用户名: 密码: 验证码:
物流匹配问题的调度模型和算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
商务活动的飞速发展加速了物流行业的发展。随着全球经济及电子商务的不断推进,物流成本在整个成本中所占的比重越来越大,物流的有效性问题也变得越来越突出。同发达国家相比,中国的物流绩效指数排名较低,这说明我国的物流效率尚需提高。资料显示,我国公路运输中车辆的空载率约为40%,而美国仅为10%。高空载率不仅带来了资源的浪费,还对交通、环境等带来巨大影响。
     随着信息技术、通信技术及人工智能技术的发展,充分挖掘既有物流资源潜力,提高物流资源利用率,符合目前我国的发展要求。众所周知,车辆资源是非常核心的物流资源,采取有效措施提高车辆满载率,对提高物流效率具有重要意义。国内外学者提出的“协同物流”、“运输协作”等概念,以及政府部门的“共同配送”的建议,都是围绕如何提高车辆满载率而提出的。
     在物流领域中,进行车辆运力搭配,充分挖掘物流运力的问题可归结为一类物流车辆合乘匹配问题,简称车辆合乘匹配问题。如何选择合适线路,使得多辆车在运载过程中发挥最大运力,同时使得平均成本最小化,就是物流匹配问题的研究目标。显而易见,合乘产生的费用分摊到所有参与者,如果调度得当,对物流参与者来说,无疑可大大降低其成本输出,提高经济效益,这对解决我国目前物流行业中存在的运输成本居高不下的问题具有重要意义。在载人交通领域,也存在着同物流领域类似的问题。世界发达国家如美国、德国、新加坡等,早在上个世纪70年代就已开始所谓“合乘”的尝试,其政策、基础设施及技术相对成熟。我国近年来经济飞速发展,汽车保有量呈快速增长趋势,由此带来了一系列社会问题,如交通堵塞、环境污染、噪声污染等,民间团体和学术界也开始探索解决该问题的政策及技术手段,“拼车”、“搭便车”的概念被提出,国内多个一线城市也开始了一些尝试。
     从流通的角度出发,货物和乘客都可合并理解为服务需求,而匹配的目的就是在满足(或尽量满足)服务需求的前提下,以较小的成本,将其从出发地输送到目的地,两者本质上具有相对一致性,均可归结到车辆合乘匹配问题。综上所述,物流匹配问题作为流通领域的关键技术问题,具有重要的理论研究价值和实际应用价值,本文研究就是基于此而展开的。
     本文的主要研究内容包括以下几个方面。
     1、对物流匹配问题中确定性单车辆物流合乘匹配问题进行研究。根据服务需求及车辆的位置关系、时间窗口约束等,将多个服务需求分配到某一辆车上,然后研究车辆如何以低成本方式实现搭乘,并尽量提高搭乘成功率。针对现代物流中的车辆调度问题,提出物流调度问题中的确定性单车辆物流合乘匹配问题—SVLRMP问题。对该问题进行了形式化定义,确定了其目标函数及约束条件;提出基于先验聚类的匹配度聚类启发式算法—MDCA算法;在具体路径优化过程中,构建了多种群的竞争-捕食协同进化混合模型,基于群落之间的均匀性指标指导协同进化遗传算法的执行,并将之应用于单车辆物流合乘匹配问题中。数值实验说明MDCA算法能以较高的准确性选择服务需求,且能在较短时间内获得搭乘方案,并有效降低车辆自身所承担的成本。
     2、在单车辆物流合乘匹配基础上,考虑车辆之间的协作,将单车辆问题扩展为确定性多车辆问题。研究多车辆物流合乘匹配问题,根据车辆同服务需求的匹配情况,研究服务需求的合理聚类方案,将服务需求唯一分配到一辆车上;研究多车辆物流合乘匹配优化方案。针对现代物流中车辆协同调度问题,在SVLRMP问题基础上,首次提出物流调度中的确定性多车辆物流合乘匹配问题—MVLRMP问题。对该问题进行了形式化定义,确定了其目标函数及约束条件;针对多车辆协同调度的需求,提出利用两阶段聚类启发式算法—TSCA算法。该算法包括两个聚类过程:第一个过程称为一次聚类过程,基于匹配度的启发式聚类过程生成匹配度矩阵,经过行列变换后生成聚集矩阵,然后利用轮赌策略将服务需求唯一确定到某一车辆上;第二个过程称为二次聚类过程,基于解决SVLRMP问题的先验聚类算法实现单车辆的合乘匹配过程。考虑一次聚类过程的概率性特点,为提高聚类准确性并增加车辆间的协同性,提出服务需求的主动迁移(包括迁出过程及迁入过程)及扰动策略。通过对中国济南市的10辆车及30个搭乘服务需求的案例结果分析,TSCA算法能够在较快时间给出优秀的搭乘方案,整体搭乘成本及搭乘成功率较高,且表现出了一定的车辆协同性。
     3、在确定性多车辆物流合乘匹配问题基础上,引入换乘特点,允许一个服务需求先后搭乘多辆车以完成其目标。换乘的引入,增加了路径寻优难度,本研究尝试将服务需求根据时间窗口的松弛程度对客户进行简单分级,先满足优先级高的服务需求,再满足优先级低的服务需求,研究尽量提高搭乘成功率的方法。针对物流调度过程中经常出现的服务需求换乘现象,将换乘的概念引入多车辆物流合乘匹配中,提出支持换乘的多车辆合乘匹配问题--MVLRMP-T问题。该问题摒弃一个服务需求只能接受一个车辆的服务的约束,可进一步提高搭乘成功率。对该问题进行了形式化定义,研究了换乘点的确定方法,确定了其目标函数及约束条件。本文提出通过MVLRMP的寻优结论形成MVLRMP-T问题的路网结构,并基于改进蚁群算法进行换乘路线的选择和确定。在进行搭乘寻优时采取“先串行寻优,后合并微调”的寻优策略。实验结果表明,改进蚁群算法可有效支持换乘,表现出较强的适应能力。
     4、在确定性多车辆物流合乘匹配问题基础上,引入路网时变特征,将确定性问题扩展为具有一定动态性的物流合乘匹配问题。研究路网时空特征对车辆速度的影响,以及在此特征下如何进行路线寻优的方法。针对实际物流调度过程中路网的时变特征,在前述研究的基础上,提出基于路网时空特征的多车辆物流合乘匹配问题—MVLRMP-ST问题。该问题充分考虑路网的时空特征,同实际应用更为符合。对MVLRMP-ST问题进行了形式化定义,松弛了原MVLRMP问题中有关时间窗口的约束,提出解决该问题的TSCA-ST算法。TSCA-ST算法是TSCA算法的扩展,车辆的速度根据路网特征而变化;对车辆通过路段虚拟行使时间、路段实际行使时间及车辆通过某路段所跨越的时段数K进行了确定,提出车辆速度的确定方法,并考虑了路网环境特征对路径质量的影响。为验证算法的有效性,本研究以山东高速公路网及山东境内的国省道网络为基础,构造了本实验所运行的时变网络,并设计了相关实验。实验中,车辆类型具有异构性,路段特征也具有异构性,同时还考虑了环境变化对车辆路径的可靠性影响,这使得实验结果具有很强的使用价值。我们设计了车辆在不同工作日类型中的搭乘实验,实验效果良好,可为实际物流搭乘提供备选方案,具有很高的实用价值。
The rapid development of business activities speeds up the development of logisticsindustry. With the advancement of global economy and electronic business, the proportion ofcosts of logistics is bigger and bigger, thus the effectiveness problem of logistics has becomemore and more prominent. Compared with developed countries, China's logistics performanceindex is low, which shows that our country’s logistics efficiency still needs to be improved. Thedata shows that, the empty loading ratio of vehicles in highway transportation of our country isabout40%, while it is only10%in the United States. High empty loading ratio not only bringsabout a waste of resources, but also has great influence on traffic, environment etc.
     With the development of information technology, communication technology and artificialintelligence technique, fully tapping potential of existing logistics resources and improving useefficiency of logistics resources conform to the current development requirements of our country.It is well known that vehicles are the core of logistics resources, thus taking effective measuresto increase the vehicle load factors is of vital importance for improving logistics efficiency.Concepts like collaborative logistics and transport cooperation put forward by scholars both athome and abroad, as well as the joint distribution advice of the government department are allput forward around how to improve the vehicle load factors.
     In the field of logistics, the problems of vehicle capacity collocation, fully excavatinglogistics capacity can be summed into the class of logistics carpooling matching problem, namedcarpooling matching problem in short. How to choose the right line to make cars exert maximumcapacity in the process of carrying, and minimize average costs at the same time, is the researchpurpose of logistics matching problem. Obviously, expenses incurred are shared to allparticipants. If scheduled properly, for logistics participants, it will undoubtedly greatly reducethe cost of output and improve economic benefit, which is of great significance for solving thehigh transportation cost problem existing in current logistics industry of our country. In the fieldof manned transport, similar problem also exists. The world developed countries like America,Germany, and Singapore etc. began to try carpooling in the1970s and their policy, infrastructureand technology are relatively mature. In recent years, with the rapid development of economy,the vehicle population is growing rapidly thus bringing about a series of social problems, such astraffic jam, environment and noise pollution etc. Civil society and the academia also beginsexploring policy and technical means to solve this problem, concepts of carpooling and freeriding are put forward and many first-tier cities begin to have a try.
     From the perspective of circulation, cargo and passengers can be combined to be understoodas the service demand, and the purpose of matching is under the premise of meeting or trying tomeet service demand, to transport from the source to the destination with less cost. Nature ofthese two is relatively consistent and can be attributed to carpooling matching problem. To sumup, the logistics matching problem as the key technical problem in the field of circulation hasimportant theoretical research and practical application value, based on which research of this paper unfolds.
     Main research contents of this paper include the following aspects.
     1. Research on the definitive single vehicle logistics carpooling matching problem inlogistics matching problem. Based on service demand, vehicle positional relationship, timewindow constraint etc. allocate several service demands to one car and study how vehicles canachieve carpooling at low costs and try to improve carpooling success rate. As for the vehiclescheduling problem in modern logistics, the definitive single vehicle logistics carpoolingmatching problem in logistics scheduling problem----SVLRMP problem is put forward. Itsdefinition is formalized and objective function and constraint conditions are determined; thematching degree clustering heuristic algorithm based on prior clustering----MDCA algorithm isproposed; in specific path optimization process, the competition-prey co-evolutionary hybridmodel among multiple species is built, based on the uniformity index among communitiesguiding the execution of co-evolution genetic algorithm, and applying it to single vehiclelogistics carpooling matching problem. Numerical experiment shows that the MDCA algorithmcan choose service requirement with high accuracy, get carpooling solution in short time, andeffectively reduce the costs that vehicles bear.
     2. On the basis of single vehicle logistics carpooling matching, consider cooperationamong vehicles and extend single vehicle problem to definitive multi-vehicles. Studymulti-vehicles logistics carpooling matching problem; study proper clustering scheme of servicedemands based on matching situation of vehicles with same service requirements and allocateservice demands solely to one car; study multi-vehicles logistics carpooling matchingoptimization plan. Aiming at vehicle co-scheduling problem in modern logistics, on the basis ofSVLRMP problem, definitive multi-vehicle logistics carpooling matching problem in logisticsscheduling---MVLRMP problem is put forward. Its definition is formalized and objectivefunction and constraint conditions are determined; aiming at the requirement of multi-vehicleco-scheduling, the two-stage clustering heuristic algorithm----TSCA algorithm is proposed Thealgorithm includes two clustering processes: the first is linear clustering process, based on thematching degree of heuristic clustering process to generate matching degree matrix, throughtransformation of ranks to generate aggregation matrix, and then using roulette strategy todetermine service requirements solely to one vehicle; the second process is called secondaryclustering process, based on the prior clustering algorithm solving SVLRMP problem to realizethe single vehicle carpooling matching process. Considering the probabilistic characteristic oflinear clustering process, in order to improve clustering accuracy and increase coordinationamong vehicles, the active migration (including emigration and immigration process) andperturbation strategy of service demand are put forward. By result analysis of10vehicles and30carpooling service demands in Jinan, China, TSCA algorithm can give good carpooling plans inshort time with high overall carpooling costs and success rate, and present certain vehiclesynergy.
     3. On the basis of definitive multi-vehicles logistics carpooling matching problem,introduce transferring characteristic and allow one service demand to achieve its goal byriding several vehicles successively, which adds to difficulty of path optimization. This paper tries to simply classify service demands of clients according to relaxation degree of time window,first meeting service demands with high priority and then lowers, trying to find the way toimprove carpooling success rate. Aiming at the service demand transferring phenomenon thatoften appear in the process of logistics scheduling, the concept of transfer is introduced intomulti-vehicle logistics carpooling matching, and the multi-vehicle carpooling matching problemsupporting transfer----MVLRMP-T problem is put forward. The problem discards the constraintthat a service demand can only accept service from one vehicle, which can further improvecarpooling success rate. Definition of the problem is formalized, determination method oftransfer stop is studied and object function and constraint conditions are confirmed. In this paper,the road net structure of MVLRMP-T problem can be formed through optimization conclusion ofMVLRMP and transferring routes can be chosen and confirmed based on improving ant colonyalgorithm. When optimizing carpooling, optimization strategy of first serial optimize, thencombine to fine tune is taken. Experimental results show that improving ant colony algorithm caneffectively support the transfer, presenting strong adaptive ability.
     4. On the basis of definitive multi-vehicles logistics carpooling matching problem,introduce time-varying characteristic of road net and extend definitive problem to logisticscarpooling matching problem with certain dynamism, to study the influence of temporaland spatial characteristics of road net on vehicle speed and the searching method of pathoptimization under these characteristics. According to the time-varying characteristic of roadnet in actual logistics scheduling process, based on previous study, the multi-vehicle logisticscarpooling matching problem based on temporal and spatial characteristics of road net---MVLRMP-ST problem is proposed. The problem fully considers the temporal and spatialcharacteristics of road net as well as the environmental change situation, being more suitable toactual application. Formalize definition of the MVLRMP-ST problem, slack constraints on timewindow in former MVLRMP problem, and put forward the TSCA-ST algorithm to solve thisproblem. TSCA-ST algorithm is extension of the TSCA algorithm, vehicle's speed changesaccording to characteristics of road net; determine the virtual travel time, actual travel time andtime frame K of the road segment that vehicle passes, put forward the determination method ofvehicle speed, and consider the influence of environmental characteristics of road net on thequality of the path. To verify validity of the algorithm, this study based on Shandong highwaynetwork and national and provincial network within Shandong province, constructs thetime-varying network for conducting this experiment, and designs relevant experiments. In thisexperiment, both the vehicle type and road characteristics are heterogeneous, and the reliableimpact of environmental changes on vehicle routing is taken into consideration, which makesresults of the experiment have strong use value. We design carpooling experiments of vehicles ondifferent workdays, whose effects are quite good and can provide alternatives for actual logisticscarpooling, having high practical value.
引文
[1]王涛,王刚.一种多式联运网络运输方式的组合优化模型[J].中国工程,2005,7(10):46-50.
    [2]毛光烈.以第四方物流带动现代物流体系建设-以宁波市为例[J].中国软科学,2010,4,177-182.
    [3] Ronnqvist. M, Bernstein. F, Caldentey. R, D'Amours. S. Special issue on supply chain management andcollaborative logistics[J]. International transactions in Operational Research.2012,19(9),631-632.
    [4] NielsA.H.Agatz, Alan L. Erera, Martin W.P. Savelsbergh, Xing Wang. Dynamic ride-sharing: Asimulationstudy in metro Atlanta[J]. Transportation Research Part B,2011(45),1450-1464.
    [5] Goncalo Correia, Jose Manuel Viegas. Carpooling and carpool clubs: Clarifying concepts and assessingvalue enhancement possibilities through a Stated Preference web survey in Lisbon, Portugal[J].Transportation Research Part A,2011(45),81-90.
    [6] G.B. Dantzig, J.H. Ramser. The truck dispatching problem[J]. Management Science,19596:80-91.
    [7] Bahman Kalantari,Arthur V. Hill, Sant R.Arora.An algorithm for the traveling salesman problem withpickup and delivery customers[J]. European Journal of Operational Research,1985.12,22(3):377-386.
    [8]钟石泉,贺国光.多车场有时间窗的多车型车辆调度及其禁忌算法研究[J].运筹学学报,2005.12,9(4):67-73.
    [9]侯爽.多车场整车任务调度问题研究[D].山东大学,2012.
    [10]马建华,房勇,袁杰.多车场多车型最快完成车辆路径问题的变异蚁群算法[J].系统工程理论与实践,2011,31(8):1508-1516.
    [11] Rahimi-VahedA, Crainic T G, Gendreau M, et al.Apath relinking algorithm for a multi-depot periodicvehicle routing problem[J]. Journal of Heuristics,2013:1-28.
    [12]Brandal J.Atabu search algorithm for the heterogeneous fixed fleet vehicle routing problem[J]. Computers&Operations Research,2008,38(1):140-151.
    [13]熊浩,胡列格.多车型动态车辆调度及其遗传算法[J].系统工程,2009,27(10):21-24.
    [14]Subramanian A, Penna P H V, Uchoa E,et al.Ahybrid algorithm for the heterogeneous fleet vehiclerouting problem[J]. European Journal of Operational Research,2012,3(7):1021-1032.
    [15] Repoussis P P, Tarantilis C D. Solving the fleet size and mix vehicle routing problem with time windowsvia adaptive memory programming[J].Transportation Research Part C,2010,18(5):695-712.
    [16]张景玲,赵燕伟,王海燕等.多车型动态需求车辆路径问题建模及优化[J].计算机集成制造系统,2010,16(3):543-550.
    [17]葛显龙,许茂增,王伟鑫.多车型车辆路径问题的量子遗传算法研究[J].中国管理科学,2013,V(1):125-133.
    [18] Russell Bent, Pascal Van Hentenryck. Atwo-stage hybrid algorithm for pickup and delivery vehiclerouting problems with time windows[J]. Computer&Operations Research,2006,33:875-893.
    [19] Huey-Kuo Chen, Che-Fu Hsueh, mei-Shiang Chang. The real-time time-dependent vehicle routingproblem[J].2006,42:383-408.
    [20] Jean-Yves Potvin, Christophe Duhamel, Francois Guertin.AGenetic Algorithm for Vehicle Routing withBackhauling[J]. Applied Intelligence,1996,6:345-355.
    [21] Irina Gribkovskaia, yvind Halskau sr., Gilbert Laporte, Martin Vl ek. General solutions to the singlevehicle routing problem with pickups and deliveries[J]. European Journal of Operational Research,2007.7,180(2):568-584.
    [22] H me, L.An adaptive insertion algorithm for the single-vehicle dial-a-ride problem with narrow timewindows[J]. European journal of Operational Research,2011.2,209(1):11-22.
    [23] Li J, Lu D, Dai M.A Hybrid Metaheuristic for the Multiple Depot Vehicle Routing Problems with MixPickups and Deliveries[J]. Advanced Materials Research,2012,538:3230-3234.
    [24]Tao ZHANG, Wen-xin TIAN, Yue-jie ZHANG, Shi-xin LIU, Improved Ant Colony System for VRPSPDwith Maximum Distance Constraint[J]. Systems Engineering-Theory&Practice,2008.1,28(1):132-140.
    [25]Anand Subramanian, Eduardo Uchoa,Artur Alves Pessoa, Luiz Satoru Ochi, Branch-and-cut with lazyseparation for the vehicle routing problem with simultaneous pickup and delivery, Operations ResearchLetters,2011.9,39(5):338-341.
    [26] José Miguel de Magalh es, Jorge Pinho de Sousa. Dynamic VRP in pharmaceutical distribution—a casestudy[J]. Central European Journal of Operations Research,2006.6,14(2):177-192.
    [27] Mitra S. Comparing. Static and Dynamic Policies for Vehicle Routing Problems with Backhauling andDynamic Customer Demands[J]. International Journal ofApplied Logistics (IJAL),2013,4(2):1-17.
    [28] Goodson J C, Ohlmann J W, Thomas B W. Rollout Policies for Dynamic Solutions to the MultivehicleRouting Problem with Stochastic Demand and Duration Limits[J]. Operations Research,2013,61(1):138-154.
    [29] Gupta A, Nagarajan V, Ravi R. Technical Note—Approximation Algorithms for VRP with StochasticDemands[J]. Operations Research,2012,60(1):123-127.
    [30] Petrakis I, Hass C, Bichler M. On the impact of real-time information on field service scheduling[J].Decision Support Systems,2012,53(2):282-293.
    [31] Cheong T, White C C. Dynamic traveling salesman problem: Value of real-time traffic information[J].Intelligent Transportation Systems, IEEE Transactions on,2012,13(2):619-630.
    [32] Lysgaard J. Reachability cuts for the vehicle routing problem with time windows[J]. European Journal ofOperational Research,2006,175(1):210-223.
    [33] Chuah K H, Yingling J C. Routing for a just-in-time supply pickup and delivery system[J]. TransportationScience,2005,39(3):328-339.
    [34] Golden B L,Assad AA. OR Forum—Perspectives on Vehicle Routing: Exciting New Developments[J].Operations Research,1986,34(5):803-810.
    [35]Assad AA. Modeling and Implementation Issues in Vehicle Routing[M]. Vehicle Routing: methods andStudies. Studies in Management Science and Systems,1988,16.
    [36] Desrochers M, Lenstra J K, Savelsbergh M W P, et al. Vehicle routing with time windows: optimizationand approximation[J]. Vehicle routing: Methods and studies,1988,16:65-84.
    [37] Desrosiers J, Dumas Y, Solomon M M, et al. Time constrained routing and scheduling[J]. Handbooks inoperations research and management science,1995,8:35-139.
    [38] Br ysy O, Gendreau M. Vehicle routing problem with time windows, Part I: Route construction and localsearch algorithms[J]. Transportation science,2005,39(1):104-118.
    [39] Br ysy O, Gendreau M. Vehicle routing problem with time windows, Part II: Metaheuristics[J].Transportation science,2005,39(1):119-139.
    [40]潘立军,符卓.求解带时间窗取送货问题的遗传算法[J].系统工程理论与实践,2012,32(1):120-126.
    [41]于滨,靳鹏欢,杨忠振.两阶段启发式算法求解带时间窗的多中心车辆路径问题[J].系统工程理论与实践,2012,32(8):1793-1800.
    [42]刘旺盛,杨帆,李茂青等.需求可拆分车辆路径问题的聚类求解算法[J].控制与决策,2012,27(4).
    [43]孙博.协同车辆路径问题模型及其算法研究[D].华南理工大学,2012.
    [44]欧阳涛.物流车辆路径问题算法研究[D].吉林大学,2011.
    [45] Lenstra J K, Kan AH G. Complexity of vehicle routing and scheduling problems[J]. Networks,1981,11(2):221-227.
    [46] Bramel J, Simchi-Levi D. On the effectiveness of set covering formulations for the vehicle routingproblem with time windows[J]. Operations Research,1997,45(2):295-301.
    [47] Clarke G, Wright J W. Scheduling of vehicles from a central depot to a number of delivery points[J].Operations research,1964,12(4):568-581.
    [48]张学志,陈功玉.车辆路线安排的改进节约算法[J].系统工程,2008,26(11):67-70.
    [49]刘家利,马祖军.存在车辆租赁及共享且有时间窗的多配送中心开环VRP[J].系统工程理论与实践,2013,33(3):666-675.
    [50] Solomon M M.Algorithms for the vehicle routing and scheduling problems with time windowconstraints[J]. Operations research,1987,35(2):254-265.
    [51] Solomon M M, Desrosiers J. Survey Paper—Time Window Constrained Routing and SchedulingProblems[J]. Transportation science,1988,22(1):1-13.
    [52] Bent R, Hentenryck P V.Atwo-stage hybrid algorithm for pickup and delivery vehicle routing problemswith time windows[J]. Computers&Operations Research,2006,33(4):875-893.
    [53] Ghoseiri K, Ghannadpour S F. Multi-objective vehicle routing problem with time windows using goalprogramming and genetic algorithm[J]. Applied Soft Computing,2010,10(4):1096-1107.
    [54] Erera AL, Morales J C, Savelsbergh M. The vehicle routing problem with stochastic demand and durationconstraints[J]. Transportation Science,2010,44(4):474-492.
    [55] Gillett B E, Miller L R.Aheuristic algorithm for the vehicle-dispatch problem[J]. Operations research,1974,22(2):340-349.
    [56] Thangiah S R. Vehicle routing with time windows using genetic algorithms[M]. Artificial IntelligenceLab., Slippery Rock Univ.,1993.
    [57] Gendreau M, Hertz A, Laporte G, et al.Ageneralized insertion heuristic for the traveling salesmanproblem with time windows[J]. Operations Research,1998,46(3):330-335.
    [58]Rego C, Roucairol C.A parallel tabu search algorithm using ejection chains for the vehicle routingproblem[M]//Meta-Heuristics. Springer US,1996:661-675.
    [59] Ben Atkinson J.Agreedy look-ahead heuristic for combinatorial optimization: An application to vehiclescheduling with time windows[J]. Journal of the Operational Research Society,1994:673-684.
    [60] Glover F. Future paths for integer programming and links to artificial intelligence[J]. Computers&Operations Research,1986,13(5):533-549.
    [61] Metropolis N, Rosenbluth AW, Rosenbluth M N, et al. Equation of state calculations by fast computingmachines[J]. The journal of chemical physics,1953,21:1087.
    [62] Kirkpatrick S, Jr. D G, Vecchi M P. Optimization by simmulated annealing[J]. science,1983,220(4598):671-680.
    [63]郎茂祥.装卸混合车辆路径问题的模拟退火算法研究[J].系统工程学报,2005,20(5):485-491.
    [64] Goldberg D E, Holland J H. Genetic algorithms and machine learning[J]. Machine learning,1988,3(2):95-99.
    [65] Kenneth A. De Jong. An analysis of the behavior of a class of genetic adaptive systems[D]. PhD thesis,Dept. of Computer and Comm. Sciences, Univ. of Michigan, AnnArbor, MI,1975. Univ. Microfilms,1975.
    [66] Goldberg D E, Holland J H. Genetic algorithms and machine learning[J]. Machine learning,1988,3(2):95-99.
    [67] Dorigo M, Maniezzo V, Colorni A.Ant system: optimization by a colony of cooperating agents[J].Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,1996,26(1):29-41.
    [68] Mazzeo S, Loiseau I.An ant colony algorithm for the capacitated vehicle routing[J]. Electronic Notes inDiscrete Mathematics,2004,18:181-186.
    [69]张涛,田文馨,张玥杰等.带车辆行程约束的VRPSPD问题的改进蚁群算法[J].系统工程理论与实践,2008,28(1):132-169.
    [70]陈萍.启发式算法及其在车辆路径问题中的应用[D].北京交通大学,2009.
    [71] Eberhart R, Kennedy J.Anew optimizer using particle swarm theory[C]//Micro Machine and HumanScience,1995. MHS'95., Proceedings of the Sixth International Symposium on. IEEE,1995:39-43.
    [72]张涛,张春梅,张玥杰.协同粒子群-模拟退火算法求解VRPSPD问题[J].系统管理学报,2009.12,18(6):681-685.
    [73] Teodorovi D, Dell’Orco M. Mitigating traffic congestion: solving the ride-matching problem by beecolony optimization[J]. Transportation Planning and Technology,2008,31(2):135-152.
    [74]王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78.
    [75]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].科学出版社,2004.
    [76]宁方华,陈子辰,熊励等.协同物流网络的任务协调决策模型及其求解算法[J].控制与决策,2007,22(1):109-112.
    [77]王钦,王炜,李铁柱.城市公交换乘枢纽规划方法[J].交通运输系统工程与信息,2004,4(3):82-85.
    [78]樊晓春,张雪英,刘学军等.一种公交换乘优化算法设计[J].地球信息科学学报,2009,11(2):157-160.
    [79]赵敏.公交换乘系统的算法研究与应用[D].中北大学,2009.
    [80]周伟,姜彩良.城市交通枢纽旅客换乘问题研究[J].交通运输系统工程与信息,2005,5(5):23-30.
    [81]何保红.城市停车换乘设施规划方法研究[D].南京:东南大学,2006.
    [82]彭群洁,徐良杰.铁路客运枢纽旅客离站换乘决策方法研究[J].武汉理工大学学报(交通科学与工程版),2013,37(1):192-195.
    [83] Manel S, Hayfa Z, Slim H, et al.Adistributed dijkstra's algorithm for the implementation of a Real TimeCarpooling Service with an optimized aspect on siblings[C]//the14Th International IEEE AnnualConference on Intelligent Transportation Systems (ITSC2011).2011:795-800.
    [84] Yan S, Chen C Y.Amodel and a solution algorithm for the car pooling problem with pre-matchinginformation[J]. Computers&Industrial Engineering,2011,61(3):512-524.
    [85]Agatz N, Erera A L, Savelsbergh M W P, et al. Dynamic ride-sharing: Asimulation study in metroAtlanta[J]. Procedia-Social and Behavioral Sciences,2011,17:532-550.
    [86] Schafer M D. Mobile dynamic ridematching and e-Ticketing: Acarriva-based concept to integrate PublicTransport and Carpooling[C]//Integrated and Sustainable Transportation System (FISTS),2011IEEEForum on. IEEE,2011:264-271.
    [87] Siddiqi Z, Buliung R. Dynamic ridesharing and information and communications technology: past,present and future prospects[J]. Transportation Planning and Technology,2013(ahead-of-print):1-20.
    [88] Szeto WY, Wong R C P, Wong S C, et al.Atime-dependent logit-based taxi customer-search model[J].International Journal of Urban Sciences,2013(ahead-of-print):1-15.
    [89] Tao C C. Dynamic taxi-sharing service using intelligent transportation system technologies[C]//WirelessCommunications, Networking and Mobile Computing,2007. WiCom2007. International Conference on.IEEE,2007:3209-3212.
    [90] Osswald S, Zehe D, Mundhenk P, et al. HMI development for a purpose-built electric taxi inSingapore[C]//Proceedings of the15th international conference on Human-computer interaction withmobile devices and services.ACM,2013:434-439.
    [91] Jung J, Jayakrishnan R, Park J Y, et al. Design and Modeling of Real-time Shared-Taxi DispatchAlgorithms[C]//Proceedings of the Transportation Research Board’s92thAnnual Meeting, Washington,DC.2013.
    [92] Shetty V K, Sudit M, Nagi R. Priority-based assignment and routing of a fleet of unmanned combat aerialvehicles[J]. Computers&Operations Research,2008,35(6):1813-1828.
    [93] Sawsan A. The Heterogeneous Routing problem with stochastic demand and client priority solving byclustering genetic algorithm[J]. Journal of Global Research in Computer Science,2013,4(3):74-79.
    [94] Tighe A, Smith F S, Lyons G. Priority based solver for a real-time dynamic vehicle routing[C]//Systems,Man and Cybernetics,2004IEEE International Conference on. IEEE,2004,7:6237-6242.
    [95] Bonsall P W. Car pooling in the USA: a British perspective[R].1979.
    [96] Ben-Akiva M, Atherton T J. Methodology for short-range travel demand predictions: analysis ofcarpooling incentives[J]. Journal of Transport Economics and Policy,1977:224-261.
    [97] Coltin B J, Veloso M. Towards ridesharing with passenger transfers[C]//Proceedings of the2013international conference on Autonomous agents and multi-agent systems. International Foundation forAutonomousAgents and Multiagent Systems,2013:1299-1300.
    [98] Mitrovic-Minic S, Laporte G. The pickup and delivery problem with time windows and transshipment[J].Infor-Information Systems and Operational Research,2006,44(3):217-228.
    [99] Cortés C E, Matamala M, Contardo C. The pickup and delivery problem with transfers: Formulation and abranch-and-cut solution method[J]. European Journal of Operational Research,2010,200(3):711-724.
    [100]刘智琦,李春贵.公交换乘算法的仿真研究[J].计算机仿真,2011,28(9):342-345.
    [101]汪江洪.公交换乘系统研究及其评价[D].西南交通大学,2006.
    [102]李书涛.城市轨道交通与常规公交换乘能力可靠性分析[D].北京:北京交通大学,2008.
    [103]许岩岩,翟希,孔庆杰等.高速路交通流短时预测方法[J].交通运输工程学报,2013.4,13(2):114-119.
    [104]Aziz H M A, Ukkusuri S V.An Approach to Assess the Impact of Dynamic Congestion in VehicleRouting Problems[M]//Advances in Dynamic Network Modeling in Complex Transportation Systems.Springer New York,2013:265-285.
    [105] PolimeniA, Vitetta A. Optimising Waiting at Nodes in Time-Dependent Networks: Cost Functions andApplications[J]. Journal of Optimization Theory andApplications,2013,156(3):805-818.
    [106] Dailey D J, Loseff D, Meyers D. Seattle smart traveler: dynamic ridematching on the World WideWeb[J]. Transportation Research Part C: Emerging Technologies,1999,7(1):17-32.
    [107] Buliung R N, Soltys K, Bui R, Habel C, Lanyon R. Catching a ride on the information super-highway:toward an understanding of internet-based carpool formation and use[J]. Transportation,2010,37(6):849-873.
    [108]黄征宇.阿里巴巴“芝麻开门”智能物流[J].中国信息化,2013(1):50-51.
    [109] Ferguson E. The rise and fall of the American carpool:1970–1990[J]. Transportation,1997,24(4):349-376.
    [110]张瑾,何瑞春.解决动态出租车“拼车”问题的模拟退火算法[J].兰州交通大学学报,2008,27(3):85-88.
    [111]翟泳,杨金梁,连剑等.合乘出行信息检索的路径匹配算法[J].交通与计算机,2007,25(1):27-30.
    [112]王万良,黄海鹏,赵燕伟等.基于车辆共享的软时间窗动态需求车辆路径问题[J].计算机集成制造系统,2011,17(5):1056-1063.
    [113] Hillis W D. Co-evolving parasites improve simulated evolution as an optimization procedure[J]. PhysicaD: Nonlinear Phenomena,1990.6,42(1):228-234.
    [114]曹先彬,罗文坚,王煦法.基于生态种群竞争模型的协同进化[J].软件学报,2001,12(4):556-562.
    [115] Sim K B, Lee D W, Kim J Y. Game theory based coevolutionary algorithm: a new computationalcoevolutionary approach[J]. International Journal of Control, Automation, and Systems,2004.12,2(4):463-474.
    [116]胡仕成,徐晓飞,李向阳.项目优化调度的病毒协同进化遗传算法[J].软件学报,2004,15(1):49-57.
    [117]董红斌,黄厚宽,印桂生等.协同演化算法研究进展[J].计算机研究与发展,2008,45(3):454-463.
    [118]杨莉萍,黄厚宽,杨晓红.一种基于维度识别的协同进化算法[J].模式识别与人工智能,2008.8,21(4):453-461.
    [119]李碧,林土胜.基于竞争协同进化的改进遗传算法[J].深圳大学学报(理工版),2009.1,26(1):24-29)
    [120]胡静,曾建潮,谭瑛.动态环境下基于种群多样性的微粒群算法[J].系统仿真学报,2007.11,19(21):4932-4935.
    [121] Zengzhen SHAO, Hongguo WANG, Hong LIU, Xuechen ZHAO. Multi-Population Coevolution Basedon Competition-predation Hybrid Model. Journal of Computational Information Systems,2011,7(3):886-895.
    [122]李茂军.单亲遗传算法理论及应用[D].湖南大学,2002.
    [123] Herbawi W, Weber M. Comparison of multiobjective evolutionary algorithms for solving themultiobjective route planning in dynamic multi-hop ridesharing[C]//Evolutionary Computation (CEC),2011IEEE Congress on. IEEE,2011:2099-2106.
    [124] Herbawi W, Weber M. Evolutionary multiobjective route planning in dynamic multi-hopridesharing[M]//Evolutionary Computation in Combinatorial Optimization. Springer Berlin Heidelberg,2011:84-95.
    [125]王万良,黄海鹏,赵燕伟等.基于车辆共享的软时间窗动态需求车辆路径问题[J].计算机集成制造系统,2011,17(5):1056-1063.
    [126]刘宇哲,郭延娜.对高空载率的现状及对策探讨[J].商品与质量:理论研究(6):36-36.
    [127] Buliung R N, Soltys K, Bui R, et al. Catching a ride on the information super-highway: toward anunderstanding of internet-based carpool formation and use[J]. Transportation,2010,37(6):849-873.
    [128] Horn M E T. Multi-modal and demand-responsive passenger transport systems: a modelling frameworkwith embedded control systems[J]. Transportation Research Part A: Policy and Practice,2002,36(2):167-188.
    [129] Balseiro S R, Loiseau I, Ramonet J.An ant colony algorithm hybridized with insertion heuristics for thetime dependent vehicle routing problem with time windows[J]. Computers&Operations Research,2011,38(6):954-966.
    [130] Bullnheimer B, Hartl R F, Strauss C.An improved ant System algorithm for the vehicle RoutingProblem[J].Annals of Operations Research,1999,89:319-328.
    [131] Tuba M, Jovanovic R. Improved ACO Algorithm with Pheromone Correction Strategy for the TravelingSalesman Problem[J]. International Journal of Computers Communications&Control,2013,8(3):477-485.
    [132] Bai J, Yang G K, Chen YW, et al.Amodel induced max-min ant colony optimization for asymmetrictraveling salesman problem[J]. Applied Soft Computing,2013,13(3):1365-1375.
    [133]吴华锋,陈信强,毛奇凰等.基于自然选择策略的蚁群算法求解TSP问题[J].通信学报,2013,34(4):165-170.
    [134]常刚,张毅,姚丹亚.基于时空依赖性的区域路网短时交通流预测模型[J].清华大学学报(自然科学版),2013(2):215-221.
    [135]李妍峰.时变网络环境下车辆调度问题研究[D].西南交通大学,2008.
    [136]谭国真,孙景昊,王宝财等.时变网络中国邮路问题的时间自动机模型[J]. Journal of Software,2011,22(6):1267-1280.
    [137]宋少忠,孔繁森.时变路网下VRP准时路径的选择[J].吉林大学学报(理学版),2012,3(50):309-314.
    [138]孙景昊.时变中国邮路问题的整数规划模型及算法研究[D].大连理工大学,2012.
    [139]李妍峰,高自友,李军.基于实时交通信息的城市动态网络车辆路径优化问题[J].系统工程理论实践,2013,33(7):1813-1819.
    [140]孙喜梅.城市路网实时动态交通信息的组合预测模型和方法研究[D].吉林大学,2002.
    [141] Cho D W, Lee Y H, Lee TY, et al. An adaptive genetic algorithm for the time dependent inventoryrouting problem[J]. Journal of Intelligent Manufacturing,2013:1-18.
    [142] Jiang L, Mahmassani H S. City Logistics: Freight Management with Time-Dependent Travel Times andApplication to Large-Scale Networks[C]//Transportation Research Board92nd Annual Meeting.2013(13-2963).
    [143]马华伟,靳鹏,杨善林.时变车辆路径问题的启发式算法[J].系统工程学报,2012,27(2):256-262.
    [144]辛飞飞,陈小鸿,林航飞.浮动车数据路网时空分布特征研究[J].中国公路学报,21(4):105-110.
    [145]赵娜.动态路网的分布统计特征分析及应用[D].华南理工大学,2012.
    [146]马林才,许玮珑,刘大学.基于小波变换的城市市区典型路段交通流量预测[J].控制与决策,2011,26(5):789-793.
    [147] Ichoua S, Gendreau M, Potvin J Y. Vehicle dispatching with time-dependent travel times[J]. Europeanjournal of operational research,2003,144(2):379-396.
    [148] DEWILDE T, CATTRYSSE D, COENE S, et al. Heuristics for the traveling repairman problem withprofits[J]. Computers&operations research,2013,40(7):1700-1707.
    [149] Malandraki C, Daskin M S. Time dependent vehicle routing problems: Formulations, properties andheuristic algorithms[J]. Transportation science,1992,26(3):185-200.
    [150] Malandraki C, Dial R B. Arestricted dynamic programming heuristic algorithm for the time dependenttraveling salesman problem[J]. European Journal of Operational Research,1996,90(1):45-55.
    [151] Ichoua S, Gendreau M, Potvin J Y. Vehicle dispatching with time-dependent travel times[J]. Europeanjournal of operational research,2003,144(2):379-396.
    [152] Hill AV, Benton W C. Modelling intra-city time-dependent travel speeds for vehicle schedulingproblems[J]. Journal of the Operational Research Society,1992:343-351.
    [153]李妍峰,李军,高自友.时变网络环境下旅行商问题研究[J].系统工程学报,2010,25(5):585-591.
    [154]赵娜.动态路网的分布统计特征分析及应用[D].华南理工大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700