(8): 872-877.
    [7]Phlips TM, Mcbride WH,Pajonk E The response of CD24(-/low)/ CD44+breast cancer-initiating cells to radiation[J]. J Natl Cancer Inst,2006, 98(24):1777-1785.
    [8]Woodward WA,Chen MS, Behbod F, et al. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells[J]. Proe Nail Acad Sci USA,2007,104(2):618-623.
    [9]Taylor KH, Pena-Hernandez KE, Davis JW, et al. Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia[J]. Cancer Res,2007,67(6):2617-2625.
    [10]Li X, Lewis MT, Huang J, et al. Intrinsic Resistance of Tumorigenic Breast Cancer Cells to Chemotherapy [J]. J Natl Cancer Insg 2008,100(9):672-679.
    [11]Gupta P B, Onder T T, Jiang G Z, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening[J]. Cell,2009,138(4): 645-659.
    [12]Peralta-Leal A, Rodr guez-Vargas JM, Aguila-Quesada R, et al. PARP inhibitors:new partner in the thearapy of cancer and inflammatory diseases[J]. Free Radic Biol Med,2009,47(1):13-26.
    [13]Almeida KH, Sobol Rw. An unified view of base excision repair: lesion-dependent protein complexs regulated by post-translational modification[J]. DNA Repair (Amst),2007,6:695-711.
    [14]Caldecott Kw. Mammalian single-strand break repair:mechanisms and links with chromatin[J]. DNA Repair (Amst),2007,6:443-453.
    [15]Pal SK, childs BH, Pegram M. triple negative breast cancer:unmet medical needs[J]. Breast cancer Res Treat,2011,125(3):627-636.
    [16]Zhou J, Zhang H, Gu P, et al. NF-kB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat.2008,111(3):419-427.
    [17]Sweeney CJ, Mehrotra S, Sadaria MR, et a. The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastases and improves survival in a xenograft model of breast cancer. Mol Cancer Ther.2005,4(6): 1004-1112.
    [18]Liu Y, Lu WL, Guo J, et al. A potential target associated with both cancer and cancer stem cells:a combination therapy for eradication of breast cancer using vinorelbine stealthy liposomes. J Contr Rel.2008,129(1):18-25.
    [19]Marcato P, Shmulevitz M, Pan D, et al. Ras transformation mediates reovirus oncolysis by enhancing virus uncoating, particle infectivity, and apoptosis-dependent release. Mol Ther.2007; 15(8):1522-1530.
    [20]Eriksson M, Guse K, Bauerschmitz G, et al. Oncolytic adenoviruses kill breast cancer initiating CD44+CD24-/low cells.Mol Ther.2007,15(12):2088-2093.
    [21]Kimata H, Imai T, Kikumori T, et a. Pilot study of oncolytic viral therapy using mutant herpes simplex virus (HF10) against recurrent metastatic breast cancer. Ann Surg Oncol.2006; 13(8):1078-1084.
    [22]Hirsch HA, Iliopoulos D, Tsichlis PN, et al. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res.2009; 69(19):7507-7511.
    [23]Anisimov VN, Egormin PA, Piskunova TS, et al. Metformin extends life span of HER-2/neu transgenic mice and in combination with melatonin inhibits growth of transplantable tumors in vivo. Cell Cycle.2010; 9(1):188-197.
    [24]Liu B, Fan Z, Edgerton SM, et al. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle.2009; 8(13):2031-2340.
    [25]Jiralerspong S, Palla SL, Giordano SH, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol.2009; 27(20):3297-3302.
    [26]Zhang Y, Tang L. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin.2007; 28(9):1343-1354.
    [27]Finn RS, Dering J, Ginther, et al. Dasatinib, an orally active small molecule inhibitor of both src and abl kinases, selectively inhibit growth of base-type/" triple-negative " breast cancer cell line growing in vitro[J]. Breast Cancer Res Treat,2007,105:319-326.
    [28]Huang F, Reeves K, Han X, et al. Identification of candidate molecular markers predicting sensitivity in solid tumor to dasatinib:ratinale for patient selection[J]. Cancer Re8,2007,67:2226-2238.
    [29]Finn RS, Bengala C, Ibrahim N, et al. Phase II trial of dasatinib in triple-negative breast cancer:results of study CA180059[J]. Cancer Res,2009, 69(Suppl2):3118.
    [30]Miller K, Wang M, Glalow J, et al. Paclitexel plus bevacizumab versus paclitaxel alone for metastatic breast cancer[J]. N End J Med,2007,357: 2666-2676.
    [31]Zhouj, Wulfkuhle J,, Zhang H, et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells. Proc Natl Acad Sci U S A.2007 Oct 9; 104(41):16158-63. Epub 2007 Oct 2.
    [32]Kaufmann M, Heider KH, Sinn HP, et al. CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet,1995,345(8950): 615-619.
    [33]Aulmann S, Waldburger N, Penzel R, et al. Reduction of CD44(+)/CD24(-) breast cancer cells by conventional cytotoxic chemotherapy. Hum Pathol, 2009; [Epub ahead of print]
    [34]Marangoni E, Lecomte N, Durand L, et al. CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts. Br J Cancer,2009; 100:918-922.
    [35]LeBlanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors[J]. Cell Death Differ,2003,10(1):66-75.
    [36]Carlo-Stella C, Lavazza C, Locatelli A, et al. Targeting TRAIL agonistic receptors for cancer therapy[J]. Clin Cancer Res,2007,13(8):2313-2317.
    [37]Bremer E, Kijlen J, Samplonius D, et al. Target cell restricted and enhanced apoptosis induction by an scFv:TRAIL fusion protein with specificity for the pancarcinoma associatedantigen EGP2[J]. Intl J Cancer,2004,109(2): 281-290.
    [38]Bremer E, Samplonius D, Kroesen B J, et al. Exceptionally poten anti-tumor by stander activity of an scFv:Strail fusion protein with specificity for EGP2 toward target antigen-negative tumor cells [J]. Neopasia,2004,6(5):636-645.
    [39]Bremer E, Samplonius D, van Gennel, et al. Simultaneous inhibition of EGFR signaling and enhanced activation of TRAIL receptor mediated apoptosis induction by an scFv:sTRAIL fusion protein with specificity for human EGFR[J]. J Biol Chem,2005,280(11):10025-10033.
    [40]Shi H, Guo J, Duff DJ, et al. Discovery of novel epigenetic markers in non-Hodgkin's lymphoma [J]. Carcinogenesis,2007,28(1):60-70.