蛋白质结构和动力学的分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是生命活动的基本功能单元,蛋白质具有柔性,存在许多不同的结构状态,蛋白质的多种构象态构成了蛋白质的构象空间,蛋白质很多生理功能的发挥是通过结构转换实现的。分子动力学方法是一种常用的研究蛋白质结构的方法,其既能体现蛋白原子微观运动也能展示其整体结构动力学和热力学的变化,是对蛋白质结构动力学研究的很好手段。蛋白质通常在水溶液的条件下,通过与其他蛋白相互作用,结构发生相应变化,最终发挥某种功能。在本文中,我们通过研究了水对蛋白质结构的影响,蛋白-蛋白相互作用中蛋白质结构的变化,并通过结构分析和构象熵的计算来对蛋白质的结构和动力学进行了分析和研究,回答了几个基础并重要的蛋白质结构问题。
     本论文的主要研究内容如下:
     1)水对蛋白质的结构形成和维持都有着重要的作用,从热力学角度讲,水是通过改变蛋白质的势能面,最终影响蛋白质结构的。所以,我们针对球蛋白质的水体系进行了分子动力学模拟,计算了蛋白质与水作用的各个能量项(蛋白质自身能量、蛋白质与水作用能量、总能量),通过这些能量项的相关性分析和标准差计算,展示出水对蛋白能量面粗糙度的改变,最终反映出水对蛋白结构的影响。研究结果表明,水对蛋白质的结构起到了“奴役”和“润滑”的双重作用:大部分情况下水分子通过对势能面的粗糙来“奴役”蛋白质的结构,而有时候水分子也会通过“平滑”能量面来润滑蛋白质的结构。
     2)蛋白质通过相互作用发挥其生物功能,对于蛋白相互作用的模型,有两个经典的假说“诱导契合”假说和“构象选择”假说。我们对多组相互作用的蛋白在微秒时间尺度上进行模拟取样,对蛋白质构象进行聚类分组,对比研究了蛋白结合前后的二面角转换,构象转换,构象空间变化等,通过对比分析,我们从构象空间的角度发现,蛋白质的结合过程同时符合“构象选择”和“诱导契合”,并且对不同的蛋白相互作用,起主导作用的不同。我们从蛋白质构象空间子态的角度描述了蛋白质结构的柔性,在蛋白质的柔性区域对蛋白质的相互作用起重要作用。
     3)构象熵的计算可以从热力学角度对蛋白质结构进行更有效的分析。我们从蛋白质熵计算的原理出发,对构象空间进行划分,通过公式推导发现,通过对主要构象空间的熵的计算就能估算出整个蛋白构象熵的结果,我们将这个最主要的构象空间定义为“熵主导构象”,我们对两个蛋白进行分子模拟分析,进行熵的计算,结果验证了我们的公式。最后我们继续研究了具体蛋白质熵计算的应用,结果证明,微秒时间尺度的分子模拟以及多次计算取平均的方法对于研究蛋白质相互作用的熵变能获得更可信的结果,我们还对蛋白质相互作用熵进行了计算,结果表明蛋白质结合后熵变小,结合前面的对蛋白相互作用的结构分析,说明水的熵增是蛋白质相互作用和结构的变化的重要驱动力。
Protein is the basic functional unit for most physiological activities. The proteinmobility which also act as flexibility is very important for their functions. Proteinsaccomplish their physiological functions with remarkably organized dynamictransitions among a hierarchical network of conformational substates. Moleculardynamics simulation is a widely used method for protein conformational substatesinvestigation. MD method could show characteristics of protein kinetics andthermodynamics, especially how protein moving on atomic level. We all know,proteins perform their functions through interaction, which mostly in the waterenvironment, accompanied with conformation transition. Therefore, it is important tofigure out how water molecules affect proteins’ conformation, how conformationchanged during protein binding. Conformation space analysis and conformationalentropy estimation should make these more clear.
     The main contents of this dissertation are as below:
     1) Water play an indispensable role in shaping dynamic behaviour of proteinsthrough molecular interactions that modify protein potential energy surface. Wesystematically analysed protein self energies and protein-water interaction energiesobtained from extensive molecular dynamics simulation trajectories of barstar. Wefound that water molecules effectively roughen potential energy surface of proteins inthe majority part of observed conformational space and smooth in the remaining part.These findings support a scenario wherein water on average slave proteinconformational dynamics but facilitate a fraction of transitions among differentconformational substates, and reconcile the controversy on the facilitating and slavingroles of water molecules in protein conformational dynamics.
     2)The most majority proteins perform their specially biological activity throughinteraction with others. There are two important long-stand assumptions about protein-ligand binding which are “induced-fit” and “conformational selection”. Wedemonstrate these questions from the aspects of conformational substates. Weperformed molecular dynamics simulation in a microsecond timescale for three setsof proteins and study the conformational substates change before and after proteinbinding, as well as the transform frequency of dihedral angles and conformations.We found that the two assumptions work at the same time, for most proteins“induced-fit” play a dominate role, while for some others “conformational selection”are in dominate. We found that the loop is a key area for protein interaction, we alsogive a quantitative description for the flexibility of protein structure from the aspectsof protein conformational substates.
     3)The estimation of entropy is a challenging problem for macromolecules suchas protein. Despite great progresses that have been made, the global samplingremains to be a challenge for computational analysis of relevant processes. Here wepropose an entropy estimation method which based on physical partition ofconfigurational space and can be readily combined with currently availablemethodologies. Tests with two globular proteins suggest that accurateconfigurational entropy estimation can be achieved simply by considering theentropically most important subspace, thus convert an exhaustive sampling probleminto a local sampling problem. We also performed some calculation for protein, andwe found entropy loss during protein-protein binding, together with the results weget from protein-protein conformation analysis, it proved that the protein-proteininteraction is a process driven by entropy.
引文
[1] Christian B A. The molecular basis of evolution [J].1959.
    [2] Kelly J W. Alternative conformations of amyloidogenic proteins govern their behavior [J].Curr Opin Struct Biol,1996,6(1):11-17.
    [3] Prusiner S B. Prion diseases and the bse crisis [J]. Science,1997,278(5336):245-251.
    [4] Kelly J W. The alternative conformations of amyloidogenic proteins and their multi-stepassembly pathways [J]. Curr Opin Struct Biol,1998,8(1):101-106.
    [5] Prusiner S B. The prion diseases [J]. Brain Pathol,1998,8(3):499-513.
    [6] Prusiner S B, Scott M R, DeArmond S J, et al. Prion protein biology [J]. Cell,1998,93(3):337-348.
    [7] Teilum K, Olsen J G, Kragelund B B. Protein stability, flexibility and function [J]. BiochimBiophys Acta,2011,1814(8):969-976.
    [8] Fields P A. Review: Protein function at thermal extremes: Balancing stability and flexibility[J]. Comp Biochem Physiol A Mol Integr Physiol,2001,129(2-3):417-431.
    [9] Wang D N. Band3protein: Structure, flexibility and function [J]. Febs Letters,1994,346(1):26-31.
    [10] Huber R. Flexibility and rigidity, requirements for the function of proteins and proteinpigment complexes. Eleventh keilin memorial lecture [J]. Biochem Soc Trans,1987,15(6):1009-1020.
    [11] Rual J F, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the humanprotein-protein interaction network [J]. Nature,2005,437(7062):1173-1178.
    [12] Han J D J, Bertin N, Hao T, et al. Evidence for dynamically organized modularity in theyeast protein-protein interaction network [J]. Nature,2004,430(6995):88-93.
    [13] Berman H M, Bhat T N, Bourne P E, et al. The protein data bank and the challenge ofstructural genomics [J]. Nature Structural Biology,2000,7Suppl:957-959.
    [14] Berman H M, Westbrook J, Feng Z, et al. The protein data bank [J]. Nucleic Acids Res,2000,28(1):235-242.
    [15] Murzin A G, Brenner S E, Hubbard T, et al. Scop: A structural classification of proteinsdatabase for the investigation of sequences and structures [J]. J Mol Biol,1995,247(4):536-540.
    [16] Orengo C A, Michie A D, Jones S, et al. Cath--a hierarchic classification of protein domainstructures [J]. Structure,1997,5(8):1093-1108.
    [17] Shaw D E, Maragakis P, Lindorff-Larsen K, et al. Atomic-level characterization of thestructural dynamics of proteins [J]. Science,2010,330(6002):341-346.
    [18] Shaw D E. Millisecond-long molecular dynamics simulations of proteins on aspecial-purpose machine [J]. Abstracts of Papers of the American Chemical Society,2010,240.
    [19] Shaw D E, Deneroff M M, Dror R O, et al. Anton, a special-purpose machine for moleculardynamics simulation [J]. Communications of the Acm,2008,51(7):91-97.
    [20] Shaw D E, Deneroff M M, Dror R O, et al. Anton, a special-purpose machine for moleculardynamics simulation [J]. Isca'07:34th Annual International Symposium on ComputerArchitecture, Conference Proceedings,2007:1-12.
    [21] Lange O F, Lakomek N A, Fares C, et al. Recognition dynamics up to microseconds revealedfrom an rdc-derived ubiquitin ensemble in solution [J]. Science,2008,320(5882):1471-1475.
    [22] Boehr D D, McElheny D, Dyson H J, et al. The dynamic energy landscape of dihydrofolatereductase catalysis [J]. Science,2006,313(5793):1638-1642.
    [23] Kalodimos C G, Biris N, Bonvin A M, et al. Structure and flexibility adaptation innonspecific and specific protein-DNA complexes [J]. Science,2004,305(5682):386-389.
    [24] Bhalla U S, Ram P T, Iyengar R. Map kinase phosphatase as a locus of flexibility in amitogen-activated protein kinase signaling network [J]. Science,2002,297(5583):1018-1023.
    [25] Hay S, Scrutton N S. Good vibrations in enzyme-catalysed reactions [J]. Nat Chem,2012,4(3):161-168.
    [26] Schneider G. Virtual screening: An endless staircase?[J]. Nat Rev Drug Discov,2010,9(4):273-276.
    [27] J A B, E W T. Studies in molecular dynamics i. General method [J]. J. Chem, Phys,1959,31.
    [28] Rahman A. Correlations in the motion of atoms in liquid argon [J]. Physical Review,1964,136(2A): A405-A411.
    [29] Stillinger F H, Rahman A. Improved simulation of liquid water by molecular dynamics [J]. J.Chem. Phys.,1974,60(4).
    [30] McCammon J A, Karplus M. Internal motions of antibody molecules [J]. Nature,1977,268(5622):765-766.
    [31] Duan Y, Kollman P A. Pathways to a protein folding intermediate observed in a1-microsecond simulation in aqueous solution [J]. Science,1998,282(5389):740-744.
    [32] Bowman G R, Voelz V A, Pande V S. Taming the complexity of protein folding [J]. CurrOpin Struct Biol,2011,21(1):4-11.
    [33] Lei H, Wu C, Liu H, et al. Folding free-energy landscape of villin headpiece subdomain frommolecular dynamics simulations [J]. Proc Natl Acad Sci U S A,2007,104(12):4925-4930.
    [34] Kauzmann W. Some factors in the interpretation of protein denaturation [J]. Adv ProteinChem,1959,14:1-63.
    [35] Stigter D, Dill K A. Charge effects on folded and unfolded proteins [J]. Biochemistry,1990,29(5):1262-1271.
    [36] Makarov V, Pettitt B M, Feig M. Solvation and hydration of proteins and mucleic acids: Atheoretical view of simulation and experiment [J]. Accounts of Chemical Research,2002,35(6):376-384.
    [37] Haruta N, Aki M, Ozaki S, et al. Protein conformation change of myoglobin upon ligandbinding probed by ultraviolet resonance raman spectroscopy [J]. Biochemistry,2001,40(23):6956-6963.
    [38] Wang J P, El-Sayed M A. The effect of the protein conformation change onbacteriorhodopsin photocycle [J]. Biophysical Journal,2000,78(1):159a-159a.
    [39] Harano Y, Kinoshita M. Translational-entropy gain of solvent upon protein folding [J].Biophysical Journal,2005,89(4):2701-2710.
    [40] Rodier F, Bahadur R P, Chakrabarti P, et al. Hydration of protein-protein interfaces [J].Proteins,2005,60(1):36-45.
    [41] Lu Y, Wang R, Yang C Y, et al. Analysis of ligand-bound water molecules in high-resolutioncrystal structures of protein-ligand complexes [J]. J Chem Inf Model,2007,47(2):668-675.
    [42] Reddy C K, Das A, Jayaram B. Do water molecules mediate protein-DNA recognition?[J]. JMol Biol,2001,314(3):619-632.
    [43] Lim V I, Curran J F, Garber M B. Hydration shells of molecules in molecular association: Amechanism for biomolecular recognition [J]. J Theor Biol,2012,301:42-48.
    [44] Jana M, Bandyopadhyay S. Conformational flexibility of a protein-carbohydrate complexand the structure and ordering of surrounding water [J]. Phys Chem Chem Phys,2012,14(18):6628-6638.
    [45] Paik D H, Lee I R, Yang D S, et al. Electrons in finite-sized water cavities: Hydrationdynamics observed in real time [J]. Science,2004,306(5696):672-675.
    [46] Bellissent-Funel M C. Water hydration in protein dynamics [J]. Biofutur,2012,(331):31-33.
    [47] Mazza M G, Stokely K, Pagnotta S E, et al. More than one dynamic crossover in proteinhydration water [J]. Proc Natl Acad Sci U S A,2011,108(50):19873-19878.
    [48] Doster W, Busch S, Gaspar A M, et al. Dynamical transition of protein-hydration water [J].Phys Rev Lett,2010,104(9).
    [49] Smith J C, Merzel F, Bondar A N, et al. Structure, dynamics and reactions of proteinhydration water [J]. Philosophical Transactions of the Royal Society of London SeriesB-Biological Sciences,2004,359(1448):1181-1189.
    [50] Roux B, Simonson T. Implicit solvent models [J]. Biophys Chem,1999,78(1-2):1-20.
    [51] Roux B, Simonson T. Implicit solvent models for biomolecular simulation-preface [J].Biophys Chem,1999,78(1-2): Ix-X.
    [52] Wagner F, Simonson T. Implicit solvent models: Combining an analytical formulation ofcontinuum electrostatics with simple models of the hydrophobic effect [J]. J Comput Chem,1999,20(3):322-335.
    [53] Florova P, Sklenovsky P, Banas P, et al. Explicit water models affect the specific solvationand dynamics of unfolded peptides while the conformational behavior and flexibility offolded peptides remain intact [J]. J Chem Theory Comput,2010,6(11):3569-3579.
    [54] Mahoney M W, Jorgensen W L. A five-site model for liquid water and the reproduction ofthe density anomaly by rigid, nonpolarizable potential functions [J]. J. Chem. Phys,2000,112:8910.
    [55] Mark P, Nilsson L. Structure and dynamics of the tip3p, spc, and spc/e water models at298k[J]. Journal of Physical Chemistry A,2001,105(43):9954-9960.
    [56] Chakraborty S, Sinha S K, Bandyopadhyay S. Low-frequency vibrational spectrum of waterin the hydration layer of a protein: A molecular dynamics simulation study [J]. J Phys ChemB,2007,111(48):13626-13631.
    [57] Choudhury N. Dynamics of water in the hydration shells of c60: Molecular dynamicssimulation using a coarse-grained model [J]. J Phys Chem B,2007,111(35):10474-10480.
    [58] Li X, Yang Z Z. Hydration of li+-ion in atom-bond electronegativity equalization method-7pwater: A molecular dynamics simulation study [J]. J Chem Phys,2005,122(8):84514.
    [59] Higo J, Nakasako M. Hydration structure of human lysozyme investigated by moleculardynamics simulation and cryogenic x-ray crystal structure analyses: On the correlationbetween crystal water sites, solvent density, and solvent dipole [J]. J Comput Chem,2002,23(14):1323-1336.
    [60] Bizzarri A R, Cannistraro S. Molecular dynamics simulation evidence of anomalousdiffusion of protein hydration water [J]. Phys Rev E Stat Phys Plasmas Fluids RelatInterdiscip Topics,1996,53(4): R3040-R3043.
    [61] Chen X, Weber I, Harrison R W. Hydration water and bulk water in proteins have distinctproperties in radial distributions calculated from105atomic resolution crystal structures [J].J Phys Chem B,2008,112(38):12073-12080.
    [62] Chen X F, Weber I, Harrison R W. Hydration water and bulk water in proteins have distinctproperties in radial distributions calculated from105atomic resolution crystal structures [J].Journal of Physical Chemistry B,2008,112(38):12073-12080.
    [63] Fenimore P W, Frauenfelder H, McMahon B H, et al. Slaving: Solvent fluctuations dominateprotein dynamics and functions [J]. Proc Natl Acad Sci U S A,2002,99(25):16047-16051.
    [64] Frauenfelder H, Fenimore P W, Young R D. Protein dynamics and function: Insights from theenergy landscape and solvent slaving [J]. IUBMB Life,2007,59(8-9):506-512.
    [65] Frauenfelder H, Fenimore P W, Chen G, et al. Protein folding is slaved to solvent motions [J].Proc Natl Acad Sci U S A,2006,103(42):15469-15472.
    [66] Tarek M, Tobias D J. Role of protein-water hydrogen bond dynamics in the proteindynamical transition [J]. Phys Rev Lett,2002,88(13):138101.
    [67] Papoian G A, Ulander J, Eastwood M P, et al. Water in protein structure prediction [J]. ProcNatl Acad Sci U S A,2004,101(10):3352-3357.
    [68] Materese C K, Goldmon C C, Papoian G A. Hierarchical organization of eglin c native statedynamics is shaped by competing direct and water-mediated interactions [J]. Proc Natl AcadSci U S A,2008,105(31):10659-10664.
    [69] Chuang H Y, Lee E, Liu Y T, et al. Network-based classification of breast cancer metastasis[J]. Mol Syst Biol,2007,3:140.
    [70] Ideker T, Ozier O, Schwikowski B, et al. Discovering regulatory and signalling circuits inmolecular interaction networks [J]. Bioinformatics,2002,18Suppl1: S233-240.
    [71] Hallock P, Thomas M A. Integrating the alzheimer's disease proteome and transcriptome: Acomprehensive network model of a complex disease [J]. OMICS,2012,16(1-2):37-49.
    [72] Wetherall N T, Trivedi T, Zeller J, et al. Evaluation of neuraminidase enzyme assays usingdifferent substrates to measure susceptibility of influenza virus clinical isolates toneuraminidase inhibitors: Report of the neuraminidase inhibitor susceptibility network [J].Journal of Clinical Microbiology,2003,41(2):742-750.
    [73] Spratt D A, Greenman J, Schaffer A G. Growth and hydrolytic enzyme production ofcapnocytophaga gingivalis on different protein substrates [J]. Oral Microbiology andImmunology,1999,14(2):122-126.
    [74] Koshland D E. Application of a theory of enzyme specificity to protein synthesis [J]. ProcNatl Acad Sci U S A,1958,44(2):98-104.
    [75] Savino C, Montemiglio L C, Sciara G, et al. Investigating the structural plasticity of acytochrome p450: Three-dimensional structures of p450eryk and binding to itsphysiological substrate [J]. J Biol Chem,2009,284(42):29170-29179.
    [76] Changeux J P, Edelstein S. Conformational selection or induced fit?50years of debateresolved [J]. F1000Biol Rep,2011,3:19.
    [77] Hammes G G, Chang Y C, Oas T G. Conformational selection or induced fit: A fluxdescription of reaction mechanism [J]. Proc Natl Acad Sci U S A,2009,106(33):13737-13741.
    [78] Berjanskii M, Wishart D S. Nmr: Prediction of protein flexibility [J]. Nat Protoc,2006,1(2):683-688.
    [79] Radivojac P, Obradovic Z, Smith D K, et al. Protein flexibility and intrinsic disorder [J].Protein Sci,2004,13(1):71-80.
    [80] Teodoro M L, Phillips G N, Jr., Kavraki L E. Understanding protein flexibility throughdimensionality reduction [J]. J Comput Biol,2003,10(3-4):617-634.
    [81] E. G. Protein-protein interactions: A molecular cloning manual.[J]. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory Press.,2002,(ix,682p. p.).
    [82] Phizicky E M, Fields S. Protein-protein interactions: Methods for detection and analysis [J].Microbiol Rev,1995,59(1):94-123.
    [83] Perutz M F, Rossmann M G, Cullis A F, et al. Structure of haemoglobin: A three-dimensionalfourier synthesis at5.5-a. Resolution, obtained by x-ray analysis [J]. Nature,1960,185(4711):416-422.
    [84] Lo Conte L, Chothia C, Janin J. The atomic structure of protein-protein recognition sites [J].Journal of Molecular Biology,1999,285(5):2177-2198.
    [85] Janin J. Principles of protein-protein recognition from structure to thermodynamics [J].Biochimie,1995,77(7-8):497-505.
    [86] Chothia C, Janin J. Principles of protein-protein recognition [J]. Nature,1975,256(5520):705-708.
    [87] Xenarios I, Rice D W, Salwinski L, et al. Dip: The database of interacting proteins [J].Nucleic Acids Research,2000,28(1):289-291.
    [88] Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast [J]. NatBiotechnol,2000,18(12):1257-1261.
    [89] Kothekar V, Raha K, Prasad H K. Molecular dynamics simulation of interaction ofhistone-like protein of mycobacterium tuberculosis (hlpmt) and histone of clostridiumpasteurianum (dbhclopa) with35based paired gc rich u-bend DNA [J]. J Biomol Struct Dyn,1998,16(2):223-235.
    [90] Zou H, Liu J, Blasie J K. Mechanism of interaction between the general anesthetic halothaneand a model ion channel protein, iii: Molecular dynamics simulation incorporating acyanophenylalanine spectroscopic probe [J]. Biophys J,2009,96(10):4188-4199.
    [91] Wang Q, Gao J, Liu Y, et al. Molecular dynamics simulation of the interaction betweenprotein tyrosine phosphatase1b and aryl diketoacid derivatives [J]. J Mol Graph Model,2012,38:186-193.
    [92] Swegat W, Schlitter J, Kruger P, et al. Md simulation of protein-ligand interaction:Formation and dissociation of an insulin-phenol complex [J]. Biophys J,2003,84(3):1493-1506.
    [93] Daura X, Oliva B, Querol E, et al. On the sensitivity of md trajectories to changes inwater-protein interaction parameters: The potato carboxypeptidase inhibitor in water as a testcase for the gromos force field [J]. Proteins,1996,25(1):89-103.
    [94] Harano Y, Kinoshita M. Large gain in translational entropy of water is a major driving forcein protein folding [J]. Chemical Physics Letters,2004,399(4-6):342-348.
    [95] Snir Y, Kamien R D. Entropically driven helix formation [J]. Science,2005,307(5712):1067-1067.
    [96] Karplus M, Ichiye T, Pettitt B M. Configurational entropy of native proteins [J]. BiophysicalJournal,1987,52(6):1083-1085.
    [97] Lee K H, Xie D, Freire E, et al. Estimation of changes in side chain configurational entropyin binding and folding: General methods and application to helix formation [J]. Proteins,1994,20(1):68-84.
    [98] Trbovic N, Cho J H, Abel R, et al. Protein side-chain dynamics and residual conformationalentropy [J]. J Am Chem Soc,2009,131(2):615-622.
    [99] Sciretti D, Bruscolini P, Pelizzola A, et al. Computational protein design with side-chainconformational entropy [J]. Proteins-Structure Function and Bioinformatics,2009,74(1):176-191.
    [100] Sciretti D, Bruscolini P, Pelizzola A, et al. Protein design at room temperature: The role ofside-chain conformational entropy [J]. Large Scale Simulations of Complex Systems,Condensed Matter and Fusion Plasma,2008,1071:82-97.
    [101] Zhang J F, Liu J S. On side-chain conformational entropy of proteins [J]. PLoS Comput Biol,2006,2(12):1586-1591.
    [102] Frederick K K, Kranz J K, Wand A J. Characterization of the backbone and side chaindynamics of the cam-camkip complex reveals microscopic contributions to proteinconformational entropy [J]. Biochemistry,2006,45(32):9841-9848.
    [103] Hu X Z, Kuhlman B. Protein design simulations suggest that side-chain conformationalentropy is not a strong determinant of amino acid environmental preferences [J].Proteins-Structure Function and Bioinformatics,2006,62(3):739-748.
    [104] Liu W, Crocker E, Siminovitch D J, et al. Role of side-chain conformational entropy intransmembrane helix dimerization of glycophorin a.[J]. Biophysical Journal,2003,84(2):162a-162a.
    [105] Liu W, Crocker E, Siminovitch D J, et al. Role of side-chain conformational entropy intransmembrane helix dimerization of glycophorin a [J]. Biophysical Journal,2003,84(2):1263-1271.
    [106] Cole C, Warwicker J. Side-chain conformational entropy at protein-protein interfaces [J].Protein Science,2002,11(12):2860-2870.
    [107] Creamer T P. Side-chain conformational entropy in protein unfolded states [J].Proteins-Structure Function and Genetics,2000,40(3):443-450.
    [108] Grunberg R, Nilges M, Leckner J. Flexibility and conformational entropy in protein-proteinbinding [J]. Structure,2006,14(4):683-693.
    [109] Tzeng S R, Kalodimos C G. Protein activity regulation by conformational entropy [J]. Nature,2012,488(7410):236-240.
    [110] Demers J P, Mittermaier A. Binding mechanism of an sh3domain studied by nmr and itc [J].J Am Chem Soc,2009,131(12):4355-4367.
    [111] Wand A J. The dark energy of proteins comes to light: Conformational entropy and its role inprotein function revealed by nmr relaxation [J]. Curr Opin Struct Biol,2013,23(1):75-81.
    [112] Hyberts S G, Takeuchi K, Wagner G. Poisson-gap sampling and forward maximum entropyreconstruction for enhancing the resolution and sensitivity of protein nmr data [J]. J AmChem Soc,2010,132(7):2145-2147.
    [113] Homans S W. Probing the binding entropy of ligand-protein interactions by nmr [J].Chembiochem,2005,6(9):1585-1591.
    [114] Shimba N, Stern A S, Craik C S, et al. Elimination of13calpha splitting in protein nmrspectra by deconvolution with maximum entropy reconstruction [J]. J Am Chem Soc,2003,125(9):2382-2383.
    [115] Schuler B, Kremer W, Kalbitzer H R, et al. Role of entropy in protein thermostability:Folding kinetics of a hyperthermophilic cold shock protein at high temperatures using19fnmr [J]. Biochemistry,2002,41(39):11670-11680.
    [116] Stone M J. Nmr relaxation studies of the role of conformational entropy in protein stabilityand ligand binding [J]. Acc Chem Res,2001,34(5):379-388.
    [117] Stone M J, Gupta S, Snyder N, et al. Comparison of protein backbone entropy and beta-sheetstability: Nmr-derived dynamics of protein g b1domain mutants [J]. J Am Chem Soc,2001,123(1):185-186.
    [118] Yang D, Mok Y K, Forman-Kay J D, et al. Contributions to protein entropy and heat capacityfrom bond vector motions measured by nmr spin relaxation [J]. J Mol Biol,1997,272(5):790-804.
    [119] Yoshida T, Tanaka M, Mori Y, et al. Negative entropy of halothane binding to protein:19f-nmr with a novel cell [J]. Biochim Biophys Acta,1997,1334(2-3):117-122.
    [120] Yang D, Kay L E. Contributions to conformational entropy arising from bond vectorfluctuations measured from nmr-derived order parameters: Application to protein folding [J].J Mol Biol,1996,263(2):369-382.
    [121] Smith J C, Merzel F, Verma C S, et al. Protein hydration water: Structure andthermodynamics.[J]. Journal of Molecular Liquids,2002,101(1-3):27-33.
    [122] Peyrard M. Hydration water, charge transport and protein dynamics [J]. Journal of BiologicalPhysics,2001,27(2-3):217-228.
    [123] Robinson G W, Cho C H. Role of hydration water in protein unfolding [J]. BiophysicalJournal,1999,77(6):3311-3318.
    [124] Agarwal P K. Role of protein dynamics in reaction rate enhancement by enzymes [J]. J AmChem Soc,2005,127(43):15248-15256.
    [125] Frauenfelder H, Sligar S G, Wolynes P G. The energy landscapes and motions of proteins [J].Science,1991,254(5038):1598-1603.
    [126] Chang C W, He T F, Guo L, et al. Mapping solvation dynamics at the function site offlavodoxin in three redox states [J]. J Am Chem Soc,2010,132(36):12741-12747.
    [127] Jha A, Ishii K, Udgaonkar J B, et al. Exploration of the correlation between solvationdynamics and internal dynamics of a protein [J]. Biochemistry,2011,50(3):397-408.
    [128] Kwon O H, Yoo T H, Othon C M, et al. Hydration dynamics at fluorinated protein surfaces[J]. Proc Natl Acad Sci U S A,2010,107(40):17101-17106.
    [129] Zhang L, Yang Y, Kao Y T, et al. Protein hydration dynamics and molecular mechanism ofcoupled water-protein fluctuations [J]. J Am Chem Soc,2009,131(30):10677-10691.
    [130] Zhang L, Wang L, Kao Y T, et al. Mapping hydration dynamics around a protein surface [J].Proc Natl Acad Sci U S A,2007,104(47):18461-18466.
    [131] Mattos C. Protein-water interactions in a dynamic world [J]. Trends Biochem Sci,2002,27(4):203-208.
    [132] Ansari A, Jones C M, Henry E R, et al. The role of solvent viscosity in the dynamics ofprotein conformational changes [J]. Science,1992,256(5065):1796-1798.
    [133] Vitkup D, Ringe D, Petsko G A, et al. Solvent mobility and the protein 'glass' transition [J].Nat Struct Biol,2000,7(1):34-38.
    [134] Lubchenko V. Competing interactions create functionality through frustration [J]. Proc NatlAcad Sci U S A,2008,105(31):10635-10636.
    [135] Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with namd [J]. J ComputChem,2005,26(16):1781-1802.
    [136] MacKerell A D, Jr. D B, Dunbrack R L. All-atom empirical potential for molecular modelingand dynamics studies of proteins [J]. J. Phys. Chem. B,1998,102:3586-3616.
    [137] L. W, Jorgensen, Jayaraman Chandrasekhar, et al. Comparison of simple potential functionsfor simulating liquid water [J].Journal of Chemical Physics1983,79(2):926.
    [138] RYCKAERT J-P, CICCOTTI G, BERENDSEN H J C. Numerical integration of the cartesianequations of motion of a system with constraints: Molecular dynamics of n-alkanes [J].JOURNAL OF COMPUTATIONAL. PHYSICS,1976,23:321-341.
    [139] Caves L S, Evanseck J D, Karplus M. Locally accessible conformations of proteins: Multiplemolecular dynamics simulations of crambin [J]. Protein Sci,1998,7(3):649-666.
    [140] Woody R W, Roberts G C, Clark D C, et al.1h nmr evidence for flexibility inmicrotubule-associated proteins and microtubule protein oligomers [J]. Febs Letters,1982,141(2):181-184.
    [141] Nagayama K. Two-dimensional nmr spectroscopy: An application to the study of flexibilityof protein molecules [J]. Adv Biophys,1981,14:139-204.
    [142] Schmitt S, Kuhn D, Klebe G. A new method to detect related function among proteinsindependent of sequence and fold homology [J]. Journal of Molecular Biology,2002,323(2):387-406.
    [143] Ofran Y, Rost B. Analysing six types of protein-protein interfaces [J]. Journal of MolecularBiology,2003,325(2):377-387.
    [144] Fernandez A, Scheraga H A. Insufficiently dehydrated hydrogen bonds as determinants ofprotein interactions [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2003,100(1):113-118.
    [145] Peters K P, Fauck J, Frommel C. The automatic search for ligand binding sites in proteins ofknown three-dimensional structure using only geometric criteria [J]. Journal of MolecularBiology,1996,256(1):201-213.
    [146] Massova I, Kollman P A. Computational alanine scanning to probe protein-proteininteractions: A novel approach to evaluate binding free energies [J]. Journal of the AmericanChemical Society,1999,121(36):8133-8143.
    [147] Hu Z J, Ma B Y, Wolfson H, et al. Conservation of polar residues as hot spots at proteininterfaces [J]. Proteins-Structure Function and Genetics,2000,39(4):331-342.
    [148] Fogolari F, Corazza A, Viglino P, et al. Fast structure similarity searches among proteinmodels: Efficient clustering of protein fragments [J]. Algorithms Mol Biol,2012,7(1):16.
    [149] Li D W, Khanlarzadeh M, Wang J, et al. Evaluation of configurational entropy methods frompeptide folding-unfolding simulation [J]. J Phys Chem B,2007,111(49):13807-13813.
    [150] Li D W, Bruschweiler R. In silico relationship between configurational entropy and softdegrees of freedom in proteins and peptides [J]. Phys Rev Lett,2009,102(11):118108.
    [151] Gilson M K, Zhou H X. Calculation of protein-ligand binding affinities [J]. Annu RevBiophys Biomol Struct,2007,36:21-42.
    [152] Itoh K, Sasai M. Entropic mechanism of large fluctuation in allosteric transition [J]. ProcNatl Acad Sci U S A,2010,107(17):7775-7780.
    [153] Marlow M S, Dogan J, Frederick K K, et al. The role of conformational entropy in molecularrecognition by calmodulin [J]. Nat Chem Biol,2010,6(5):352-358.
    [154] Karplus M, Kushickt J N. Method for estimating the configurational entropy ofmacromoleculest [J]. Macromolecules,1981,14.
    [155] Chang C E, Chen W, Gilson M K. Evaluating the accuracy of the quasiharmonicapproximation [J]. Journal of Chemical Theory and Computation,2005,1(5):1017-1028.
    [156] Schlitter J. Estimation of absolute and relative entropies of macromolecules using thecovariance matrix [J]. Chemical Physics Letters,1993,215(6).
    [157] Schafer H, Mark A E, van Gunsteren W F. Absolute entropies from molecular dynamicssimulation trajectories [J]. Journal of Chemical Physics,2000,113(18):7809-7817.
    [158] Hnizdo V, Darian E, Fedorowicz A, et al. Nearest-neighbor nonparametric method forestimating the configurational entropy of complex molecules [J]. J Comput Chem,2007,28(3):655-668.
    [159] Killian B J, Yundenfreund Kravitz J, Gilson M K. Extraction of configurational entropy frommolecular simulations via an expansion approximation [J]. J Chem Phys,2007,127(2):024107.
    [160] Hnizdo V, Tan J, Killian B J, et al. Efficient calculation of configurational entropy frommolecular simulations by combining the mutual-information expansion and nearest-neighbormethods [J]. J Comput Chem,2008,29(10):1605-1614.
    [161] Frederick K K, Marlow M S, Valentine K G, et al. Conformational entropy in molecularrecognition by proteins [J]. Nature,2007,448(7151):325-U323.
    [162] Deng N J, Zhang P, Cieplak P, et al. Elucidating the energetics of entropically drivenprotein-ligand association: Calculations of absolute binding free energy and entropy [J]. JPhys Chem B,2011,115(41):11902-11910.
    [163] Chang C E A, Chen W, Gilson M K. Ligand configurational entropy and protein binding [J].Proc Natl Acad Sci U S A,2007,104(5):1534-1539.
    [164] Eftink M R, Anusiem A C, Biltonen R L. Enthalpy-entropy compensation and heat capacitychanges for protein-ligand interactions: General thermodynamic models and data for thebinding of nucleotides to ribonuclease a [J]. Biochemistry,1983,22(16):3884-3896.
    [165] Fenley A T, Muddana H S, Gilson M K. Entropy-enthalpy transduction caused byconformational shifts can obscure the forces driving protein-ligand binding [J]. Proc NatlAcad Sci U S A,2012,109(49):20006-20011.
    [166] Tidor B, Karplus M. The contribution of vibrational entropy to molecular association. Thedimerization of insulin [J]. J Mol Biol,1994,238(3):405-414.
    [167] Vinals J, Kolinski A, Skolnick J. Numerical study of the entropy loss of dimerization and thefolding thermodynamics of the gcn4leucine zipper [J]. Biophysical Journal,2002,83(5):2801-2811.
    [168] Gohlke H, Case D A. Converging free energy estimates: Mm-pb(gb)sa studies on theprotein-protein complex ras-raf [J]. J Comput Chem,2004,25(2):238-250.
    [169] Hsu S T, Peter C, van Gunsteren W F, et al. Entropy calculation of hiv-1env gp120, itsreceptor cd4, and their complex: An analysis of configurational entropy changes uponcomplexation [J]. Biophysical Journal,2005,88(1):15-24.