用户名: 密码: 验证码:
川西亚高山冷杉林下土壤的形成过程与特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国西部亚高山针叶林是低纬度高海拔地区亚高山森林植被的重要组成部分,具有涵养水源、保育物种等重要生态功能,多样化的植被、土壤组合也为森林土壤学研究提供了天然的实验室。川西亚高山冷杉林因所处生境自然气候条件(相当于寒温带气候)和暗针叶林建群种特性形成了低温、高湿、季节性冻融等有别于同纬度地带针叶林的林下环境。其林下土壤的形成和发育也具有下自身的特殊性。曾经一度,土壤学家为低纬度高海拔、高纬度低海拔地区亚高山针叶林下土壤类型的归属争论不休。随着研究手段、研究焦点的不断提高和转变,诸如成土过程与特征等基础研究逐渐被忽略,这不利于森林土壤学的长期发展,更不能有效指导森林的经营与管理。因此,本文以川西亚高山冷杉林下土壤为研究对象,采用森林土壤定位研究法,重点研究了土壤诊断特征、土壤水热动态,土壤溶液及固相土壤元素移动、土壤氧化还原体系等土壤形成过程与发育特征。研究结果表明,
     (1)定为研究点的土壤按美国土壤系统制应归入始成土纲(Soil Survey Staff,1996),按中国土壤分类系统,以归入淋溶土纲漂灰土类为宜。
     定位研究点土壤属于A-E-B-C型发育土壤,有明显的有机层、淋溶层、淀积层和母质层。诊断表层淋溶层(A2)颜色为湿态下灰(Gleyl5/N)、干态下浅灰(2.5Y7/1)已经达漂白物质的颜色标准(彩度<2,a湿态亮度>3与干态亮度>6,或b湿态亮度>4与干态亮度>5),这说明层次可判定为漂白层。相比较,淀积层(B2)土壤颜色分别为湿态下红(10R4/8)、干态下黄(-深)棕色10YR5/6(-7.5YR5/6)。土壤质量含水量、田间持水量、最大吸湿水、孔隙度均随土壤深度加深而减小,而土壤容重、石砾含量等随着土壤深度加深而增大。土壤通气度和土壤烧失量有其特殊的变化规律,即在漂白层土壤通气度和烧失量显著低于其它土层。土壤中矿物以原生矿物石英、长石族矿物为主,没有检测到粘土矿物的存在。土体中发生的主要化学过程是从表层A1开始的,有机质含量、腐殖质含量、矿质元素含量大多数以该层次最高。在剖面层次上,腐殖质多以酸性、活性强的富里酸为主。土壤剖面物质的淋移和淀积分析结果表明,硅在表层含量较低,但在漂白层表现出富集趋势。定位研究点虽有腐殖质络合淋溶形成的灰化淀积层,但色调、明度、彩度以及活性铁铝含量均不满足真正灰壤的灰化淀积层标准。
     (2)定位研究点的土壤温度、水分、能量表现出显著的干湿季节变化。在旱季(11月和2月)时,11月时漂白层和淀积层土壤含水量很接近,而在2月表现出B2层土壤质量含水量显著低于A2层。而随着雨季到来以及上层漂白层先于淀积层逐渐解冻,A2层冻结的土壤固态水融化下移至B2层冻结,表现为B2层土壤质量含水量平稳显著升高,A2层土壤含水量降低并出现波动。但就总量而言,A2层土壤中的水分含量在各个季节均高于B2层土,两个层次的土壤水分含量最高值均出现在雨季(8月),最小值分别出现在旱季11月和2月。与水分耦合的温度在未降至土壤水冻结冰点时表现出先下降后上升再下降的昼夜变化规律,淀积层土壤温度昼夜变化幅度较小。
     一年之中,土壤温度变化经历两个阶段,一是淀积层高于漂白层(B2>A2,9月22号-笠年4月6号),持续约7个月,第二个阶段则是漂白层高于淀积层(B2     (3)铁、铝、锰等成土标型元素在漂灰土最大淋溶层(漂白层)和最大淀积层间的存在形态和含量具有显著的干湿季节变化规律。在雨季(8月和5月),可溶态铁中的亚铁离子含量显著高于三价铁离子,而在旱季(11月和2月)三价铁离子含量则显著升高,在可溶态铁中所占比重增大。但季节性的雨季和旱季变化未影响土体中漂白层和淀积层可溶态铁和碳酸盐结合态铁含量分配,即漂白层可溶态铁和碳酸盐结合态铁含量显著低于下层淀积层含量,这在雨季表现得更为强烈;腐殖质态和铁锰结合态未随季节变化而变化,而且含量仍以淀积层较高。成土标型元素的分布与移动,表明土体中进行着两种主要的化学过程,一是铁、锰还原性淋溶即漂洗过程;二是铁、铝与酸性腐殖质(以富里酸为主)及其他多酚类有机物进行螯合淋溶。尽管定位研究点的土壤中漂白层中也有游离铝的存在,但游离铁更容易与酸性腐殖质螯合淋溶,在淀积层被氧化固定。游离铝则更多的参与土壤中发生的交换作用。因此,土体中发生的螯合淋溶则主要是铁在主导。
     (4)定位研究点漂灰土氧化还原体系中起主要作用的是有机还原性物质中的甲酸等低分子有机酸,以及具有变价态的铁。漂灰土的形成过程中,低分子有机酸和铁的价态变化、移动是主要的氧化还原反应体系和过程,并强烈的影响着漂灰土漂白层和淀积层形态和化学特征的形成。川西亚高山冷杉林凋落物以凋落物叶为主(占总凋落物的89.45%)。凋落叶的主要归还期集中在9-11月,分别在全年凋落叶总量和凋落物总量的60.32%、48.52%。凋落物提取液中含有多种低分子有机酸,以甲酸等单羧酸低分子有机酸含量较高,并主导着土壤溶液中低分子有机酸含量的种类和数量。同一季节中A2层土壤氧化还原电位均低于B2层土壤。在比较不同pH值下的Eh时,建议将Eh和pH值并列表示的方法较为适宜。铁在不同土层的分布状况与土壤氧化还原电位的变化密切相关。A2层土壤在旱季和雨季大多处于还原状态,矿质元素铁呈现高价态的较少,绝大多数呈低价还原状态,溶解度较高,并以不同形态向下层土壤移动;当不同形态的低价铁下移到B2层土壤,B2层土壤虽与大气接触的机会比A2层土壤少,但氧化还原电位较A2层高,土壤基本上处于氧化状态,这时呈还原状态的低价铁被氧化成固态的氧化物或氢氧化物(如Fe203或Fe(OH)3)淀积于B2层土壤中,形成一个铁、铝、锰共同淀积的红色或棕色淀积层。同时,在土体上部矿物中的铝硅酸盐经有机质产生的有机酸在厌氧条件下被还原蚀变分解后留下Si02,形成一个Si02相对富集的灰白色淋溶层,即漂白层。值得注意的是,漂白层的颜色除Si02相对富集外,A2层土壤因大多处于还原状态,一部分高价铁被还原成低价铁即Fe2+化合物,Fe2+通常情况下呈现浅绿色,所以从定位研究点挖掘出的土壤剖面中发现A2层土壤的颜色除了灰白色,还夹杂着少量的青灰色。
     (5)最大淋溶层(A2)、最大淀积层(B2)层土壤的铵态氮、速效钾含量在雨季(8月和5月)含量显著高于旱季(11月和2月)的含量,而硝态氮则反之。雨季时,铵态氮、有效磷、速效钾表现为A2层含量显著高于B2层含量,而在旱季时,B2层含量与A2层含量较为接近,或显著高于A2层。土壤有机碳含量在各个季节含量均表现为淋溶层大于淀积层。土壤全氮、全磷含量则表现为B2层高于A2层。钾、钠等矿质全量随土壤水分的季节性变化而发生季节性的变化,雨季时,淋溶层高于淀积层,旱季时,淀积层反而高于淋溶层。钙、镁、铜、锌、镍等矿质全量在淋溶和淀积层的变化不显著。由此可见,漂灰土并没有导致土壤淋溶层严重贫瘠化。
Subalpine fir forest (Abies faxoniana) in western China plays important part in subalpine forest located in high elevation and low latitude area. What's more, subalpine fir forests have principle ecological functions such as water conservation, species conservation and other important ecological functions. Its diverse vegetation and soil association provide a natural laboratory for forest soil science studies. The understory environment of subalpine fir forests, which is low temperature, high humidity, seasonal freezing and thawing, is very different from coniferous forest in the the same latitudes due to its natural climatic conditions (equivalent to cold temperate climate) and the properties of construction species of dark coniferous forest. Therefore, the soil formation and development has its particularity under subalpine fir forest. For a time, soil scientist debated the soil type under coniferous forest at low latitude and high altitude, or at high latitude and low altitude. With the improvement of research methods and the change of research focus, soil basic research, such as soil forming process and the basic characteristics, has been neglected. This phenomenon is not conducive to the rapid development of forest soil science, nor effective in guiding forest management. Thus, in this case, it takes subalpine fir forest soil as the research object using located research methods. And, it has the important theory and the practice significance that focus on the diagnostic soil characteristics, soil water and heat dynamics, the mobile of soil elements in soil solution and solid phase, soil redox system process and other soil formation and development characteristics. The results indicate that,
     (1) The soil in located research position is A-E-B-C soils the means this soil has obvious organic layer, leached layer, deposition layer and the matrix layer. Notably, the wet color of the surface leaching layer A2is ash (Gleyl5/N), while dry color is powder (2.5Y7/1). The color in two status have reached the bleaching material color standard (chroma<2, wet brightness>3and dry brightness>6, or wet brightness>4and dry brightness>5). That is to say, the horizon can be set as bleached layer that we often say. In comparison, the wet color of deposited layer B2is red (10R4/8), while dry color is yellow brown10YR (-)5/6(-7.5YR5/). Soil quality water content, field capacity, maximum moisture, porosity all decrease with soil depth increases, and the soil bulk density, gravel content increase with soil depth increases. Soil aerates and soil loss has its special variation, which is soil aeration and the degree of loss in the bleached layer was significantly lower than that of other soil. Soil minerals in located research position are primary minerals e.g. quartz, feldspar minerals, failed to detect any number of clay minerals. Soil chemical process mainly started from surface soil (A1), because organic matter content, humus content, mineral element content in the horizon is always higher than other soil horizon in soil pedon. In the vertical profile, fulvic acids, with strong acid and activity, accounted for absolute advantage in humus compsiton. Silicon content is very low in the surface layer, but showed enrichment tendency in bleached layer (A2). Eluviation and deposition of soil profile substance analysis results showed that the silicon in the surface content is lower, but silicon showed enrichment trend in the bleaching layer. Although the soil in localization points has ashing deposition layer formed by humus complexometric leaching, chroma, lightness, saturation, and the content of activity Fe-Al do not satisfy the ashing deposition layer standard of real podzols on in Soil Taxonomy. Therefore, we classified such soil initially as bleached gray soil belonged to the Alfisols.
     (2) The interaction among soil temperature, moisture and energy cause the seasonal variation of soil water status. In the dry season (November and February), soil moisture of bleaching layer and deposited layer is very close during the November, and it showed soil water content of B2layer was lower than that of A2layer in February. In the rainy season, the soil water content of the B2layer significantly increased steadily due to soil solid water of A2layer of frozen melts and move down to B2layer, meanwhile soil quality water content of A2layer reduced and fluctuation. To the total soil quality water content, soil quality water content of A2layer were higher than those in B2layer of soil in each season. The highest soil quality water content of two soil horizon (i.e. A2and B2) occurs in the rainy season (August), minimum value appeared in the dry season (November and February). To soil temperature, A2horizon was demonstrated diurnal variation law that is first decreased then increased and decreased before soil water temperature reduce to freezing point, diurnal variation of soil temperature in deposition layer has smaller amplitude. In one year, soil temperature changes experienced two stages, one is the deposition layer is higher than that of bleached layers (B2>A2,22nd September-in the year April6th), lasting about7months. The second stage is bleached layer is higher than that of the deposition layer (B2     (3) The existence form and content of iron, aluminium, manganese in maximum leached layer (bleached layer) and maximum deposition layer of bleached podzolic soil has obvious seasonal dry-rewet variation. During the rainy season (August and May), ferrous ions were significantly higher than ferric ion in soluble iron, and during the dry season (November and February), ferric ion content was significantly increased. But the seasonal monsoon and dry season changes did not affect the distribution of soluble iron and carbonate bound iron content between bleaching horizon and deposited horizon, i.e. soluble iron and carbonate bound iron content of the bleached layer was significantly lower than that of the deposited layer. This phenomenon is more intense in the rainy season; By contrast, humic qualitative state and iron with manganese state did not vary from season to season, but the content of deposition horizon is higher than that of leaching horizon. The distribution and mobile of typomophic element of soil (i.e. different forms of iron, aluminum, manganese) results indicates that there are two major chemical processes occurred in soil. One is the rinsing process, which iron, manganese was reduced and then leaching to the different soil layers; And the other is organic chelating leaching, which iron, aluminum leached wiht acid humus (mainly to fulvic acid) and other polyphenols. Although there are free aluminum in bleached layer also, free iron is more easily leaching wih humus acid chelate, and oxidized fixed in deposition layer. Free aluminum in soil more occurred in the exchange interaction. Therefore, soil chelate leaching is mainly dominanted by iron.
     (4) Litter leaf, about89.45%of total litter amount, is main litter in subalpine fir forest. The period of litter main return is concentrated in the9-11month, in the leaf litter and total litter amount60.32%,48.52%, respectively. Litter extract contains a variety of low molecular weight organic acid. Carboxylic acid such as formic acid was higher, and leading the type and content of low molecular weight organic acids in soil solution. In the same season, soil redox potentials in the A2layer were lower than those of B2layer. The formic acid and other low molecular weight organic acids, as well as having valence state of iron played a major role in soil redox system. Thus, in soil forming process of bleached podzolic, the mobile of low molecular weight organic acids and iron is the major redox reaction system and process, and strongly influences morphology and chemical characteristics formation of the leaching layer and depositing layer. The results of comparison different pH values of Eh indicated that Eh and pH values are suggested to be the most suitable method that coordinates representation. Microcosm control experiments show the linear regression relationship between soil redox potential and pH value, which can only be used as a reference value and has important significance when the field monitoring difficult or indoor assay is not reaction field real field case. The distribution of iron in different soil layer is closely related with soil redox potential changes. Soil of leaching layer is mostly in the restoring state in the dry and rainy seasons, due to high water content and anaerobic decomposition of organic matter. The oxidation reduction potential is relative low. Higher valence Fe is less; the vast majority is low redox state which has high solubility. Thus, Fe is easy to dissolve in organic acids produced by anaerobic decomposition of microorganism in surface soil, and move to subsoil in different forms. Different forms of low iron is oxidized into solid oxide or hydroxide (such as Fe2O3or Fe (OH)3) and then deposited in B2. The reason is that B2soil layer is in contact with the atmosphere than the opportunity for the soil of A2layer is less, the redox potential is high than A2, low valence iron is oxidized easily.These subsidence form a red or brown deposition layer including iron, aluminium, manganese common deposition. At the same time, aluminum silicate mineral was decomposed by organic acids, and then SiO2was ledved that forming a pale leached layer that SiO2relative enrichment. Notably, the color of bleached layer show a small amount of grey because soil of A2layer was mostly in the reduction state, a portion of the high iron is reduced to low iron Fe+compound, Fe2+usually pale green the leaching.
     (5) soil ammonium nitrogen, available potassium content of maximum leached layer (A2) and maximum deposition layer (B2) layer in the rainy season (August and May) was significant higher than that in the dry season (November and February), nitrate nitrogen is vice versa. During the rainy season, ammonia nitrogen, phosphorus, potassium in performance for the A2layer was significantly higher than that in B2layer, but in the dry season, their content of B2layer and A2layer was close, or the content of B2was significantly higher than that of A2layer. The content of soil organic carbon content in leached layer is greater than that in the deposition layer in each season. Soil total nitrogen, total phosphorus content in B2layer is higher than that of A2layer. Potassium, sodium and other mineral total amount change with the seasonal variation. During the rainy season, the leached layer above the deposition layer, while in dry season, deposited layer higher than the leached layer. Calcium, magnesium, copper, zinc, nickel and other mineral elements content did not change significantly in leaching and deposition horizon. In the process of soil organic matter moves down from the organic layer, bleached layers appeared transient accumulation due to anaerobic microbial activity and slower mineralization. Comprehensive analysis, bleached podzolic soil did not appear on serious impoverishment caused by ashing or rinsing. Ammonia nitrogen, nitrate nitrogen, available phosphorus available nutrients only changed with the seasonal variation of soil moisture. The results of soil nutrients in soil solution concentration have the same regular with above-metioned.
引文
Andriesse JP.1970. The development of the podzol morphology in the tropical lowlands of Sarawak (Malaysia)[J]. Geoderma,3 (4),261-279.
    Alderton DHM, Pearce JA, Potts PJ.1980. Rare earth element mobility during granite alteration: evidence from southeast England [J]. Earth and Planetary Science Letters,49(1),149-165.
    Auther N S.1962. Physical Geography [M]. John Wiley&Sons, Inc.
    Babcock KL, Overstreet.1957. The extrathermodynamics of soil moisture [J]. Soil Science,83, 455-464.
    Baldocchi DD, Xu LK, Kiang N.2004. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland [J]. Agricultural and Forest Meteorology,123(1-2),13-39.
    Baldwin M, Kellogg CE.1938. Throp J. Soil Classification [M]. Washington DC,979-1001.
    Balisky AC, Burton PJ.1995. Root-zone soil temperature variation associated with microsite characteristics in high-elevation forest openings in the interior of British Columbia [J]. Agriculture and Forest Meteorology,77,31-54.
    Barron V, Torrent J.1986.Use of the kubelka-munk theory to study the influence of iron oxides on soil color [J]. Journal of Soil Science,37(4),499-510.
    Beyer L.1996. Soil organic matter composition of spodic horizons in Podzols of the Northwest German Lower Plain[J]. Science of the Total Environment,181(2),167-180.
    Blake RE, Walter LM.1999. Kinetics of feldspar and quartz dissolution at 70-80 and near-neutral pH: Effects of organic acids and NaCl [J]. Geochimica et Cosmochimica Acta,63,2042-2059.
    Blarney FPC, Edwars DG, Asher CJ.1983. Effects of aluminum, OH:Al and P:Al molar ratios, and ionic strength on soybean root elongation in solution culture [J]. Soil Science,136,197-207.
    Bloomfield BC.1955. Leaf leachates as a factor in pedogenesis [J]. Journal of the Science of Food and Agriculture,6(11),641-651.
    Bockheim J G., Gennadiyev A N.2000. The role of soil-forming processes in definition of taxa in soil taxonomy and the world soil reference base [J]. Geoderma,95(1-2),53-72.
    Bockheim J G, Gennadiyev A N.2009. The value of controlled experiments in studying soil-forming processes:A review[J]. Geoderma,95(1-2):53-72.
    Borchert R.1990. Calcium as developmental signal in the formation of Calcium oxalate crystal spacing patterns during leaf development in Caryaovata [J]. Planta,182 (3),339-347.
    Brewer R.1964. Fabric and Mineral Analysis of Soils [D].Hoboken, USA, John Wiley & Sons.
    Bronick CJ, Lal R.2005. Soil structure and management:a review[J]. Geoderma,124(1-2),3-22.
    Brown LA.1934. Oxidation reduction potentials in soils:I Principles and electrometric determination [J].Soil Science,37:65-75.
    Buurman P, Schellekens J, Fritze H, Nierop KGJ.2007. Selective depletion of organic matter in mottled podzol horizons[J]. Soil Biology and Biochemistry,39(2),607-621.
    Byers HG, Kellogg CE, Anderson MS, Thorp J.1938. Formation of Soil[M]. Washington DC.948-978.
    Camusso M, Balestrini R, Binell A.2001. Use of zebra mussel (Dreissena polymorpha) to assess trace metal contamination in the largest Italian subalpine lakes [J]. Chemosphere,44(2),263-270
    Cary JW, Papendick RI, Campbell GS.1979. Water and salt movement in unsaturated frozen soil: Principle and field observation[J]. Soil Science Society of American Journal,43,3-7
    Carter BJ, Ciolkosz EJ.1991. Slope gradient and aspect effects on soil developed from sandstone in Pennsylvania[J]. Geoderma,49,199-213.
    Chang, JH, Campbell R.B., Brodie H.W., Baver L.D.1965. Evapotranspiration research at the HSPA experiment station [M], Proc.12th Cong. Int. Soc. Sugarcane Technologists,10-24
    Chaton P F, Ravanel P, Tissut M, Meyran, J C.2002. Toxicity and bioaccumulation of fipronil in the nontarget arthropodan fauna associated with subalpine mosquito breeding sites [J]. Ecotoxicology and Environmental Safety,52(1),8-12
    Chirstopher T, Gilbert P C.1998. A practical guide to wavelet Analysis [J]. Bulletin of the American Meteorological Society,79(1),61-78.
    Kozak JA, Aiken RM, Flerchinger GN, Nielsen DC.2007. Comparison of modeling approaches to quantify residue architecture effects on soil temperature and water[J]. Soil and Tillage Research, 95(1-2),84-96.
    Corey AT, Klute A.1985. Application of the potential concept of soil water equilibrium and transport [J]. Soil Science Society of America Journal,49(1),3-11.
    Craswell ET, Lefroy RDB.2001. The role and function of organic matter in tropical soils [J]. Nutrient cycling in agroecosyslems,61,7-18.
    Dang H S, Jiang M X, Zhang Q F, Zhang Y J.2007. Growth Responses of Subalpine Fir (Abies fargesii) to Climate Variability in the Qinling Mountain, China[J]. Forest Ecology and Management,240, 143-150.
    Deardorff JW.1978. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation [J]. Journal of Geophysical Research,83(4),1889-1903.
    Diels L.1914. Die algen-Vegetation der sudtiroler dolomitriffe [J]. Botany der Deutschen Botanischen Gesellschaft,32,502-526.
    Ding CP, Liu ZG, Yu TR.1984. Oxidation-reduction regimes in some Oxisoils of tropical China [J]. Geoderma,32,287-295.
    Dirks B.1940. Das redoxsystem des Bodens, ein neuer Wachstumsfaktor von ausschlaggebender Bedeutung und zwei weitere Wachstumsfaktoren des Bodens [J]. Bodenk.und Pflanzenernahr,21, 684-697.
    Dobrovolskii GV, Nikitin ED, Karpachevskii LO.2001. New approaches to the concept of soil place in biosphere [J]. Eurasian Soil Science,34(1), S1-S5.
    Douglass D C, Bockheim J G.2006. Soil-forming rates and processes on Quaternary moraines near Lago Buenos Aires, Argentina[J]. Quaternary Research,65(2),293-307
    Drever Jl, Stillings LL.1997. The role of organic acids in mineral weathering [J]. Colloids and surfaces A:Physicochemical and Engineering Aspects,120,167-181.
    Driscoll C.T., Breemen V.N., Mulder, J.,1984. Aluminum chemistry in a forested Spodosol[J]. Soil Science Society of American Journal,49(2),437-444.
    Duiker SW, Rhoton FE, Torrent J, Smeck NE, Lal R.2003.Iron (hydr)oxide crystallinity effects on soil aggregation[J]. Soil Science Society of American Journal,67,606-611.
    Egli M, Fitze P, Mirabella A.2001. Weathering and evolution of soils formed on granitic, glacial deposits:results from chronosequences of Swiss alpine environments[J]. Catena,45(1),19-47.
    EL-Tayed MA, El-Enany AE, Ahmed NL.2006. Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.) [J]. Plant Growth Regulation,50,191-199.
    Graham E A., Lam Y, Yuen EM.2010. Forest understory soil temperatures and heat flux calculated using a Fourier model and scaled using a digital camera [J]. Agricultural and Forest Meteorology, 150(4),640-649
    Karltun E, Bain DC, Gustafsson JP, Mannerkoski H, Murad E, Wagner U, Fraser AR., McHardy WJ, Starr M.2000. Surface reactivity of poorly-ordered minerals in podzol B horizons[J]. Geoderma, 94(2-4),265-288.
    ISSS, ISR1C, FAO.1994. World Reference Base for Soil Resources [M]. Wageningen/Rome.
    FAO/Unesco.1988. Soil map of world, Revised Legend [M]. Rome.
    Feng R F, Yang W Q, Zhang J, Deng R J, Jian Y, Lin J.2007. Effects of Simulated Elevated Concentration of Atmospheric CO2 and Temperature on Soil Enzyme Activity in the Subalpine Fir Forest [J]. Acta Ecologica Sinica,27(10),4019-4026
    Gao Z, Bian L, Hu Y, Wang L, Fan J.2007. Determination of soil temperature in an arid region [J]. Journal of Arid Environments,71 (2),157-168.
    Gaumont-Guay D, Black TA, McCaughey H, Barr AG, Krishnan P, Jassal RS, Nesic Z.2009. Soil CO2 efflux in contrasting boreal deciduous and coniferous stands and its contribution to the ecosystem carbon balance [J]. Global Change Biology,15,1302-1319.
    Geiger R, Aron RH, Todhunter P.2003. The Climate Near the Ground (6th ed.) [M]. Rowman & Littlefield Publishers, Inc., New York,584.
    Giesler R, LundstrEm U S, Grip H.1996. Comparison of soil solution chemistry assessment using zero-tension lysimeters or centrifugation [J]. European Journal of Soil Science,47,395-405.
    Geiger, R.1965. The climate Near the ground [M]. Cambridge:Hard University Press,18-35.
    Georgievsky V Y, Ezhov A V, Shalygin A L.1996. Evaluation of possible climate change impact on hydrological regime and water resources of the former USSR Rivers [J]. Russian Meteorology & Hydrology,11,89-99.
    Gerasimov P.1975. Elementary pedogenic processes as the basis for genetic diagnostics of soils [J]. Soviet Soil Science,5,3-9.
    Gillies RP, Kustas WP, Humes KS.1997. A vertification of'triangle'method for obtaining surface soil water content and energy fluxes from remote measurements of Normalized Difference Vegetation Index (NDV1) and surface e [J]. International Journal of Remote Sensing,18(15),3145-3166.
    Glinka KD.1914. Die Die Typen der Bodenbildung, irhe Classification und Geographische Verbreitung [M]. Gebruder Borntraeger, Berlin.
    Hagedorn F, Kaiser K, Feyen H, Schleppi P.2000. Effects of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil [J]. Journal of Environmental Quality,29,288-297.
    Hallsworth EG, Crawford DV.1965. Experimental Pedology [M]. Proceedings of the 11th Easter School in Agricultural Science University of Nottingham, UK, Butterworths, London.
    Hamet-Ahti L.1982. Subalpine and subarctic as geobotanical concepts [J]. Kilpisjarvi Notes,7,1-15.
    Ham J M, Kluitenberg G J.1993. Position variation in the soil energy balance beneath a row-crop canopy [J]. Agricultural and Forest Meteorology,63(1-2),73-92.
    Hayden F, Paul LB, David DD.1964. Water movement and loss under frozen soil conditions [J]. Soil Science Society of America Journal,28(5),700-703.
    Hees PAW, Vinogradoff SI, Edwards AC, Godbold DL, Jones DL.2003. Low molecular weight organic acids adsorption in forest soil:effects on soil solution concentration and biodegradation rates [J]. Soil Biology and Biochemistry,35,1015-1026
    Henin S, Betremieux R.1948. Essai de pedologie experimentale, C. R. Hebd [J]. Seances Academic Science,227 (25),1393-1395.
    Hoshmond A R.2006. Design of Experiments for Agriculture and the Natural Sciences (2nd editon) [M]. CRC Press, Boca Raton, FL.
    Houghton, Henry G.1954. On the annual heat balance of the Northern Hemisphere [J]. Journal of Meteorology,11,1-9
    Huggett RJ.1997. Environment Change:The Evolving Ecosphere [M]. Routledge, London.
    Jackson R D.1963. Temperature and soil-water diffusivity relation [J]. Soil Science Socialty American Journal,27,363-366.
    Je Wohlfahrt G, Bahn M, Tappeiner U, Cernusca A.2001. A multi-component, multi-species model of vegetation-atmosphere CO2 and energy exchange for mountain grasslands[J]. Agriculture and Forest meteorology,106(4),261-287.
    Jenny H.1941. Factors of soil formation [M]. Me Graw-Hill Book Company, New York.
    Joffe J S.1936.Pedology. Pedology Publications [M]. New Brunswick, N.J.
    Joseph A. Kozak, Robert M. Aiken, Gerald N. Flerchinger, David C. Nielsen, Liwang Ma and Lajpat Ahuja.2007. Comparison of modeling approaches to quantify residue architecture effects on soil temperature and water [J]. Soil and Tillage Research,95(1-2):84-96
    Karl T R, Groisman P Y, Knight R W, Heim Jr. R R.1993. Recent variations of snow cover and snowfall in North America and their relation to precipitation and temperature variations [J]. Journal of Climate,6,1327-1344.
    Karhu K., Fritze H., Tuomi M., Vanhala P., Spetz P., Kitunen V., Liski J.2010.Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles[J]. Soil Biology and Biochemistry, 42(1),72-82.
    Karunka P D, Daniel FL.1950. Preliminary studies of pH fluctuations in rice soils during the growth of rice plant [J]. Indian Journal of Agriculture Science,20,173-184.
    Kelliher FM, Hollinger DY, Schulze ED, Vygodskaya NN, Byers JN, Hunt JE, McSeveny, Milukova I, Sogatchev, Varlgin A, Ziegler W, Ameth A, Bauer G.1997.Evaporation from an eastern Siberian larch forest[J]. Agriculture and Forest Meteorology,85(3-4),135-147.
    Keryn I. Paul, Philip J. Polglase, Philip J. Smethurst, Anthony M. O'Connell, Clive J. Carlyle, Partap K. Khanna.2004. Soil temperature under forests:a simple model for predicting soil temperature under a range of forest types [J]. Agricultural and Forest Meteorology,121(3-4),167-182.
    Kinzel H.1989. Calcium in the vacuoles and cell walls of plant tissue. Forms of deposition and their physiological and ecological significance [J]. Flora,182,99-125.
    Kline JR.1973. Mathemantical simulation of soil-plant relationships and soil genesis [J]. Soil Science, 115,240-249.
    Korner C, Paulsen J.2004. A world-wide study of high altitude treeline temperatures [J]. Journal of Biogeography,31,713-732.
    Kramer PJ, Knipling EB, Miller LN.1966. Terminology of cell-water relations [J]. Science,153, 889-890.
    Kubiena W L.1938. Micropedology [M]. Collegiate Press, Iowa.
    Joffe J S.1931. Soil profile studies:Ⅲ. the Process of Podzolization [J].Soil Science,32(4),303-324.
    Lal R.1991. Soil structure and sustainability [J]. Journal of Sustainable Agriculture,1,67-92.
    Lamberty B B, Wang C K, Gower S T.2005. Spatiotemporal measurement and modeling of stand-level boreal forest soil temperatures [J]. Agricultural and Forest Meteorology,131,27-40.
    Larsen K S, Jonasson S, Michelsen A.2002. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types [J]. Applied Soil Ecology,21,187-195.
    Levine ER, Ciolkosz EJ.1988. A computer simulation model for soil genesis application [J]. Soil Science Society of America Journal,52(1),209-215.
    Lin JD.1980. On the force-restore method for prediction of ground surface temperature [J]. Journal of Geophysical Research,85 (C6).3251-3254.
    Loreau M, Naeem S, Inchausti P, et al.2001. Biodiversity and ecosystem functioning:current knowledge and future challenges [J]. Science,294,804-808.
    Lovley DR, Phillips EJ.1988. Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applly Environmental Microbiology, 54(6),1472-1480.
    Lovley DR, Phillips EJ.1989. Requirement for a Microbial Consortium To Completely Oxidize Glucose in Fe(Ⅲ)-Reducing Sediments[J]. Applly Environmental Microbiology,55(12), 3234-3236.
    Loveley DR.1991. Dissimilatory Fe (Ⅲ) and Mn(Ⅳ) reduction[)].Microbilogy Review,55(2),259-287.
    Lundstrom US. Van Breeemen N, Bain D.2000.The podzolization process, a review [J]. Geoderma,94, 91-107.
    Lundstrom US.1993.The role of organic acids in soil solution chemistry in a podzolized soil [J]. Journal of soil science,44:121-133.
    MacKenzie LJ, Whiteside EP, Erikson AE.1960. Oxidation-reduction studies on the mechanism of B horizon formation in podazols[J]. Soil Science Society of American Journal,24(4),300-305.
    Marbut CF.1928. A scheme for soil classification [M]. Congress of Soil Science, Washington DC.1-31.
    Marques R, Ranger J, Gelhaye D, Pollier B, Ponette Q, Goedert O.1996. Comparison of chemical composition of soil solutions collected by zerotension plate lysimeters with those from ceramic-cup lysimeters in a forest soil [J]. European Journal of Soil Science,47(3),407-417.
    Mast M A, Wickland R T, Striegl R T, Clow D W.1998. Winter fluxes of CO2 and CH4 from subalpine soils in rocky mountain national park, Colorado [J]. Global Biogeochemical Cycles,12(4), 607-620.
    McColl JG, Pohlman AA.1999. Organic acids and metal solubility in California forest soils [J]. In S.P. Gessel(ed.) Sustained productivity of forest soils. Facultry of Forestry Pulicaiton, Vancouver, BC: 178-195.
    Melville MD, Atkinson G.1985. Soil color:its measurement and its designation in models of uniform color space [J]. Journal of Soil Science,36(4),495-512.
    Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E.2001. Fluxes and concentration of dissolved organic carbon and nitrogen-a synthesis for temperate forests [J]. Biogeochemistry,52(2),173-205.
    Monteith JL.1958. The heat balance of soil beneath crops. Climatology and Microclimatology [J]. Proc. Canberra Symposium, UNESCO,123-128,
    Mori A S, Mizumachi E, Komiyama A.2007. Roles of disturbance and demographic non-equilibrium in species coexistence, inferred from 25-year dynamics of a late-successional old-growth subalpine forest [J]. Forest Ecology and Management,241(1-3),74-83
    Parton WJ, Logan JA.1981. A model for diurnal variation in soil and air temperature [J]. Agriculture Meteorology,23,205-216.
    Pennington R P, Jackson ML.1948. Segregation of the clay minerals of polycomponent soil clays [J]. Soil Science Society American Procedure,12,452-457.
    Philip J.1957.The theory of infilt ration [J]. Soil Science,84,163-366.
    Passerat de Silans AMB, Monteny BA, Lhomme JP.1996. Apparent soil thermal diffusivity, a case study:HAPEX-Sahel experiment [J]. Agricultural and Forest Meteorology,81,201-216.
    Price A.G.1994. Measurement and variability of physical properties and soil water distribution in a forest podzol [)].Journal of Hydrology.161(1-4),347-364.
    Przesmycki Z, Strumillo C.1985. Mathematical modeling of dry process based on moisture transfer mechanism [J]. Drying,85,126-134.
    Qualls RG, Haines BL.1947. Biodegradability of dissolved organic matter in forest through fall, soil solution, and stream water [J]. Soil Science Society of American Journal,56(2),578-586.
    Quispel A.1947. Measurement of the oxidation-reduction potentials of normal and inundated soils [J].Soil Science,63,265-275.
    Raich JW, Tufekciogul A.2000. Vegetation and soil respiration:Correlation and controls [J]. Biogeochemistry,48(1),7]-90.
    Ramdohr P.1962. The opaque minerals in stony meteorites [J]. Journal of Geophysical Research,1963, 68(7),2011-2036.
    Ranger J, Dambrine E, Robert M, Righi D, Felix C.1991. Study of current soil-forming processes using bags of vermiculite and resins placed within soil horizons[J]. Geoderma,48(3-4),335-350.
    Ranst EV, Stoops G, Gallez A, Vandenberghe RE.1997. Properties, some criteria of classification and genesis of upland forest Podzols in Rwanda [J]. Geoderma,76(3-4),263-283.
    Reddy KR, Patrick WH.1975. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in flooded soil [J]. Soil Biology and Biochemistry, 7(2),87-94.
    Risk D, Kellman L, Beltrami H.2002. Carbon dioxide in soil profiles:Production and temperature dependence [J]. Geophysical Research Letters,29,1087-1091.
    Robert M, Delmas AB.1984.Experimental Pedology and Geochemical and Mineralogical Aspects of Soil Evolution [M]. Institute National de la Recherche Agronomique, Versailles, France.
    Rode AA.1947.The soil-forming process and soil Evolution [M].Jerusalem Office of Technique Service. Washington DC.
    Rode AA.1971.System of research methods in soil science [M]. Nauka (in Russian), Novosibrisk.
    Roden EE, Sobolev D, Glazer B, Luther GW.2004. Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface [J]. Geomicrobio,21,379-391.
    Ryabets N, Kirzhner F.2003. Weakening of frozen soils by means of ultra-high frequency energy [J]. Cold Regions Science and Technology,36(1-3),115-128
    Rubio A, Escudero A.2005. Effect of climate and physiography on occurrence and intensity of decarbonation in Mediterranean forest soils of Spain [J]. Geoderma,125(3-4),309-319.
    Rumpel C, Eusterhues K., Kogel-Knabner I.2010. Non-cellulosic neutral sugar contribution to mineral associated organic matter in top-and subsoil horizons of two acid forest soils [J]. Soil Biology and Biochemistry,42(2),379-382.
    Scheu S, Parkinson D.1995. Successional changes in microbial biomass, respiration and nutrient status during litter decomposition in an aspen and pine forest [J]. Biology and Fertility of Soils,19, 327-332.
    Schnitzer M, Khan S U.1972.Humic substance in the environment. New York:Marcel Dekker.
    Schob C, Kammer PM, Choler P, Veit H.2009. Small-scale plant species distribution in snowbeds and its sensitivity to climate change [J]. Plant Ecology,200,91-104.
    Schollenberger C J.1928. Manganese as an active base in the soil [J]. Soil Science,25,357-358.
    Six J, Elliott ET, Paustian K.2000. Soil structure and soil organic matter:II. A normalized stability index and the effect of mineralogy [J]. Soil Science Society of American Journal,64,1042-1049.
    Slatyer RO, Taylor S A.1960. Terminology in plant-and soil-water relations. Nature,187,922-924
    Sokolv VV.1996.Pedogenetic paradoxes of the Russion Plain and micromorphological arguments for their solution[C].Xth International working Meeting on Soil Micomorphology. Moscow. Abstractbook.
    Soil survey staff.1975. Soil Taxonomy [M]. USDA. Handbook, No.436, Washington, DC.
    Soil survey staff.1996. Key to Soil Taxonomy (7th Ed) [M].Blacksburg Virginia.
    Sposito, G.1984. The Surface Chemistry of Soils [M]. New York:Oxford University Press,1-77.
    Srivastava NK, Srivastava AK.2007. Influence of gibberellic acid on 14CO2 metabolism, growth, and production of alkaloids in Catharanthus roseus [J]. Photosynthetica,45(1),156-160.
    Subrahmanyan V.1927. Biochemistry of waterlogged soils:Part Ⅰ.The effect of waterlogging on the different forms of nitrogen, on the reaction,on gaseous relationships and on bacterial flora[J].The Journal of Agriculture Science,17(4),429-448.
    Sun B, Zhou SL, Zhao QG.2003. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China [J]. Geoderma,115(1-2),85-99.
    Swindale LD.1955. Mineralogy and genesis of some rhyolite-derived soils of New Zealand [D]. Unpublished Ph.D. dissertation, University of Wisconsin, Madison.
    Takewaki 1.2005. Bound of earthquake input energy to soil-structure interaction systems [J]. Soil Dynamics and Earthquake Engineering,25(7-10),745-752
    Targulian VO, Sokolov IA.1976. Structural and functional approaches to soil:soil memory and soil moment [J]. Mathematical Modeling in Ecology (in Russian),17-34.
    Tejan-Kellaa MS, Fitzpatricka RW, Chittleborougha DJ.1991. Scanning electron microscope study of zircons and rutiles from a podzol chronosequence at Cooloola, Queensland[J]. Australia Catena, 18(1),11-30.
    Tessier A, Campbell PGC, Bisson M.1979. Sequential Extraction Procedure for the Speciation of Particulate [J]. Analytical Chemistry,51 (7),844-850.
    Tokalio S, Kartal S, Birol G.2003. Application of a three-stage sequential extraction procedure for the determination of extractable mental contents in Highway soils [J]. Turk Journal of Chemistry,27, 333-346.
    Trochim WM, Donnelly JP.2007. The Research Methods Knowledge Base (3rd ed.) [M]. Atomic Dog Publishing, Independence, KY.
    Van der Salm C, Westerveld JW, Verstraten JM.2000. Release rates of Al from inorganic and organic compounds in a sandy podzol, during laboratory experiments [J]. Geoderma,96(3),173-198.
    Volk N J.1939. The effect of oxidation-reduction potential on plant growth [J]. American Society of
    Agronomy,31,665-670.
    Wang C, McKeague JA, Kodama H.1986. Pedogenic imogolite and soil environments:case study of spodosols in Quebec, Canada [J]. Soil Science Society of America Journal,50(3),711-718.
    Warwick P, Hall A, Pashley V, Van der Lee J, Maes A.1999. Zinc and cadmium mobility in podzol soils [J]. Chemosphere.38(10),2357-2368.
    Watteau F, Berthelin J.1994. Microbial dissolution of iron and aluminium from soil minerals:efficiency and specificity of hydroxamate siderophores compared to aliphatic acids [J]. European Journal of Soil Biology,30,1-9
    White J C, Mattina MI, Lee WY, Eitzer BD, Berger WI.2003. Role of organic acids in enhancing the desorption and uptake of weathered p,p'-DDE by Cucurbita pepo [J]. Environmental Pollution,124, 71-80.
    Wright JR, Schnitzer M.1963. Metallo-organic interactions associated with podzolization [J]. Soil Science Society of American Journal,27 (2),171-176.
    Williams RJ, Costin AB.1994. Alpine and subalpine vegetation [A].//Groves R H. Australian Vegetation. Cambridge:Cambridge University Press,467-500.
    Wollny E.1878. Untersuchungen uber den eingluss der exposition auf der erwarmung des bodens. Forsch [J]. Gebiere Agriculture Physical,1,260-294
    Wright JR, Schnitzer M.1963. Metallo-organic interactions associated with podzolization [J]. Soil Science Society of American Journal,27 (2),171-176.
    Xu RK Li CB, Ji GL.2003. Effect of low-molecular-weight organic anions on surface charge of variable charge soils [J]. Journal of Colloid and Interface Science,264,322-326.
    Xu RK Zhao AZ, Ji GL.2004. Effect of low-molecular-weight organic anions on electrokinetic properties of variable charge soils [J]. Journal of Colloid and Interface Science,277,243-247.
    Yaalon DH.1975. Conceptual models in pedogenesis:can soil-forming functions be solved [J].Geogerma,14,189-205.
    Yamanaka T, Yonetani T.1999. Dynamics of the evaporation zone in dry sandy soils [J]. Journal of Hydrology,217(1-2),135-148.
    Yang WQ, Wang KY, Kellomfiki S, Zhang J.2006. Annual and Monthly Variations in Litter Macronutrients of Three Subalpine Forests in Western China [J]. Pedosphere,18(6),788-798.
    Yusuke D, Akira S M, Hiroshi T.2008. Conifer Establishment and root architectural responses to forest floor heterogeneity in an old-Growth subalpine forest in Central Japan [J]. Forest Ecology and Management,255,1472-1478
    Zeng DC, Lian GP.1989. A computer simulation of water heat salt movement in frozen soils [C]. Proc11th Congress on Agriculture engineering, Dublin, U, K,4-8.
    Zheng D, Hunt Jr E.R, Running SW.1993. A daily soil temperature model based on air temperature and precipitation for continental applications [J]. Climate Research,2,183-191.
    B.P.威廉斯著:傅子祯译.1957.土壤学:农作学及土壤学原理[M].北京:高等教育出版社.
    E.H.帕尔芬诺娃,E.A.亚里洛娃著作,曹升庚译.1987.土壤微形态研究指南[M].北京:农业出版社,1-5,106-196
    LD贝弗尔等著(周传槐译).1983.土壤物理学[M].北京:农业出版社.
    阿依夏木.沙吾尔,阿依娜西.哈依木,贾宏涛.2008.灰色森林土壤中不同形态含锰化合物的迁移特征[J].新疆农业大学学报,31(5),60-63.
    曹升赓.1996.土壤微形态学,中国农业大百科全书—土壤卷[M].北京:北京农业出版社,390-392.
    程金花,张洪江,余新晓,张东升,赵玉涛.2002.贡嘎山冷杉纯林地被物及土壤持水特性[J].北
    京林业大学学报,24(3),45-49.
    陈守常.1959.西南林区冷杉林隐蔽性腐朽病蔓延的初步研究[J].林业科学,1,55-66.
    崔晓阳,宋金凤.2005.草酸/草酸盐对森林暗棕壤的磷释放效应[J].土壤学报,42(6),977-984.
    代巍,张荣,独占彪,等.2009.土壤肥力和物种属性决定亚高寒草甸实验群落的生产力[J].植物生态学报,33(1),45-52.
    地里拜尔.苏里坦,艾尼瓦尔.买买提,蔺娟.2006.土壤中铁锰的形态分布及其有效性研究.生态
    学杂志,25(2),155-160.
    杜琦.2009.不同地表条件下土壤冻结、融化规律分析.地下水,31(4),27-29.
    杜森,高祥照.2006.土壤分析技术规范[M].北京,中国农业出版社,198-200.
    范昊明,张瑞芳,周丽丽等.2009.气候变化对东北黑土冻融作用与冻融侵蚀发生的影响分析[J].干旱区资源与环,23(6),49-53.
    高以信.1989.我国灰土的分类.土壤,21(2),71-74.
    高以信.1992.横断山区土壤在中国土壤系统分类中的归属.中国系统分类探讨[M].北京:科学出版社,202-208.
    高以信,李明森.2000.横断山区土壤[M].北京:科学出版社.
    高荣,韦志刚,董文杰.2003.青藏高原土壤冻结日和终日的年际变化[J].冰川冻土,25(1),49-54.
    耿建明,安芷生.1978,利用环氧树脂制备松散岩石及土壤薄片的方法[J].地球化学,3,194-196.
    龚子同等.1999.中国土壤系统分类理论、方法、实践[M].北京:科学出版社.
    龚子同,李明森.2000.横断山区土壤[M].北京:科学出版社.
    何海,乔永康,刘庆,吴彦,林波,2004.亚高山针叶林人工恢复过程中生物量和材积动态研究[J].应用生态学报,15(5),748-752
    黄衍初,曲长菱.1996.土壤中铝的溶出及形态研究[J].环境科学,17(1),57-59
    黄成敏,龚子同.2000.土壤发生和发育过程定量研究进展[J].土壤.32(3),145-150.
    黄瑞采.1958.土壤学[M].北京:科学出版社.10-11
    何毓蓉,张保华,周红艺,张丹,程根伟.2003.贡嘎山东坡亚高山林区土壤的微形态特征[J].山地学报,21(3),281-286.
    何毓蓉,廖超林,张保华.2005.青藏高原东南缘贡嘎山东坡亚高山土壤的土相[J].山地学报,23(6),651-656.
    候学煜著,1982,中国植物地理及优势植物化学成分[M].北京:科学出版社,41-43.
    侯庸,王伯荪,张宏达,等.1998.广东黑石顶自然保护区南亚热带常绿阔叶林5种优势植物的热值研究[J].生态学报,5,18(3):263-268.
    蒋复初,吴锡浩,王书兵,傅建利,王燕,赵志中,2004.中国大陆森林线空间分布特征及其与多年冻土线,气候雪线的关系[J].地质学杂志,10(4),289-298.
    康定县地方志办公室.1995.康定县志[M].成都:四川辞书出版社.
    劳PF. 1985.土壤物理化学[M].北京:农业出版社.
    李玉梅,刘东生.2003.大荔黄土—古土壤序列8^13CSC值及其古环境意义[J].科学通报,48(5),486-490.
    李承彪.1990.四川森林生态研究[M].成都:四川科学技术出版社,55-66.
    李成保,徐仁扣,季国亮.2004.低分子量有机酸对砖红壤电动性质的影响[J].土壤学报,41(5),676-680.
    Lawongsa P.1990土壤有机酸的高效液相色谱法测定[J].土壤学进展,18(4),55-56.
    林波,刘庆,吴彦,庞学勇,何海.2003.川西亚高山针叶林凋落物对土壤理化性质的影响[J].应用与环境生物学报.9(4),346-351.
    林伯群.1987.大兴安岭北部的漂灰土[D].毕业论文(未刊稿).
    林伯群.2010.森林土壤六十年[M].北京:科学出版社.
    刘百战,徐亮,詹建波等.1999.云南烤烟中非挥发性有机酸及某些高级脂肪酸的分析[J].中国烟 草科学,20(2),28-31.
    刘彬,吴福忠,张健,杨万勤.2008.岷江干旱河谷-山地森林交错带震后恢复关键科学技术问题[J].生态学报,28(12),5892-5898.
    刘彬,杨万勤,吴福忠.2010.亚高山森林生态系统过程研究进展.生态学报.30(16):4476-4483.
    刘光崧.1996.土壤理化分析与剖面描述[M].北京:中国标准出版社.148.
    刘庆.2002.亚高山针叶林生态学研究[M].成都:四川大学出版社,6-18.
    刘庆,吴彦,何海,2001.中国西南亚高山针叶林的生态学问题[J].世界科技研究与发展,23(2),63-69.
    刘帅,于贵瑞,浅沼顺等.2009.蒙古高原中部草地土壤冻融过程及土壤含水量分布[J].土壤学报,46(1):46-50.
    刘寿坡.1960.横断山脉的高山灰化土[J].土壤学报,8(2),122-128.
    刘文长,马玲,刘洪青,潘同应,徐厚玲.2005.生态地球化学土壤样品元素形态分析方法研究[J].盐矿测试,24(3),]8]-]88.
    鲁如坤.2002.土壤农业化学分析方法[M]北京:中国农业科技出版社,318-379.
    罗承德.1982.大兴安岭北部针叶林植被下成土特征的初步研究[J].森林土壤论文选编.黑龙江,东北林学院,85-99.
    罗汝英.1983.森林土壤学[M].北京:科学出版社,]4-23.
    律兆松.]990.我国主要白浆土发生特性及其与生态环境的关系[D].中国科学院南京土壤研究所.
    莫淑勋.1986.土壤中有机酸的产生、转化及对土壤肥力的某些影响[J].土壤学进展,(4),1-10.
    南京大学等.1980.土壤学基础与土壤地理学[M].北京:高等教育出版社.
    任海,彭少麟,刘鸿先,余作岳.1998.小良热带人工混交林的凋落物及其生态效益研究[J].应用生态学报,9(5),458-462.
    任耀武.1991.某些矿物标型特征的研究现状[J].矿产与地质,5(2),127-131.
    沈阿林,李学垣,吴受容.1997.土壤中低分子量有机酸在物质循环中的作用[J].植物营养与肥料学报,3(4),363-370.
    司维岭.1997.壤氧化还原电位测试中常见问题分析及讨论[J].新疆石油科技,7(2),68-69.
    唐罗忠,生原喜久雄,户田浩人,等.2005.湿地林土壤的Fe2+、Eh及pH值的变化[J].生态学报,25(1),103-107.
    王永吉,吕厚远,王国安,杨辉,李珍.2000.C3、C4植物和现代土壤中硅酸体碳同位素分析[J].科学通报,45(9),978-981.
    王开运,杨万勤,宋光煜,胡庭兴.2004.川西亚高山森林群落生态系统过程[M].成都:四川科学技术出版社,48-88,286-306.
    席承藩等.1998.中国土壤[M].北京:中国农业出版社.
    邢述彦.2004.土壤冻结温度测定试验研究[J].太原理工大学学报,35(4),385-387.
    熊国炎等.1979.大兴安岭北部的灰化土[J].土壤学报.16(2),110-125.
    徐琪.1980.中国太湖地区的水稻土[M].上海:科学出版社,50-52.
    徐振锋,胡庭兴,张远彬,王开运,张力,鲜骏仁.2008.川西亚高山几种天然林下苔藓层的持水特性[J].长江流域资源与环境,(S1),112-116.
    杨梅学,姚檀栋,何元庆.2002.青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J].山地学报,20(5),553-558.
    叶功富,张清海,卢昌义,等.2005.福建东山滨海沙地木麻黄林生态系统的能量特征[J].应用生态学报,]6(]0),1812-1816.
    于天仁.1976.土壤的电化学性质及其研究法[M].北京,科学出版社,399-440.
    于天仁,陈志诚.1990.土壤发生中的化学过程[M].北京,科学出版社,152-155.
    辛继红,高红贝,邵明安.2009.土壤温度对土壤水分入渗的影响[J].水土保持学报,23(3),217-220.
    熊德祥,黄瑞采.1993.东北地区白浆土与淮北岗地白浆土微形态学特征的比较[J].土壤通报,24(1),5-7.
    武天云Schoenau J J,李凤民,钱佩源,王方,Malhi SS.2004.利用离心法进行土壤颗粒分级[J].应用生态学报,15(3),477-481.
    伍光和,田连恕,胡双熙,王乃昂,2000.自然地理学(第三版)[M].北京:高等教育出版社, 183-]86.
    翁建华,黄连芬,刘晓茹,佐藤一男.2000.土壤及天然溶液中铝的形态[J].中国环境科学,20(6),501-505.
    曾昭顺.1997.中国白浆土[M].北京:科学出版社.
    张杰.2006.中小尺度天气学[M].北京:气象出版社.
    张荣祖.1992.青藏高原横断山区科学考察丛书—横断山区干旱河谷[M].北京:科学出版社,1-5.
    张世银,汪仁和.2005.土壤冻结温度的影响因素研究[J].西部探矿工程,5,31-32.
    张万儒,许本彤.1986.森林土壤定位研究法[M].北京:中国林业出版社,30-36.
    张一平.2006.土壤水分热力学[M].北京:科学出版社.
    张之一,张元福.1989.几种土壤不同形态铁及无定形硅铝的比较研究[J].黑龙江八一农垦大学学报,1,19-24.
    郑逢中,卢昌义,郑文教,等.2000.福建九龙江口秋茄红树林凋落物季节动态及落叶能量季节流[J].厦门大学学报,9,39(5),693-698.
    赵其国,王浩清,顾国安.1993.中国的冻土[J].土壤学报,30(4),341-354.
    赵其国.1990.中国的灰化土[J].土壤学报,27(3),318-324.
    中国科学院青藏高原综合科学考察队.1985.西藏土壤[M].北京:科学出版社,67-68.
    中国科学院南京土壤所.1975.珠峰组珠穆朗玛峰地区南侧的山地森林土壤[M].珠穆朗玛峰地区科学考察报告,自然地理分册,41-49.
    中国科学院南京土壤所主编.1978.中国土壤[M].北京:科学出版社,700.
    中国林业科学研究院林业研究所.1986.中国森林土壤[M].北京:科学出版社,25-28.
    朱祖祥.1983.土壤学[M].北京:农业出版社.
    朱显祥.1979.土壤水分的能量概念及其意义[J].土壤学进展.1,1-21.
    朱显谟.1963.陕西太白山岩生植物和原始成土过程[J].土壤学报,11(1),1-8.
    朱显谟.1983.论原始土壤的成土过程[J].中国科学B辑.10,919-925.
    佐恩CB.1959.康藏高原东部的土壤及其分布规律[J].土壤学报,7(1-2),9-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700