用户名: 密码: 验证码:
基于仿生电子鼻的肉品新鲜度多信息融合识别技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为有效提高肉品检测的效率,基于原始的感官检验,结合理化指标,以不同冷藏条件下的鸡肉样品、猪肉样品为研究对象,开展对肉新鲜度进行识别的仿生触觉和仿生电子鼻技术研究。着重探讨基于仿生触觉技术和仿生电子鼻技术的多传感器信息融合技术的肉品新鲜度识别。
     基于人体鼻腔CT图像,构建了一个三维鼻腔模型,利用计算流体动力学(CFD)方法研究其气流动力学特性,分析鼻腔的结构特征以及鼻腔内部气流的流体力学特性对嗅觉产生的影响。依此设计仿生嗅觉气体室系统,经相应的嗅觉实验证明,能使气味可到达每个传感器的敏感元件处,其接触反应时间能够满足传感器的有效吸附时间。
     研究不同特征值对肉新鲜度识别效果影响,对仿生电子鼻传感器阵列的响应信号完成特征提取。并采用RBF神经网络、BP神经网络及支持向量机(SVM)进行识别分析,对比不同特征选择方法的预测结果,全段数据平均值(Mean)特征突出。探讨仿生电子鼻技术的肉品新鲜度模式识别,在三种识别模型预测结果,SVM识别模型识别率最优,且样本数越少,优势越明显。该模型对鸡肉样品和猪肉样品的正确识别率在8℃时分别为92.35%和91.49%;0℃时,分别为90.87%和90.48%。优化传感器阵列,优化阵列后的仿生电子鼻的SVM肉品新鲜度识别模型识别率为91.47%,比初始阵列提高了3%。
     利用WDW-20J型电子万能试验机模拟触觉,获取肉品弹性信息数据,对提取的仿生触觉信息的原始特征信息进行主成分分析(PCA)并提取特征变量。分别采用线性判别分析、RBF神经网络和组合网络结合PCA提取的特征信息建立肉品新鲜度的识别模型。结果表明遗传优化的组合RBF神经网络识别模型识别率最优,该模型对鸡肉和猪肉的正确识别率在8℃时,分别为85.54%和85.12%;0℃时,分别为83.37%和82.91%。
     针对不同冷藏条件下的鸡肉样品、猪肉样品,提取其弹性信息和“指纹”气味信息的原始特征信息。采用传感器特征层融合的方法,利用粒子群优化的SVM结合主成分分析提取的仿生触觉和仿生电子鼻的特征融合信息,建立的肉品新鲜度的多传感器融合识别模型。结果表明肉品新鲜度的多传感器融合识别模型的识别率优于基于各单项技术识别模型,该模型对鸡肉样品和猪肉样品的识别率在8℃时,分别为95.20%和93.45%;0℃时,分别为94.23%和92.11%。研究结果表明,将仿生触觉和仿生电子鼻两项技术进行融合应用于肉新鲜度的识别具有高效性和准确性。
To improve the efficiency of meat freshness detection, the bionic electronic nose and tactiletechnology were studied with frozen chicken and pork samples based on the original sense testingcombining physical and chemical index. The multi-sensor information fusion technologies thatcan be used to identify meat freshness based on bionic tactile and electronic nose technologieswere essentially explored in this study.
     Based on the CT images of a nose of human, a3D model of nasal cavity was established. Theairflow dynamics were studied, using computational fluid dynamics (CFD), to analyze the effectsof the nasal cavity structure and airflow dynamics inside the nasal cavity on the olfactorysensation. Accordingly, a gas-chamber system of bionic olfactory sensation imitating the nasalcavity was designed. It has been verified that odor can be transported to the locations where thesensitive components of each sensor assembled in the gas-chamber system; and their contact andreaction time can meet the requirement of valid absorption time of sensors.
     The effects of eigenvalues on the identification of meat freshness were studied and thefeature extraction was completed for the response signal of sensor array of bionic nose. The RBFneural net, BP neural net and support vector machine (SVM) were applied for the identificationanalysis. The mean eigenvalues in all data set were very excellent in comparison with thepredicting results obtained from different eigenvalue selection methods. Comparing the predictingresults obtained from the three identification models, it shows that the SVM had the optimumidentification rate and this superiority was more obvious when the samples were lesser. Theaccuracy of the system in recognizing different meat freshness level for chicken and pork sampleswas up to92.35%and91.49%, respectively, at8℃; and,90.87%and90.48%, respectively, at0℃.The identification efficiency of SVM meat freshness using bionic nose with optimized array was91.47%and it increased3%compared with the initial array.
     The WDW-20J electronic universal test machine was used to simulate the tactile sensation ofhuman and obtain the meat elasticity information. The original characteristic information of bionictactile sensation was extracted using primary component analysis (PCA) and the characteristicvariables were extracted as well. The models of meat freshness identification were establishedapplying the linear identification analysis, RBF neural net and combined net combining thecharacteristic information from PCA. The results show that identification model of hereditaryoptimization RBF neural net had the optimum identification rate. Its accuracy for identifyingchicken and pork met samples was up to85.54%and85.12%, respectively, at8℃; and,83.37% and82.91%, respectively, at0℃.
     The original characteristics information of meat elasticity and odor “fingerprint” wereabstracted from chicken and pork samples frozen at different conditions. The multi-sensor fusionidentification models were established applying the multi-sensor information fusion technologiesand utilizing the characteristic fusion information of bionic tactile and electronic nose abstractedby SVM combing PCA. The experimental results show that identification rate of multi-sensorfusion identification model was superior to each individual identification method. Its identificationrate for chicken and pork samples was up to95.20%and93.45%, respectively, at8℃; and,94.23%and92.11%, respectively, at0℃. It experimentally verified the high feasibility andaccuracy of combining the electronic nose and tactile technology for meat freshness detection.
引文
[1] Brown S.N.. A note on the use of subjective methods for assessing pig meatquality on the slaughterline[J]. Meat Science.1992,32(2):195-202.
    [2] Irie M., SwatlandH.J.. Prediction of fluid losses from pork using subjective andobjective paleness[J]. Meat Science.1993,33(3):277-292.
    [3] Lowder A.C., Goad C.L., Lou X., Morgan J.B., C.A.Mireles DeWitt. Evaluationof a dehydrated beef protein to replace sodium-based phosphates in injectedbeef strip loins[J]. Meat Science.2011,89(4):491-499.
    [4] Mohamed A.A.A., Jowitt R., Brennan J.G.. Instrumental and sensory evaluationof crispness: I-In friable foods. Journal of Food Engineering.1982,1(1):55-75
    [5] Bourne M.C.. Calibration of rheological techniques used for foods[J]. Journal ofFood Engineering.1992,16(1–2):151-163.
    [6] Thorvaldsson K., Skj ldebrandC.. Method and instrument for measuring localwater content inside food[J]. Journal of Food Engineering.1996,29(1):1-11.
    [7] Luykx D.M.A.M., van Ruth S.M.. An overview of analytical methods fordetermining the geographical origin of food products[J]. Food Chemistry.2008,107(2):897-911.
    [8] Ghasemi-Varnamkhasti M., Mohtasebi S.S., Siadat M.. Biomimetic-based odorand taste sensing systems to food quality and safety characterization: anoverview on basic principles and recent achievements[J]. Journal of FoodEngineering.2010,100(3):377-387.
    [9] Saeleaw M., Dürrschmid K., SchleiningG.. The effect of extrusion conditions onmechanical-sound and sensory evaluation of rye expanded snack[J]. Journal ofFood Engineering.2012,110(4):532-540.
    [10] Xia Y., Li Q.X., Gong S., Li Y., Cao Y., Liu X., Li J.. Development of amonoclonal antibody-based enzyme-linked immunosorbent assay for theanalysis of the new fungicide2-allylphenol in strawberry fruits[J]. FoodChemistry.2010,120(4):1178-1184.
    [11] Gil L., Barat J.M., Baigts D., Martínez-Má ez R., Soto J., Garcia-Breijo E.,Aristoy M.C., Toldrá F., Llobet E.. Monitoring of physical–chemical andmicrobiological changes in fresh pork meat under cold storage by means of apotentiometric electronic tonguev[J]. Food Chemistry.2011,126(3):1261-1268
    [12] Liu J., Wu F., Chen L., Zhao L., Zhao Z., Wang M., Lei S.. Biologicalevaluation of coumarin derivatives as mushroom tyrosinase inhibitors[J]. FoodChemistry.2012,135(4):2872-2878.
    [13] Moreda-Pi eiroJ., A.Moreda-Pi eiro, V.Romarís-Hortas, Domínguez-GonzálezR., Alonso-Rodríguez E., López-Mahía P., Muniategui-Lorenzo S.,Prada-Rodríguez D., Bermejo-Barrera P.. Trace metals in marine foodstuff:bioavailability estimation and effect of major food constituents[J]. FoodChemistry.2012,134(1):339-345.
    [14] Duan Z., Yi J., Fang G., Fan L., Wang S.. A sensitive and selective imprintedsolid phase extraction coupled to hplc for simultaneous detection of tracequinoxaline-2-carboxylic acid and methyl-3-quinoxaline-2-carboxylic acid inanimal muscles[J]. Food Chemistry.2013,139(1–4):274-280.
    [15] Savic S., Vojinovic K., Milenkovic S., Smelcerovic A., Lamshoef t M.,PetronijevicZ.. Enzymatic oxidation of rutin by horseradish peroxidase: kineticmechanism and identification of a dimeric product by lc–orbitrap massspectrometry[J]. Food Chemistry.2013,141(4):4194-4199.
    [16] Grigioni G.M., Margar a C.A., Pensel N.A., Sánchez G., VaudagnaS.R..Warmed-over flavour analysis in low temperature–long time processedmeat by an “Electronic Nose”[J]. Meat Science.2000,56(3):221-228.
    [17] Vestergaard J.S., Martens M., TurkkiP.. Analysis of sensory quality changesduring storage of a modified atmosphere packaged meat product (pizza topping)by an electronic nose system[J]. LWT-Food Science and Technology.2007,40(6):1083-1094
    [18] Sohn J.H., Hudso.n N., Gallagher E., Dunlop M., Zeller L., Atzeni M..Implementation of an electronic nose for continuous odour monitoring in apoultry shed[J]. Sensors and Actuators B: Chemical.2008,133(1):60-69.
    [19] Funazaki N., Hemmi A., Ito S., Asano Y., Yano Y., Miura N., Yamazoe N..Application of semiconductor gas sensor to quality control of meat freshness infood industry[J]. Sensors and Actuators B: Chemical.1995,25(1–3):797-800.
    [20] Holley R.A., McKellar R.C.. Influence of unsliced delicatessen meat freshnessupon bacterial growth in subsequently prepared vacuum packed slices[J].International Journal of Food Microbiology.1996,29(2–3):297-309.
    [21] Musatov V.Y., Sysoev V.V., Sommer M., Kiselev I.. Assessment of meatfreshness with metal oxide sensor microarray electronic nose: a practicalapproach[J]. Sensors and Actuators B: Chemical.2010,144(1):99-103.
    [22] Park I.S., Cho Y.J., Kim N.. Characterization and meat freshness application ofa serial three-enzyme reactor system measuring atp-degradative compounds[J].Analytica Chimica Acta.2000,404(1):75-81.
    [23] Saito K., Ahhmed A.M., Kawahara S., Sugimoto Y., Aoki T., Muguruma M..Evaluation of the performance of osmotic dehydration sheets on freshnessparameters in cold-stored beef biceps femoris muscle[J]. Meat Science.2009,82(2):260-265.
    [24] Smolander M., Hurme E., Latva-Kala K., Luoma T., Alakomi H.-L.,Ahvenainen R.. Myoglobin-based indicators for the evaluation of freshness ofunmarinated broiler cuts[J]. Innovative Food Science&Emerging Technologies.2002,3(3):279-288.
    [25] Wang F.R., Jin L.S., Zhang T.Q., Zhang Y.K., Ye J., Kan R.W.. Research onmeat species and freshness identification method based on spectralcharacteristics[J]. Optik-International Journal for Light and Electron Optics.2013,124(23):5952-5955.
    [26]杨建华,候宏,王磊,刘福.基于集成气敏传感器阵列的电子鼻系统环境响应特性分析[J].传感技术学报.2002(03):197-202.
    [27]王米娜,杨建华,侯宏,王晗.基于多BP子网络的电子鼻信息融合技术[J].传感器技术.2003,(11):75-77,80.
    [28] Taurino A., Monaco D., Capone S., Epifani M., Rella R., Siciliano P., Ferrara L.,Maglione G., Basso A., Balzarano D.. Analysis of dry salami by means of anelectronic nose and correlation with microbiological methods[J]. Sensors andActuators B: Chemical.2003,95(1):123-131.
    [29]王米娜,杨建华,王晗,戴洪德,杜新虎.最小二乘法在电子鼻动态信息融合中的应用[J].传感技术学报.2005,(03):580-583.
    [30] Rajam ki T., Alakomi H.-L., Ritvanen T., Skytt E., Smolander M., AhvenainenR.. Application of an electronic nose for quality assessment of modifiedatmosphere packaged poultry meat[J]. Food Control.2006,17(1):5-13.
    [31] Panigrahi S., Balasubramanian S., Gu H., Logue C., Marchello M..Neural-network-integrated electronic nose system for identification of spoiledbeef[J]. LWT-Food Science and Technology.2006,39(2):135-145
    [32] Panigrahi S., Balasubramanian S., Gu H., Logue C.M., Marchello M.. Designand development of a metal oxide based electronic nose for spoilageclassification of beef[J]. Sensors and Actuators B: Chemical.2006,119(1):2-14.
    [33] Zhang Z., Tong J., Chen D.H., LanY.B.. Electronic nose with an air sensormatrix for detecting beef freshness[J]. Journal of Bionic Engineering.2008,5(1):67-73.
    [34]贾洪锋,卢一,何江红,潘涛,肖岚,张振宇,朱丽敏.电子鼻在牦牛肉和牛肉猪肉识别中的应用[J].农业工程学报.2011,(5):358-363.
    [35]赵梦醒,曹荣,殷邦忠,雷敏,刘淇.电子鼻在对虾新鲜度评价中的应用[J].渔业科学进展.2011,(6):57-62.
    [36] Papadopoulou O.S., Tassou C.C., Schiavo L., Nychas G.-J.E., PanagouE.Z..Rapid assessment of meat quality by means of an electronic nose and supportvector machines[J]. Procedia Food Science.2011,1:2003-2006.
    [37]李来好,王国超,郝淑贤,杨贤庆,岑剑伟,黄卉,魏涯.电子鼻检测冷冻罗非鱼肉的研究[J].南方水产科学.2012,(4):1-6.
    [38]辛松林,李诚,肖岚,池福敏,付刚,张宇.基于电子鼻的黑胡椒鸭胸肉调理产品品质评价[J].食品科学.2012,(8):191-194.
    [39] Tian X., Wang J., Cui S.. Analysis of pork adulteration in minced mutton usingelectronic nose of metal oxide sensors[J]. Journal of Food Engineering.2013,119(4):744-749.
    [40] Papadopoulou O.S., PanagouE.Z., MoharebF.R., Nychas G.-J.E.. Sensory andmicrobiological quality assessment of beef fillets using a portable electronicnose in tandem with support vector machine analysis[J]. Food ResearchInternational.2013,50(1):241-249.
    [41]韩剑众,黄丽娟,顾振宇,邓少平.基于电子舌的鱼肉品质及新鲜度评价[J].农业工程学报.2008,(12):141-144.
    [42]韩剑众,黄丽娟,顾振宇,田师一,邓少平.基于电子舌的肉品品质及新鲜度评价研究[J].中国食品学报.2008,(3):125-132.
    [43] Campos I., Masot R., Alca iz M., Gil L., Soto J., Vivanco s J.L., García-BreijoE., Labrador R.H., Barat J.M., Martínez-Ma ezR.. Accurate concentrationdetermination of anions nitrate, nitrite and chloride in minced meat using avoltammetric electronic tongue[J]. Sensors and Actuators B: Chemical.2010,149(1):71-78.
    [44] Labrador R.H., Masot R., Alca iz M., Baigts D., Soto J., Martínez-Ma ez R.,García-Breijo E., Gil L., Barat J.M.. Prediction of nacl, nitrate and nitritecontents in minced meat by using a voltammetric electronic tongue and animpedimetric sensor[J]. Food Chemistry.2010,122(3):864-870.
    [45] Alca iz M., Vivancos J.-L., Masot R., Iba ez J., Raga M., Soto J.,Martínez-Má ezR.. Design of an electronic system and its application toelectronic tongues using variable amplitude pulse voltammetry and impedancespectroscopy[J]. Journal of Food Engineering.2012,111(1):122-128.
    [46]王霞,徐幸莲,王鹏.基于电子舌技术对鸡肉肉质区分的研究[J].食品科学.2012,(21):100-103.
    [47] Nu ez L., CetóX., Pividori M.I., Zanoni M.V.B., del Valle M.. Developmentand application of an electronic tongue for detection and monitoring of nitrate,nitrite and ammonium levels in waters[J]. Microchemical Journal.2013,110:273-279.
    [48]田晓静,刘丽霞,王俊.电子舌技术在肉与肉制品检测中的应用[J].食品工业科技.2013,(7):397-400.
    [49]吴浩,刘源,顾赛麒,付娜,陈伟华,王锡昌.电子鼻、电子舌分析和感官评价在鱼糜种类区分中的应用[J].食品工业科技.2013(优先出版).
    [50] Tan J.. Meat quality evaluation by computer vision[J]. Journal of foodengineering.2004,61(1):27-35.
    [51] Mateo A., Soto F., Villarejo J.A., Roca-Dorda J., De la Gandara F., García A..Quality analysis of tuna meat using an automated color inspection system[J].Aquacultural Engineering.2006,35(1):1-13.
    [52] Zheng C., Sun D.-W., Zheng L.. A new region-primitive method forclassification of colour meat image texture based on size, orientation, andcontrast[J]. Meat science.2007,76(4):620-627.
    [53]徐霞,成芳,应义斌.近红外光谱技术在肉品检测中的应用和研究进展[J].光谱学与光谱分析.2009,(7):1876-1880.
    [54]仇金宏.数字图像处理技术在牛肉品质分级中的应用研究[D]:南京农业大学.2010.
    [55]彭彦昆,张雷蕾.光谱技术在生鲜肉品质安全快速检测的研究进展[J].食品安全质量检测学报.2010,(2):62-72.
    [56]廖宜涛.基于图像与光谱信息的猪肉品质在线无损检测研究[D]:浙江大学.2011.
    [57]彭彦昆,张海云.生鲜肉品质安全无损伤检测技术研究进展[J].中国食物与营养.2011(10):5-10.
    [58] Chmiel M., S owiński M., DasiewiczK.. Application of computer visionsystems for estimation of fat content in poultry meat[J]. Food Control.2011,22(8):1424-1427.
    [59] Jackman P., Sun D.-W., Allen P.. Recent advances in the use of computer visiontechnology in the quality assessment of fresh meats[J]. Trends in Food Science&Technology.2011,22(4):185-197.
    [60]陈菁菁,彭彦昆.基于机器视觉技术的生猪活体监测系统[J].食品安全质量检测学报.2012,(6):600-602.
    [61]贾渊,李振江,彭增起.结合LLE流形学习和支持向量机的猪肉颜色分级[J].农业工程学报.2012,(9):147-152.
    [62]胡孟晗,董庆利,刘阳泰,刘宝林,王芳芳.基于计算机视觉鉴别肉松与肉粉松[J].食品与发酵工业.2013,(4):180-185.
    [63] Girolami A., Napolitano F., Faraone D., Braghieri A.. Measurement of meatcolor using a computer vision system[J]. Meat Science.2013,93(1):111-118.
    [64] Larsen A.B.L., Hviid M.S., J rgensen M.E., Larsen R., Dahl A.L.. Vision-basedmethod for tracking meat cuts in slaughterhouses[J]. Meat Science.2014,96(1):366-372.
    [65] Martinez O., Salmerón J., Guillén M.D., Casas C.. Texture profile analysis ofmeat products treated with commercial liquid smoke flavourings[J]. FoodControl.2004,15(6):457-461.
    [66]佟月英,陈东辉,石志标,佟金.鸡肉的压力特性曲线与其新鲜度的关系[J].吉林大学学报(工学版).2010,(2):491-495.
    [67]王术娥.罗非鱼营养、挥发性成分及质构特性研究[D]:华中农业大学.2010.
    [68]李立.重组腊肉火腿工艺优化及其质构特性研究[D]:西南大学.2011.
    [69]佟月英.仿生触觉与常规方法检验肉品新鲜度的研究[D]:吉林大学.2011
    [70]张馨木.质构仪测定冷鲜肉新鲜度方法的研究[D]:吉林大学.2012.
    [71] Persaud K., Dodd G.. Analysis of discrimination mechanisms in the mammalianolfactory system using a model nose[J]. Nature.1982,(299):352–355.
    [72] StoneH., PangbornR.M., OughC.. Techniques for sensory evaluation of foododors[J]. Advances in Food Research.1965,14:1-32.
    [73] Gardner J.W.. Detection of vapours and odours from a multisensor array usingpattern recognition part1. principal component and cluster analysis[J]. Sensorsand Actuators B: Chemical.1991,4(1–2):109-115.
    [74] Grate J.W., Abraham M.H.. Solubility interactions and the design of chemicallyselective sorbent coatings for chemical sensors and arrays[J]. Sensors andActuators B: Chemical.1991,3(2):85-111.
    [75] Gardner J.W., Hines E.L., Tang H.C.. Detection of vapours and odours from amultisensor array using pattern-recognition techniques part2. artificial neuralnetworks[J]. Sensors and Actuators B: Chemical.1992,9(1):9-15.
    [76] Shurmer H.V., Gardner J.W..Odour discrimination with an electronic nose[J].Sensors and Actuators B: Chemical.1992,8(1):1-11.
    [77] Sundgren H., Lundstr m I., Vollmer H.. Chemical sensor arrays and abductivenetworks[J]. Sensors and Actuators B: Chemical.1992,9(2):127-131.
    [78] Yamazoe N. Chemical sensors R&D in Japan [J]. Sensors and Actuators B:Chemical.1992,6(1–3):9-15.
    [79] Egashira M., Shimizu Y.. Odor sensing by semiconductor metal oxides[J].Sensors and Actuators B: Chemical.1993,13(1–3):443-446.
    [80] Poran N.S., Vandoros A., Halpern M.. Nuzzling in the gray short-tailed opossumI: delivery of odors to vomeronasal organ[J]. Physiology&Behavior.1993,53(5):959-967.
    [81] StetterJ.R., Findlay M.W. Jr, Schroeder K.M., Yue C., Penrose W.R.. Qualityclassification of grain using a sensor array and pattern recognition[J]. AnalyticaChimica Acta.1993,284(1):1-11.
    [82] Gardner J.W., Bartlett P.N.. A brief history of electronic noses[J]. Sensors andActuators B: Chemical.1994,18(1–3):210-211.
    [83] Brudzewski K., Osowski S., Ulaczyk J.. Differential electronic nose of twochemo sensor arrays for odor discrimination[J]. Sensors and Actuators B:Chemical.2010,145(1):246-249.
    [84] Hamacher T., Niess J., Schulze Lammers P., Diekmann B., BoekerP.. Onlinemeasurement of odorous gases close to the odour threshold with a qmb sensorsystem with an integrated preconcentration unit[J]. Sensors and Actuators B:Chemical.2003,95(1–3):39-45.
    [85] Phaisangittisagul E., Nagle H.T.. Predicting odor mixture's responses onmachine olfaction sensors[J]. Sensors and Actuators B: Chemical.2011,155(2):473-482.
    [86] Tsai C.J., Chen M.L., Ye A.D., Mao I.F..Single SnO2gas sensor as a practicaltool for evaluating the efficiency of odor control engineering at food wastecomposting plants[J]. Sensors and Actuators B: Chemical.2012,169:248-254.
    [87] Gana H.L., Tan C.P. Monitoring the storage stability of RBD palm olein usingthe electronic nose[J]. Food Chemistry.2005,89:271–282.
    [88] Yolanda G.M., Jose L.P.P., Bernardo M.C.Classification of vegetable oils bylinear discriminant analysis of ectronic nose data[J].Analytica Chimica Acta.1999,384:83-94.
    [89]辛松林,阎红,彭德川.电子鼻对市售花椒油商品的鉴别[J].食品工业科技.2010,(9):346-347,351.
    [90]张军,李小昱,王为,周竹,吴泽鑫,冯耀泽.电子鼻检测鲢鱼新鲜度的试验参数优化[J].农业机械学报.2009,(4):129-132,142.
    [91]全晶晶,侯云丹,黄健,王求娟,陈义芳,苏秀榕.加工温度对鲣鱼挥发性成分的影响[J].中国食品学报.2012,(8):221-228.
    [92]唐艳,张宾,崔博升,邓尚贵.基于电子鼻的鲐鱼新鲜度研究[J].食品工业.2012,(9):34-37.
    [93]赵梦醒,丁晓敏,曹荣,雷敏,刘淇.基于电子鼻技术的鲈鱼新鲜度评价[J].食品科学.2013,(6):143-147.
    [94] Olsson J., Borjesson T., Lundstedt T. Detection and quantification of ochratoxinA and deoxynivalenol in barley grains by GV-MS and electronic nose[J].International Journal of Food Microbiology.2002,72:203-214.
    [95] Paolesse R., Alimelli A., Martinelli E. Detection of fungal contamination ofcereal grain samples by an electronic nose[J]. Sensors and Actuators B.2006,2(119):425-4300.
    [96]张小超,胡小安,张银桥,王辉.谷物品质快速自动检测方法的研究[C]. In:2007年中国农业工程学会学术年会中国黑龙江大庆,2007:1.
    [97]胡桂仙,王俊,王建军,王小骊.基于电子鼻技术的稻米气味检测与品种识别[J].浙江大学学报(农业与生命科学版).2011,(6):670-676.
    [98]惠国华,陈裕泉.基于随机共振的电子鼻系统构建及在谷物霉变程度检测中的应用[J].传感技术学报.2011,(2):159-164.
    [99]席志勇,王凤花.谷物品质无损检测方法的研究进展[J].食品工业科技.2012,(15):394-396+400.
    [100] Benady M.,Simon J.E.,Charles D.J., Miles G.E. Fruit ripeness determination byelectronic sensing of aromatic volatiles[J].Transactions of the ASAE,1995,38(1):251-257.
    [101] Gómez A.A.H.. Study of three non-destructive techniques potential formandarin and tomato fruit quality assessment [D]:浙江大学.2005
    [102]谢丽娟,应义斌,于海燕,傅霞萍.近红外光谱分析技术在蔬菜品质无损检测中的应用研究进展[J].光谱学与光谱分析.2007,(6):1131-1135.
    [103]王光芒.蔬菜农药残留电子鼻检测中特征提取方法研究[D]:河南科技大学.
    [104]王朱珍.基于气敏传感器阵列的信号处理与模式识别算法研究[D]:杭州电子科技大学.2009
    [105]冯青.电子鼻系统在水果贮藏中的应用[J].产业与科技论坛.2012,(12):78
    [106]邹小波,赵杰文.电子鼻在饮料识别中的应用研究[J].农业工程学报.2002,(3):146-149
    [107]陈晓明,李景明,李艳霞,倪元颖.人工神经网络在饮料工业中的应用研究进展[J].饮料工业.2005,(1):8-12,22.
    [108] García-Martínez T., Bellincontro A., de Lerma M.D.L.N.L., Peinado R.A.,Mauricio J.C., Mencarelli F., Moreno J.J.. Discrimination of sweet winespartially fermented by two osmo-ethanol-tolerant yeasts by gaschromatographic analysis and electronic nose[J]. Food Chemistry.2011,127(3):1391-1396.
    [109]殷勇,田先亮.基于PAC与Wilks准则的电子鼻酒类鉴别方法研究[J].仪器仪表学报.2007,(5):849-852.
    [110]于慧春,王俊,张红梅,于勇.龙井茶叶品质的电子鼻检测方法[J].农业机械学报.2007,(7):103-106.
    [111] Santos J.P., Lozano J., Aleixandre M., Arroyo T., Cabellos J.M., Gil M., HorrilloM.D.C.. Threshold detection of aromatic compounds in wine with an electronicnose and a human sensory panel[J]. Talanta.2010,80(5):1899-1906.
    [112]张拥军,何杰民,蒋家新,杨胜利,钱俊青.不同处理工艺杨梅果汁风味成分的电子鼻检测[J].农业机械学报.2010,(12):134-137.
    [113]吴桂苹,胡荣锁,卢少芳,赵建平,谭乐和.电子鼻在咖啡产品品质检测中的应用研究[J].香料香精化妆品.2011,(5):7-9.
    [114]张红梅,王俊,余泳昌,高献坤,花恒明,何玉静.基于电子鼻技术的信阳毛尖茶咖啡碱检测方法[J].传感技术学报.2011,(8):1223-1227.
    [115]蒋健,杨君,黄芳芳,汤存晓,何晋浙,孙培龙.电子鼻在烟用香精质量控制中的应用[J].烟草科技.2012,(9):47-50.
    [116]戴鑫,于海燕,肖作兵.电子鼻和电子舌在饮料酒分析中的应用近况[J].食品与发酵工业.2012,(8):114-118.
    [117]江涛,李博斌,郑云峰,曾金红,黄晓丽,余燕飞.电子鼻对绍兴黄酒酒龄的判别研究[J].酿酒科技.2012,(1):39-41,46.
    [118]张树明,杨阳,倪元颖.近红外光谱和电子鼻技术用于葡萄酒发酵过程中酒精度的定量分析[J].光谱学与光谱分析.2012,(11):2997-3001.
    [119] Ongo E., Falasconi M., Sberveglieri G., Antonelli A., Montevecchi G.,Sberveglieri V., Concina I., Sevilla III F.. Chemometric discrimination ofphilippine civet coffee using electronic nose and gas chromatography massspectrometry[J]. Procedia Engineering.2012,47:977-980.
    [120]高利萍,王俊,崔绍庆.不同成熟度草莓鲜榨果汁的电子鼻和电子舌检测[J].浙江大学学报(农业与生命科学版).2012,(6):715-724.
    [121]龙章德,林顺顺,田兆福,宋诗清,张晓鸣,韦建玉,黎新钦,农李政,李季刚[J].基于电子鼻分析的原料烟叶鉴别分析.食品与机械.2013,29(4):35-39.
    [122] Tanner R., LohN.K.. A toxonomy of multi-sensor fusion[J]. Journal ofManufacturing Systems.1992,11(5):314-325.
    [123] Winquist F., Lundstr m I., Wide P.. The combination of an electronic tongueand an electronic nose[J]. Sensors and Actuators B: Chemical.1999,58(1–3):512-517.
    [124] Rong L., Ping W., Wenlei H.. A novel method for wine analysis based on sensorfusion technique[J]. Sensors and Actuators B: Chemical.2000,66(1–3):246-250.
    [125] Cimander C., Carlsson M., Mandenius C.F.. Sensor fusion for on-linemonitoring of yoghurt fermentation[J]. Journal of Biotechnology.2002,99(3):237-248.
    [126] Roussel S., Bellon-Maurel V., Roger J.M., Grenier P. Fusion of aroma, FT-IRand UV sensor data based on the bayesian inference. Application to thediscrimination of white grape varieties[J]. Chemometrics and IntelligentLaboratory Systems.2003,65(2):209-219.
    [127] Boilot P., Hines E.L., Gongora M.A., FollandR.S. Electronic nosesinter-comparison, data fusion and sensor selection in discrimination of standardfruit solutions[J]. Sensors and Actuators B: Chemical.2003,88(1):80-88.
    [128] Henningsson M., stergren K., Sundberg R., Dejmek P. Sensor fusion as a toolto monitor dynamic dairy processes [J]. Journal of Food Engineering.2006,76(2):154-162.
    [129] Bruwer M.J., MacGregor J.F., Bourg W.M. Jr. Fusion of sensory and mechanicaltesting data to define measures of snack food texture[J]. Food Quality andPreference.2007,18(6):890-900.
    [130] Li C., Heinemann P., Sherry R.. Neural network and bayesian network fusionmodels to fuse electronic nose and surface acoustic wave sensor data for appledefect detection[J]. Sensors and Actuators B: Chemical.2007,125(1):301-310.
    [131]刘鹏,屠康,潘磊庆,刘明,詹歌.基于多传感器融合的鸡蛋裂纹系统性识别[J].农业机械学报.2010,(10):185-189,203.
    [132]刘鹏,屠康,潘磊庆,张伟.基于D-S证据理论的鸡蛋新鲜度多传感器融合识别[J].农业机械学报.2011,42(8):122-127.
    [133] Mendoza F., Lu R., Cen H. Comparison and fusion of four nondestructivesensors for predicting apple fruit firmness and soluble solids content[J].Postharvest Biology and Technology.2012,73:89-98.
    [134] Sa’adF.S.A., Zakaria A., ShakaffA.Y.M., Abdullah M.Z., Adom A.H.,JaafarM.N., MasnanM.J., KamarudinL.M. Bio-inspired sensor fusion for qualityassessment of harumanis mangoes[J]. Procedia Chemistry.2012,6:165-174.
    [135] Banerjee R., Tudu B., Shaw L., Jana A., Bhattacharyya N., Bandyopadhyay R..Instrumental testing of tea by combining the responses of electronic nose andtongue[J]. Journal of Food Engineering.2012,110(3):356-363.
    [136] Ulloa P.A., Guerra R., Cavaco A.M. Rosa da Costa A.M, Figueira A.C., BrigasA.F.. Determination of the botanical origin of honey by sensor fusion ofimpedance e-tongue and optical spectroscopy [J]. Computers and Electronics inAgriculture.2013,94:1-11.
    [137]常志勇,陈东辉,张凌,佟月英,翁小辉,佟金.基于多传感器融合的鸡肉新鲜度检测方法[J].吉林大学学报(工学版).2013,(S1):493-496.
    [138]江辉.基于近红外光谱和电子鼻技术的固态发酵过程检测研究及应用[D].江苏大学,2013.
    [139] Alsikes A., Minoans A., Semolina D., Strandline V. Response time based outputof metal oxide gas sensors applied to evaluation of meat freshness with neuralsignal analysis[J]. Sensors and Actuators B Chemical,2000,69(3):258-265.
    [140] Depression A., Habtemariam T., Wilson S., Nyanja D.,Tahoma Y. Real-timePCR assay for rapid detection and quantification of Campylobacter jejune onchicken rinses from poultry processing plant[J]. Molecular and Cellular Probes.2007,1(21):177-181.
    [141]邵春风.感官评价在食品中的研究进展[J].肉类工业.2006,(6):35-37.
    [142]中华人民共和国卫生部.火腿卫生标准.GB2731—88,1989,01,11.
    [143]中华人民共和国卫生部.中国国家标准化管理委员会,GB/T5009.1-2003[S].北京:中国标准出版社,2003.
    [144]王炳栋.动物性食品卫生理化检验[J].中国农业出版社,1994,第一版:189-206.
    [145] KaiZhao P. W. Scherer S. A. Hajiloo P. D.. Effect of anatomy on human nasalair flow and odorant transport patterns: implications for olfaction [J]. ChemicalSenses.2004,29(5):365-379.
    [146] Hahn I, Scherer P W, Mozell M M, A mass transport model of olfaction[J].Journal of Theoretical Biology.1994,(167):115-128.
    [147] Rajamaki T, Hanna LA, Tiina R. Application of an electronic nose for qualityassessment of modified atmosphere packaged poultry meat [J]. Food Control.2006,17(1):5-13.
    [148] Gardner J. W., Bartlet P. N.. Electronic nose: principles and applications [M].New York: Ox ford University Press,1999,4-10.
    [149] Stuiver M. Biophysics of the Sense of Smell [D].Rijks University,Groningen,the Netherlands,1958.
    [150] Mozell M. M., Sheehe P. R., Hornung D. E., Kent P. F., Youngentob S. L.,Murphy S.J.‘Inposed’and‘inherent’mucosal activity patterns: Their compositerepresentation of olfactory stimuli [J].The Journal of General Physiology,1987,(90):625-650.
    [151]谭文长,吴望一,严宗毅,温功碧.二维不定常嗅觉模型及其精确解[J].生物物理学报,1999,(1):84-90.
    [152] Zhao K., Pribitkin E.A., Cowart B. J., Rosen D., Scherer P. W., Dalton P..Numerical modeling of nasal obstruction and endoscopic surgical intervention:outcome to airflow and olfaction[J]. American Journal of Rhinology.2006,20(3):308-316.
    [153]石志标,左春柽,李宇彤.鼻腔结构影响人体嗅觉反应的数值模拟[J].生物物理学报,2004,20(4):329-333.
    [154]常志勇.仿生电子鼻设计及其在鸡肉品质检测中的应用[D].吉林大学,2008.
    [155]张哲.仿生电子鼻传感器阵列设计及其在牛肉品质检验中的应用[D].吉林大学,2008.
    [156] Ishikawa S., Nakayama T., Watanabe M., Matsuzawa T.. Visualization of flowresistance in physiological nasal respiration[J]. Arch Otolaryngol Head NeckSurg.2006,132:1203-1209.
    [157] Schreck S, Sullivan KJ, Ho CM, Chang H.K. Correlations between flowresistance and geometry in a model of the human nose[J]. Journal of AppliedPhysiology,1993,75(4):1767-1775.
    [158] Keyhani K., Scherer P., Mozell M. Numerical simulation of airflow in thehuman nasal cavity[J]. Journal of Biomech Engineering,1995,117:429-441.
    [159]石志标.智能仿生鼻及其应用研究[D].吉林大学,2004.
    [160]殷勇,田先亮,易军鹏,邱明.人工嗅觉技术在酒类鉴别中的应用现状与展望[J].食品科学.2003,24(8):204-206.
    [161]康昌鹤,唐省吾.气、湿敏感器件及其应用[M].北京:科学出版社,1985.
    [162]殷勇,高大启,吴守一.人工智能嗅觉系统及其在食品加工中的应用[J].洛阳工学院学报,1998,19(1):83-88.
    [163]殷勇.嗅觉模拟技术[M].北京:化学工业出版社.2005,19-22.
    [164]殷勇,邱明,刘云宏,易军鹏.酒类嗅觉鉴别系统的研制与实验[J].农业工程学报,2003,19(4):151-154.
    [165]史志存.电子鼻及其应用研究[D].中国科学院电子学研究所,2000.
    [166] Helli O., Siadat M., Lumbreras M. Qualitative and quantitative identification ofH2S/NO2gaseous components in different reference atmospheres using a metaloxide sensor array [J]. Sensors and Actuators B: Chemical.2004,103(1-2):403-408.
    [167] Ionescu R, Vancu A, Tomescu A. Time-dependent humiditycalibration for driftcorrections in electronic noses equipped with SnO2gas sensors[J]. Sensors andActuators B: Chemical,2000,69(3):283-286.
    [168] Mumyakmaz B., zmen A., Ebeo lu M.A., Ta alt n C., Gürol.. A study on thedevelopment of a compensation method for humidity effect in QCM sensorresponses[J]. Sensors and Actuators B: Chemical.2010,147(1):277-282.
    [169]傅均,李光,邢建国.聚苯胺/TiO2修饰的QCM气敏传感器及湿度影响研究[J].传感技术学报.2011,24(4):475-479.
    [170] Delpha C., Siadat M., Lumbreras M. Humidity dependence of a TGS gas sensorarray in an air-conditioned atmosphere[J]. Sensors and Actuators B: Chemical.1999,59(2-3):255-259.
    [171]盛海强.金属氧化物气敏传感器稳定性研究[D].华中科技大学,2008.
    [172]卜凡阳,文晓刚,万梅,刘锐,陈吕军,张永明.电子鼻预处理装置的开发及适用性研究[J].环境科学,2012,33(6):2083-2089.
    [173]庞全.采用MOS气敏阵列与B-P网络的气体分析方法研究[J].传感器技术,1997,16(1):12-14.
    [174]邹小波,赵杰文.支持向量机在电子鼻区分不同品种苹果中的应用[J].农业工程学报.2007,23(1):146-149.
    [175]张学工.关于统计学习理论与支持向量机[J].自动化学报.2000,26(1):1-4
    [176]管彬彬,赵杰文,林颢.嗅觉可视化技术鉴别不同原料和不同批次的食醋[J].农机化研究,2013,11:202-205.
    [177]殷勇,邱明.一种基于高斯核的RBF神经网络学习算法[J].计算机工程与应用,2002,38(21):118-119,178.
    [178]蒋爱民.畜产食品工艺学[M].北京:中国农业出版社,2008.
    [179]田清涞.普通生物学[M].北京:海洋出版社,1998.
    [180]陆婉珍.现代近红外光谱分析技术(第二版)[M].北京:中国石化出版社,2007.
    [181] Sanchez M. S., Sarabia L. A. Efficiency of multi-layered feed-forward neuralnetworks onclassification in relation to linear discriminant analysis, quadraticdiscriminant analysis and regularized discriminant analysis [J]. Chemometricsand Intelligent Laboratory Systems.1995,28(2):287-303.
    [182]孙永海,孙钟雷,李宇.基于遗传组合网络的肉用人工嗅觉系统[J].吉林大学学报(工学版).2007,37(5):1209-1213.
    [183]王耀南,李树涛.多传感器信息融合及其应用综述[J].控制与决策.2001,(5):518-522.
    [184]潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报.2003,(4):599-615.
    [185]郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报.1994,(3):1-11.
    [186]张彦铎,姜兴渭.多传感器信息融合及在智能故障诊断中的应用[J].传感器技术.1999(03):22-26.
    [187]郭丽艳.基于BP网络特征级信息融合及在目标识别中的应用研究[D].武汉大学.2004.
    [188]李强.手部特征识别及特征级融合算法研究[D]:北京交通大学.2006.
    [189]刘镝,孙冬梅,裘正定.一种基于关系度量融合框架的说话人认证特征级融合算法[J].自动化学报.2011,(12):1503-1513.
    [190]刘群,梁冰.信息特征级融合的范例产生式方法.中国造船工程学会电子技术学术委员会2006学术年会论文集(下册)[C].中国造船工程学会电子技术学术委员会:,2006:5.
    [191]王风华,孟文杰.一种基于特征级融合的多模态生物特征识别方法[J].科学技术与工程.2012,(13):3134-3138.
    [192]田其冲,郑卫国,孙大雷.独立分量分析及其应用[J].电脑知识与技术.2009,5(18):5010-5012.
    [193]蒋鼎国,周红标,耿忠华.基于PSOSVM的白酒品质鉴别电子鼻[J].中国酿造.2011,(11):149-152.
    [194]金翠云,崔瑶,王颖.基于核PCA与SVM相结合的电子鼻模式识别算法研究[J].北京化工大学学报(自然科学版).2012.39(2):106-109.
    [195]唐月明,王俊.电子鼻技术在食品检测中的应用.2006,(10):169-171.
    [196] Kennedy J, Eberhart R.C. Particle swarm optimization[C]. IN proceedings ofthe1995IEEE International Conference on Neural Networkds,1995,4:1942-1948.
    [197]柳莹莹.基于量子进化计算的数据聚类和图像分割[D].西安电子科技大学,2010.
    [198]刘静,管骁.基于PSO结合SVM的肉品新鲜度判别方法[J].江苏大学学报(自然科学版).2012,22(2):1671-7775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700