基于粗糙—模糊集成的分类知识发现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从数据中抽象分类模型是是知识发现的重要研究内容,而实际数据所蕴涵的不确定性、不一致性和随机性是分类知识发现面临的主要困难。粗糙集和模糊集都可以处理不确定性和不精确性问题,但是两者的侧重点不同。粗糙集研究的是不同类的集合对象之间的不可分辨性,而模糊集研究的是类与类边界的重叠性。模糊集的隶属函数大多是专家凭经验给出,而粗糙集不需要数据之外的任何先验信息。粗糙集和模糊集在处理不确定性问题上各有所长,将两者有机结合可以更好地处理实际问题。本文将连续数据作为研究对象,以分类知识发现为目的,对粗糙集和模糊集的集成方法展开了一系列研究。主要内容如下:
     1.根据模糊分类模型在处理分类问题上的优势,结合决策粗糙集在处理不一致性和随机性数据中的优点,提出了一种新的模糊分类模型构造方法。先对决策粗糙集模型的性质进行研究分析,在此基础之上提出了属性约简的概念及相应的算法。首先采用模糊c均值聚类算法对连续属性值离散化同时对输入空间进行模糊划分;然后利用两步搜索策略计算离散化决策表的约简集,删除冗余的条件属性;从约简后的决策表中提取决策规则,再将决策规则转换成模糊分类规则,从而建立了模糊分类模型。该模糊分类模型直接基于对数据的分析,具有结构简单、语义解释性好和泛化能力强的优点,并且不需要再利用学习算法对参数进行调节。
     2.指出Lingras粗k均值聚类算法的一些缺点,讨论分析了这些缺点的产生原因,在此基础上提出了一种改进的粗k均值聚类算法。改进的算法通过定义潜能来确定初始的聚类中心,并将Lingras粗k均值聚类算法计算上下近似所用的绝对距离改为相对距离。改进的算法初始聚类中心位置设置合理,对类边界的划分更加恰当,聚类效果好,性能稳定。基于改进粗k均值聚类算法,提出了一种新的模糊分类模型。采用改进粗k均值聚类算法对输入空间进行聚类从而构建初始的模糊分类系统,再利用遗传算法对初始模糊分类模型的前件参数进行优化,从而得到最终的模糊分类模型。该模糊分类模型实现了参数的准确辨识,具有较高的精度和泛化能力。
     3.针对决策粗糙集只能处理离散数据的局限性,提出了能够直接用于连续数据的模糊决策粗糙集模型。将决策粗糙集模型严格不可分辨关系放松至模糊T-等价关系,从模糊隶属度角度定义条件概率,构造新的概率包含关系,在此基础上建立了模糊决策粗糙集模型。还研究了模糊决策粗糙集模型的性质,并提出了模糊决策粗糙集模型属性约简的定义及相应的约简算法。为进一步研究模糊决策粗糙集在分类建模中的应用提供了理论基础。
     4.基于前面提出的模糊决策粗糙集模型,设计了一种基于约简的选择性多分类器集成系统。基于模糊决策粗糙集模型,利用两步随机属性约简算法,计算得到原始数据的多个不同约简。在每组约简上训练一组个体分类器,再利用遗传算法从每组个体分类器中选择部分按照相对多数投票法进行集成。该多分类器集成系统利用了不同约简所提供的互补信息,个体分类器之间的差异较大。实验研究的结果表明本文提出的多分类器集成系统具有较好的分类能力,且被集成的个体分类器数目较少。
Establishing classification model from data is a signify branch of knowledge discovery. Uncertainty, inconsistency, and randomicity in actual data are the key problems in classification knowledge discovery. Both rough set and fuzzy set are the generalization of classical set to deal with uncertainty and vagueness in data. Rough set theory is mainly concerned with the discernibility between objects of different class. On the other hand, fuzzy set theory is mainly concerned overlaps between different classes. Fuzzy set determines degree of fuzzy membership according to the experience of expert, while rough set can find the hiding and potential rules from data without any prior information. Rough set and fuzzy set are distinct and complementary, so combining these two theories is efficient for handling actual problem. Integration methods of rough set and fuzzy set for classification knowledge discovery from continuous data are studied in this paper. The main contributions of the work are listed as follows.
     1. Fuzzy classification model has advantages of clear physical meaning. Decision-theoretic rough set is a powerful tool for processing uncertain and random information. A new fuzzy classification model based on the combination of advantages of these two theories is proposed. Properties of decision-theoretic rough set are studied, and then definition of attribute reduction and corresponding reduction algorithm are studied. Fuzzy c-means clustering is used to transform the continuous attributes to the discretized ones and partition the input space. A heuristic attribute reduction algorithm based on a two-step search strategy deals with the discretized decision table to remove redundant condition attributes. Then concise decision rules are extracted. The rules of fuzzy classification model are got according to the extracted decision rules. The proposed fuzzy classification model is based on data analysis. Fuzzy classification rules of the proposed model have the advantages of clear physical meaning, simplified structure and good generalization ability. Moreover, a study algorithm is no longer needed to optimize the parameters of fuzzy model.
     2. Lingras rough k means clustering algorithm is analyzed, and then some shortcomings such as it is sensitive to initial centers of the k cluster and outliers and may result in identical clustering and non-convergence are pointed out. An improved rough k means clustering algorithm is presented based on the analysis. The k objects with maximum potentials are chosen as initial centers. The absolute distance between object and the center of cluster is considered to decide whether an object belongs to the lower or upper approximation set of a cluster, so the division of boundary area is appropriate. The improved rough k means clustering algorithm has reasonable initial centers of clustering, so it can get accurate centers. A new fuzzy classification model is developed based on the improved rough k means clustering algorithm. The improved rough k-means clustering algorithm is used to group data set and partition the fuzzy input space. The initial fuzzy classification model is identified according to the clustering results. The premise parameters of the fuzzy model are optimized by genetic algorithm. The proposed fuzzy model with accurate parameters offers the advantages of high precision and good generalization.
     3. Decision-theoretic rough set model can only handle discretized data, so a fuzzy decision-theoretic rough set model that can deal with continuous data directly is studied. Indiscernibility relation is generalized to fuzzy T-equivalence relations based on Gaussian kernel. Conditional probability is redefined from the view of degree of fuzzy membership. Based on these definitions a fuzzy decision-theoretic rough set model is developed and the properties of it are also discussed. The definition of attribute reduction and corresponding reduction algorithm of fuzzy decision-theoretic rough set model are studied. These studies about fuzzy decision-theoretic rough set model are the theory foundation of its application to classification model.
     4. A multiple classification ensemble system is designed selectively combining a set of individual classifiers trained with fuzzy decision-theoretic rough set model based reducts. A two-step random search strategy for attribute reduction based on fuzzy decision-theoretic rough set model is applied to raw data to compute a set of reducts. A set of individual classifiers is trained based on a set of reducts. Genetic algorithm is used to select part of the trained individual classifier to be combined. Finally, classification result of ensemble system can be completed by combination with vote rule. The information in different reducts is distinct and complement, so individual classifiers trained with reducts are diverse. The experiments results show that the proposed ensemble system has good classification performance with fewer individual classifiers.
引文
1. U. M. Fayyad, G Piatetsky-Shapiro, P. Smyth, et al. Advances in knowledge discovery and data mining[M]. Menlo Park:AAAI Press,1996.
    2. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth. The KDD process for extracting useful knowledge from volumes of data[J]. Comunications of the ACM,1996, 39(11):27-34.
    3. J. W. Han, M. Kamber. Data mining:concepts and techniques[M]. San Francisco, CA:Morgan Kaufmann Publishers,2001.
    4.朱明.数据挖掘[M].合肥:中国科学技术大学出版社,2002.
    5. L. Breiman, J. H. Friedman, R. A. Olshen, et al. Classification and regression trees[M]. California:Wadsworth Publishers,1984.
    6. J. R. Quinlan. Induction of decision trees[J]. Machine Learning,1986,1(1): 81-106.
    7. J. Quinlan. C4.5 Programs for Machine Learning[M]. San Francisco, CA: Morgan Kaufmann Publishers,1993.
    8. N. Friedman, D. Geiger, M. Goldszmidt. Bayesian network classifiers [J]. Machine Learning,1997,29:131-163.
    9. Y. H. Cai. The comparative study of different Bayesian classifier models[C]. Proceedings of 2010 International Conference on Machine Learning and Cybernetics,2010,1:309-313.
    10. C. Domeniconi, J. Peng, D. Gunopulos. Locally Adaptive metric nearest neighbor classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(9):1281-1285.
    11. O. W. Kwon, J. H. Lee. Text categorization based on k-nearest neighbor approach for web site classification[J]. Information Processing and Management,2003,39: 25-44.
    12. Z. A. Aghbari. Array-index:a plug & search K nearest neighbors method for high dimensional data[J]. Data & Knowledge Engineering,2005,52:333-352.
    13. H. Lu, R. Setiono, H. Liu. Effective data mining using neural networks[J], IEEE Transactions on Knowledge and Data Engineering,1996,8(6):957-961.
    14.孙大洪,王发展,刘强,等.基于BP和RBF神经网络的滚动轴承故障诊断比较[J].轴承,2010(2):53-56.
    15. S. Kang, S. Park. A fusion neural network classifier for image classification[J]. Pattern Recognition Letters,2009,30(9):789-793.
    16. V. N. Vapnik. The nature of statistical learning theory[M]. New York: Springer-Verlag,1995.
    17. W. Liu, P. Shen, Y. Qu, et al. Fast algorithm of support vector machines in lung cancer diagnosis[C]. Proceedings of International Workshop on Medical Imaging and Augmented Reality,2001:188-192.
    18. Y. Yi, J. Wu, W. Xu. Incremental SVM based on reserved set for network intrusion detection[J]. IEEE Transactions on Network and Service Management, 2011,38 (6):7698-7707.
    19. L. J. Li, Y. F. Li, H. Y. Su, et al. Least Squares Support Vector Machines based on Fuzzy Rough Set[C]. Proceedings of International Conference on Intelligent Computing,2006,1275-1281.
    20.张永,吴晓蓓,张宏,等.基于Pareto协同进化算法的高维模糊分类系统设计[J].东南大学学报(自然科学版),2008,38(4):626-631.
    21. J. A. Roubos, M. Setnes, J. Abonyi. Learning fuzzy classification rules from labeled data[J]. Information Sciences,2003,150:77-93.
    22.张燕丽,刘晓东.基于AFS理论的加权模糊分类器[J].小型微型计算机系统,2009,30(10):2005-2009.
    23.张雷,李人厚.基于免疫原理和Boosting机制的模糊分类规则挖掘算法[J].西安交通大学学报,2007,41(8):927-930,953.
    24.孙英娟.基于粗糙集的分类方法研究[D].长春:吉林大学,2011.
    25.沈仁发,郑海起,金海薇,等.变精度粗糙集在齿轮故障诊断中的应用[J].振动、测试与诊断,2011,31(3):300-304.
    26. S. Mitra, M. Mitra, B. B. Chaudhuri. A rough-set-based inference engine for ECG classification[J]. IEEE Transactions on Instrumentation and Measurement,2006, 55(6):2198-2206.
    27. W. Q. Zhao, Z. L. Zhang. An email classification model based on rough set theory[C]. Proceedings of the 2005 International Conference on Active Media Technology,2005:403-408.
    28.李志君,王国胤,吴渝.基于Rough Set的电子邮件分类系统[J].计算机科学,2004,31(3):58-60,66.
    29. L. J. Sun, D. Q. Miao. Gene selection with rough sets for cancer classification[C]. Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery,2007:167-172.
    30. S. Q. Yin, F. Wang, Z. Xie, Y. H. Qiu. Study on web-page classification algorithm based on rough set theory[C]. Proceedings of the 2008 International Symposiums on Information Processing,2008:202-206.
    31. A. J. An, Y. H. Huang, X. J. Huang, N. Cercone. Feature selection with rough sets for web page classification[M]//Transactions on Rough Sets II, LNCS 3135, Berlin/Heidelberg:Springer Publisher,2005:1-13.
    32.赵荣泳,李翠玲,高晓康,等.电子镇流器故障诊断的变精度粗糙集模型[J].南京大学学报(自然科学版),2010,46(5):494-500.
    33.张东波,王耀南.FCM聚类算法和粗糙集在医疗图像分割中的应用[J].仪器仪表学报,2006,27(12):1683-1687.
    34. Q. G. Duan, D. Q. Miao. A rough set approach to grouping goods in electronic commerce[C]. Proceedings of the 9th International Conference on Advanced Communication Technology,2007,1:591-593.
    35. W. Zhang, Y. Z. Zhang, C. Li. A New Hybrid Algorithm for Image Segmentation Based on Rough Sets and Enhanced Fuzzy C-Means Clustering[C]. Proceedings of the IEEE International Conference on Automation and Logistics,2009, 1212-1216.
    36. C. H. Zeng, Y. Xu, P. Zheng, W. C. Xie. Knowledge discovery for goods classification based on rough set[C]. Proceedings of IEEE International Conference on Granular Computing,2005,334-337.
    37.李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2005.
    38. Z. Pawlak. Rough Sets[J]. Information Science,1982,11(5),341-356.
    39.马胜蓝,叶东毅.信息熵最小约简问题的若干随机优化算法[J].模式识别与人工智能,2012,25(1):96-104.
    40. B. Y. Wang, S. M. Zhang. A novel attribute reduction algorithm based on rough set and information entropy theory[C]. Proceedings of 2007 International Conference on Computational Intelligence and security world workshops,2007, 81-84.
    41. B. Han, T. J. Wu. Information entropy based reduct searching algorithm[C]. Proceedings of the 2002 American Control Conference,2002,6:4577-4582.
    42. G. Y. Wang. Rough sets reduction in algebra view and information view[J]. International Journal of Intelligent Systems,2003,18:679-688.
    43.王国胤,于洪,杨大春.基于条件信息熵的决策表约简[J].计算机学报,2002,25(7):759-766.
    44. X. H. Hu, N. Cercone. Learning in relational databases:a rough set approach[J]. Computational Intelligence,1995,11(2):323-337
    45. X. H. Hu. Knowledge discovery in databases:an attribute-oriented rough set approach[D]. Regina:University of Regina,1995.
    46.葛浩,李龙澍,杨传健.新的可分辨矩阵及其约简方法[J].控制与决策,2010,25(12):1891-1900.
    47.周献中,李华雄.广义约简、核与分辨矩阵[J].控制与决策,2010,25(10):1507-1512,1518.
    48.刘少辉,盛秋戬,吴斌,等.Rough集高效算法的研究[J].计算机学报,2003,26(5):524-529.
    49.苗夺谦,胡桂容.知识约简的一种启发式算法[J].计算机研究与发展,1999,36(6):681-684.
    50.王文辉,周东华.基于遗传算法的一种粗糙集知识约简算法[J].系统仿真学报,2001,13(s1):91-93.
    51. S. Vinterbo and A.(?)hrn. Minimal approximate hitting sets and rule templates[J]. International Journal of Approximate Reasoning,2000,25(2):123-143.
    52.代建华,李元香.粗集中属性约简的一种启发式遗传算法[J].西安交通大学学报,2002,36(12):1286-1290.
    53.于洪,杨大春.基于蚁群优化的多个属性约简的求解方法[J].模式识别与人工智能,2011,24(2):176-184.
    54. T. Q. Deng, C. D. Yang, Y. T. Zhang, et al. An improved ant colony optimization applied to attributes reduction[J]. Fuzzy Information and Engineering Advances in Soft Computing,2009,54:1-6.
    55. X. Y. Wang, J. Yang, X. L. Teng, et al. Feature selection selection based on rough sets and particle swarm optimization[J]. Pattern Recognition Letters,2007,28(4): 459-471.
    56. P. Wojdyllo. Wavelets, rough sets and artificial neural networks in EEG analysis[C]. Proceedings of the 1st International Conference on Rough Sets and Current Trends in Computing,1998:444-449.
    57. X. P. Gu, S. K. Tso. Applying rough-set concept to neural-network-based transient-stability classification of power system[C]. Proceedings of the 5th International Conference on Advances in Power System Control, Operation and Management,2000:400-404.
    58. B. S. Ahn, S. S. Cho, C. Y. Kim. The integrated methodology of rough set theory and artificial neural network for business failure prediction[J]. Expert Systems with Application,2000,18:65-74.
    59.窦东阳,杨建国,李丽娟,等.基于规则的神经网络在模式分类中的应用[J].东南大学学报,2011,41(3):482-486.
    60.张东波,王耀南.一种新型模糊-粗神经网络及其在元音识别中的应用[J].控制与决策,2006,21(2):221-224.
    61. M. Sarkar. Rough-fuzzy functions in classification[J]. Fuzzy sets and Systems, 2002,132:353-369.
    62. D. B. Zhang, Y. N. Wang, H. X. Huang. Rough neural network modeling based on fuzzy rough model and its application to texture classification [J]. Neurocomputing,2009,72:2433-2443.
    63. Y. C. Tsai, C. H. Cheng, J. R. Chang. Entropy-based fuzzy rough classification approach for extracting classification rules[J]. Expert Systems with Applications, 2006,31:436-443.
    64. F. F. Xu, D. Q. Miao, L. Wei. Fuzzy-rough attribute reduction via mutual information with an application to cancer classification[J]. Computers and Mathematics with Applications,2009,57:1010-1017.
    65.吴成东,许可,韩中华,等.基于粗糙集和决策树的数据挖掘方法[J].东北大学学报(自然科学版),2006,27(5):481-484.
    66. Y. Yuan, M. J. Shaw. Introduction of fuzzy decision tree[J]. Fuzzy Sets,1995, 69(2):125-139.
    67. J. H. Zhai. Fuzzy decision tree based on fuzzy-rough technique[J]. Soft Computing,2010,15(6):1087-1096.
    68. C. F. Lin, S. D. Wang. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks,2002,13(2):464-471.
    69.李蓉,叶世伟,史忠植.SVM-KNN分类器—一种提高SVM分类精度的新方法[J].电子学报,2002,30(5):745-748.
    70.宋功益,郭清滔,涂福荣,等.模糊贝叶斯网的变压器故障诊断[J].电力系统及其自动化学报,2012,24(2):102-106.
    71. L. Wang, X. Z. Zhou, G M. Zhang. Application of FCM clustering based rough sets on steel rolling process[C]. Proceedings of the 22nd China Control and Decision Conference,2010:512-516.
    72.王莉,周献中.一种基于粗糙集的模糊神经网络模型在钢材力学性能预测中的研究[C].中国智能自动化会议,2009,1156-1161.
    73.谢宏,牛东晓,张国立,等.一种模糊模型的混合建模方法及在短期负荷预测中的应用[J].中国电机工程学报,2005,25(8):17-22.
    74.黎明,张化光,何希勤.基于粗糙集的模糊模型辨识方法[J].东北大学学报(自然科学版),2000,21(5):480-483.
    75. R. Nowicki. Rough neuro-fuzzy structures for classification with missing data[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2009, 39(6):1334-1347.
    76.王介生,战红仁,王伟.基于粗糙集的T-S模糊神经网络在回转窑烧结过程中的应用[J].华东理工大学学报(自然科学版),2006,32(7):796-800,848.
    77.黄艳新,于哲舟,胡成全,等.粗糙集模糊神经网络味觉信号识别系统[J].吉林大学学报(信息科学版),2004,22(3):236-243.
    78. D. Dubois, H. Prade. Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General Systems,1990,17(2-3):191-209.
    79. R. Jensen, Q. Shen. Fuzzy-rough attributes reduction with application to web categorization[J]. Fuzzy Sets and Systems,2004,141(3):469-485.
    80. R. Jensen, Q. Shen. Fuzzy-rough data reduction with ant colony optimization[J]. Fuzzy Sets and Systems,2005,149(1):5-20.
    81. R. Jensen, Q. Shen. Fuzzy-rough sets assisted attribute selection. IEEE Transactions on Fuzzy Systems[J].2007,15(1):73-89.
    82. R.Jensen, Q. Shen. Are more features better? A response to attributes reduction using fuzzy rough sets[J]. IEEE Transactions on Fuzzy Systems,2012,17(6): 1456-1458.
    83. E. C. C. Tsang, D. G Chen, D. S. Yeung, et al. Attributes reduction using fuzzy rough sets[J]. IEEE Transactions on Fuzzy Systems,2008,16(5):1130-1141.
    84. G. C. Y. Tsang, E. C. C. Tsang, J. W. T. Lee, et al. On attributes reduction with fuzzy rough sets[C]. Proceedings of IEEE International Conference on Systems, Man and Cybernetics,2005,3:2775-2780.
    85. D. C. Chen, L. Zhang, S. Y. Zhao, et al. A novel algorithm for finding reducts with fuzzy rough sets[J]. IEEE Transactions on Fuzzy Systems,2012,20(2): 385-389.
    86. A. M. Radzikowska, E. E. kerre. A comparative study of fuzzy rough sets[J]. Fuzzy Sets and Systems,2002,126(2):137-155.
    87.何亚群,胡寿松.一种基于粗糙-模糊集集成模型的决策分析方法[J].控制与决策,2004,19(3):315-318.
    88. Q. H. Hu, D. R. Yu, W. Pedrycz, et al. Kernelized Fuzzy rough sets and their applications[J]. IEEE Transaction on Knowledge and Data Engineering,2011, 23(11):1649-1667.
    89. Q. H. Hu, L. Zhang, D. G Chen, et al. Gaussian kernel based fuzzy rough sets: Model, uncertainty measures and applications[J]. International Journal of Approximate Reasoning,2010,51:453-471.
    90. N. N. Morsi, M. M. Yakout. Axiomatics for fuzzy rough sets[J]. Fuzzy Sets System,1998,100(1-3):327-342.
    91. D. Boixader, J. Jacas, J. Recasens. Upper and lower approximations of fuzzy sets[J]. International Journal of General Systems,2000,29(4):555-568.
    92. J. S. Mi, W. X. Zhang. An axiomatic characterization of a fuzzy generalization of rough sets[J]. Information Sciences,2004,160(1-4):235-249.
    93. D. S. Yeung, D. G. Chen, E. C. C. Tsang, et al. On the generalization of fuzzy rough sets[J]. IEEE Transactions on Fuzzy Systems,13(3):343-361.
    94. J. S. Mi, Y. Leung, H. Y. Feng. Generalized fuzzy rough sets determined by a triangular norm[J]. Information Sciences,2008,178(16):3203-3213.
    95. W. Z. Wu, J. S. Mi, W. X. Zhang. Generalized fuzzy rough sets[J]. Information Sciences,2003,151:263-282.
    96. W. Z. Wu, W. X. Zhang. Constructive and axiomatic approaches of fuzzy approximation operators[J]. Information Sciences,2004,159:233-254.
    97. T. J. Li, Y. Leung, W. X. Zhang. Generalized fuzzy rough approximation operators based on fuzzy coverings[J]. International Journal of Approximate Reasoning,2008,48(3):839-856.
    98.徐忠印,廖家奇.基于覆盖的模糊粗糙集模型[J].模糊系统与数学,2006, 20(3):141-144.
    99. L. Zhou, W. Z. Wu, W. X. Zhang. On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implicators[J]. Information Sciences, 2009,179(7):883-898.
    100.黄兵,魏大宽.基于距离的直觉模糊粗糙集模型及应用[J].系统工程理论与实践,2011,31(7):1356-1362.
    101.H. Y. Zhang, W. X. Zhang, W. Z. Wu. On characterization of generalized interval-valued fuzzy rough sets on two universes of discourse[J]. International Journal of Approximate Reasoning,2009,51(1):56-70.
    102.M. F. Wu, G X. Kou. Fuzzy rough set model based on multi-granulations[C]. Proceedings of the 2nd International Conference on Computer Engineering and Technology,2010,2:71-75.
    103.Z. Pawlak. Rough sets:theoretical aspects of reasoning about data[M]. Dordrecht, Netherlands:Kluwer Academic Publishers,1991.
    104.R. Slowiski. Intelligent decision support-handbook of application of the rough sets theory[M]. Dordrecht, Netherlands:Klumer Academic Publishers,1992.
    105.张文修,米据生,吴伟志.不协调目标信息系统的知识约简[J].计算机学报,2003,26(1):12-18.
    106.J. S. Mi, W. Z. Wu, W. X. Zhang. Approaches to knowledge reduction based on variable precision rough set model[J]. Information Science,2004,159:255-272.
    107.王国胤.决策表核属性的计算方法[J].计算机学报,2003,26(5):611-615.
    108.S. K. M. Wong, W. Ziarko. On optimal decision rules in decision tables[J]. Bulletin of Polish Academy of Sciences,1985,33(11-12):693-696.
    109.A. Skowron, C. Rauszer. The discernibility matrices and functions in information systems[M]//Intelligent Decision Support:Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht:Kluwer Academic Publishers, 1992,11:331-362.
    110.于锟,刘知贵,黄正良.粗糙集理论应用中的离散化方法综述[J].西南科技大学学报,2005,20(4):32-36.
    111.王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[J].计算机学报,2009,32(7):1229-1246.
    112.A. Ganivada, S. Dutta, S. K. Pal. Fuzzy rough granular neural networks, fuzzy granules, and classification[J]. Theoretical Computer Science,2011,412(42): 5834-5853.
    113.D. B. Zhang, Y. N. Wang, H. X. Huang. Rough neural network modeling through supervised G-K fuzzy clustering[C]. Proceedings of 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,2007,3,336-341.
    114.A. Skowron. The relationship between the rough set theory and evidence theory[J]. Bulletin of the Polish Academy of Sciences Mathematics,1989,37: 87-90.
    115.A. Mrozek. Rough sets in computer implementation of rule-based control in industrial processes[M]//Intelligent decision support-handbook of applications and advances of the rough sets theory,1992,19-31.
    116.J. T. Yao, J. P. Herbert. Financial time-series analysis with rough sets[J]. Applied Soft Computing,2009,9:1000-1007.
    117.M. Kryszkiewicz. Rough set approach to incomplete information systems. Information Sciences,1998,112:39-49.
    118.J. Stefanowski, A. Tsoukias. On the extension of rough sets under incomplete information[J]. New Directions in Rough Sets, Data Mining, and Granular-Soft Computing, LNCS,1999,1711:73-81.
    119.王国胤.Rough集理论在不完备信息系统中的扩充[J].计算机研究与发展,2002,39(10):1238-1243.
    120.黄兵,周献中.不完备信息系统中基于联系度的粗集模型拓展[J].系统工程理论与实践,2004,24(1):88-92.
    121.黄兵,周献中,史迎春.基于一般二元关系的知识粗糙熵与粗集粗糙熵[J].系统工程理论与实践,2004,1:93-96.
    122.D. G. Chen, Y. P. Yang, H. Wang. Granular computing based on fuzzy similarity relations[J]. Soft Computing,2011,15(6):1161-1172.
    123.Q. H. Hu, D. R. Yu, Z. X. Xie. Fuzzy probabilistic approximation spaces and their information measures [J]. IEEE Transactions on Fuzzy Systems,2006,14(2): 191-201.
    124.胡明礼,刘思峰.基于广义扩展优势关系的粗糙决策分析方法[J].控制与决策,2007,22(12):1347-1351.
    125.W. Ziarko. Variable Precision Rough Set Model, Journal Computer and System Sciences[J],1993,46:39-59.
    126.W. Z. Wu. Knowledge Acquisition in Incomplete Information Systems Based on Variable Precision Rough Set Model[C]. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics,2005,2245-2250.
    127.Z. Pawlak, S. K. M. Wong, W. Ziarko. Rough sets:probabilistic versus deterministic approach[J]. International Journal of Man-Machine Studies,1988, 29,81-95.
    128.A. Skowron, J. Stepaniuk. Tolerance approximation spaces[J]. Fundamenta Informaticae,1996,27:245-253.
    129.D. Slezak, W. Ziarko. Attribute reduction in the Bayes an version of variable precision rough set model[J]. Electronic Notes in Theoretical Computer Science, 2003,82,263-273.
    130.Y. Y. Yao. Decision-theoretic rough set models[C]//Proceedings of the 2nd International Conference on Rough Sets and Knowledge Technology, LNAI, 2007,4481:1-12.
    131.D. W. Pei, Z. B. Wu. Rough sets models on two universities [J]. International Journal of General Systems,2004,33:569-581.
    132.Y. Y. Yao. Two semantic issues in a probabilistic rough set model[J]. Fundamenta Informaticae,2011,108(3,4):249-265.
    133.L. X. Wang, J. M. Mendel. Generating fuzzy rules by learning from examples[J]. IEEE Transactions on systems man, and cybernetics,1992,22(6):1414-1427.
    134.王永富,王殿辉,柴天佑.一个具有完备性和鲁棒性的模糊规则提取算法[J].自动化学报,2010,36(9):1338-1342.
    135.R. R. Yage, D. P. Filev. Generation of fuzzy rules by mountain clustering[J]. Journal of Intelligent and Fuzzy System,1994,2(3):209-219.
    136.X. Chang, J. H. Lilly. Evolutionary design of a fuzzy classifier from data[J]. IEEE Transactions on System Man Cybernetic Part B,2004,34(4):894-906.
    137.陈铁明,龚荣盛,S. H. Huang.一种新的快速模糊规则提取方法[J].控制与决策,2008,23(9):1015-1020.
    138.蔡国强,贾利民,邢宗义,等.基于蚁群算法的模糊分类系统设计[J].模糊系 统与数学,2008,22(4):87-98.
    139.李华雄,周献中,李天瑞,等.决策粗糙集理论及其研究进展[M].北京:科学出版社,2011.
    140.Y. Y. Yao, Y. Zhao. Attribute reduction in decision-theoretic rough set models[J]. Information Sciences,2008,178:3356-3373.
    141.阳爱民.模糊分类模型的研究[D].上海:复旦大学,2005.
    142.J. C. Bezdek. Pattern recognition with fuzzy objective function algorithms[M]. New York:Plenum Press,1981.
    143.武星星.模糊系统和ANFIS的改进及其在加工参数智能选择中的应用研究[D].长春:吉林大学,2007.
    144.C. L. Blake, C. J. Merz. UCI repository of machine learning databases[EB/OL]. http://archive.ics.uci.edu/ml/index.html
    145.P. Lingras, R. Yan, C. West. Comparison of Conventional and Rough k-means Clustering[C]. International conference on rough sets, fuzzy sets, data mining and granular computing, lecture notes in artificial intelligence,2003:130-137.
    146.P. Lingras, C. West. Interval set clustering of web users with rough k-means [J]. Journal of Intelligent Information Systems,2004,23(1):5-16.
    147.周明,孙树栋.遗传算法原理与应用[M].北京:国防工业出版社,1999:32-64.
    148.S. Mitra, H. Banka. Application of rough sets in pattern recognition[M]// Transactions on Rough Sets VU, LNCS 4400, Berlin/Heidelberg:Springer Publishers,2007:151-169.
    149.胡清华.混合数据知识发现的粗糙计算模型和算法[D].哈尔滨:哈尔滨工业大学,2008.
    150.G. Giacinto, F. Roli. An approach to the automatic design of multiple classifier systems [J]. Pattern Recognition Letters,2001,22(1):25-33.
    151.马超,陈西宏,徐宇亮,王光明.广义邻域粗集下的集成特征选择及其选择性集成算法[J].西安交通大学学报,2011,45(6):34-37.
    152.谢元澄.分类器集成研究[D].南京:南京理工大学,2009.
    153.杨明,王飞.一种基于局部随机子空间的分类集成算法[J].模式识别与人工 智能,2012,25(4):595-603.
    154.L. K. Hansen, P. Salamon. Neural network ensembles[J]. IEEE Transactions on Pattern analysis and Machine Intelligence,1990,12(10):993-1001.
    155.吴建鑫,周志华,沈学华,等.一种选择性神经网络集成构造方法[J].计算机研究与发展,2000,37(9):1039-1044.
    156.张东波,王耀南.基于粗糙集约简的神经网络集成及其遥感图像分类应用[J].中国图象图形学报,2008,13(3):480-487.
    157.Q. H. Hu, D. R. Yu, Z. X. Xie, X. D. Li. EROS:ensemble rough subspaces[J]. Pattern recognition,2007,40(12):3728-3739.
    158.A. J. C. Sharkey, N. E. Sharkey, S. S. Cross. Adapting an ensemble approach for the diagnosis of breast cancer[C]. Proceedings of International Conference on Artificial Neural Networks, Skovde,1998:281-286.
    159.A. Krogh, J. Vedelsby. Neural network ensembles, cross validation, and active learning[M]. Advances in Neural Information Processing Systems 7. Cambridge: MIT Press,1995:231-238.
    160.L. Breiman. Bagging predictors [J]. Machine Learning,1996,24(2):123-140.
    161.Y. Freund, R. E. Schapire. Experiments with a new boosting algorithm[C]. Proceedings of 13th International Conference on Machine Learing,1996: 146-148.
    162.H. D. Navone, P. F. Verdes, P. M. Granitto, et al. Selecting diverse members of neural network ensemble[C]. Proceedings of 6th Brazilian Symposium on Neural Networks,2000:255-260.
    163.D. Opitz, J. Shavlik. A genetic algorithm approach for creating neural network ensembles[M]. Combining Artificial Neural Nets, London:Springer Publisher, 1999:79-99.
    164.孙亮,韩崇昭,沈建京,等.集成特征选择的广义粗集方法与多分类器融合[J].自动化学报,2008,34(3):298-304.
    165.周涛.基于属性约简-聚类分析的集成神经网络[J].系统仿真学报,2010,22(6):1365-1369.
    166.X. Pan, S. Q. Zhang. Parallelized remote sensing classifier based on rough set theory algorithm[C]. Proceedings of 20th International Conference on Geoinformatics,2012:1-5.
    167.X. F. Hui, J. G Han, J. Sun. Financial distress prediction based on ensemble classifiers of multiple reductions[C]. Proceedings of 16th International Conference on Management Science & Engineering,2009,1247-1252.
    168.朱鹏飞,胡清华,于达仁.基于随机化属性选择和邻域覆盖约简的集成学习[J],电子学报,2012,40(2):273-279.
    169.Z. H. Zhou, J. Wu, W. Tang. Ensembling neural networks:many could be better than all[J]. Artificial Intelligence,2002,137(1-2):239-263.
    170.钱雪峰.粗糙集理论在变压器故障诊断中的应用研究[D].南京:南京理工大学,2005.
    171.刘毅.人工神经网络在变压器故障诊断应用中的比较研究[D].南宁:广西大学,2007.