基于PZT的高可靠铁电存储器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电存储器是将铁电薄膜与传统的硅基半导体集成的新一代可擦写随机存储器,具有非易失、低功耗、高速读写、长寿命和抗辐照等优点,被认为是下一代最具前途的主流存储器之一。目前,我国对铁电存储器的需求十分迫切,而铁电存储器的研制是一个高投入的领域,涉及到材料学、微电子学以及辐射加固等交叉学科,目前我国在铁电存储器的研制方面仍处于基础研究阶段,尚有大量的关键性问题亟待突破与解决。本文围绕高可靠铁电存储器研制领域中若干关键技术进行了深入的研究。
     1.基于国内研制条件,成功实现了完整的铁电存储器工艺集成。本文采用射频磁控溅射法,研究了溅射功率对锆钛酸铅(PZT)铁电薄膜性能的影响,得到了最佳的溅射功率;研究了退火温度、保温时间等对薄膜剩余极化强度、漏电流、结晶取向以及表面形貌等的影响,得到了优化的退火条件;突破了小尺寸铁电电容的刻蚀以及消除刻蚀损伤的技术;研究了PZT铁电薄膜在不同热处理环境下铅的挥发性问题以及对底层CMOS器件的影响;研究了还原性氢气气氛对薄膜性能的影响及其防护措施;解决了工艺集成过程中薄膜起泡以及开裂等问题,成功完成了铁电电容工艺与CMOS工艺的集成,为铁电存储器的研制奠定了坚实的基础。
     2.验证了修正的铁电电容模型的适用性。对已有模型进行修正,利用此模型,设计并实验验证了2T-2C结构铁电存储单元的读写电路,分析了铁电电容与位线电容的匹配性问题。芯片测试结果表明,集成铁电存储器单元的读写功能正确,不仅成功验证了铁电单元存储过程的有效性和模型的准确性,而且通过调节位线寄生电容大小,可得到最大读出信号差(即读出容差),因此可用于指导电路设计,提高信号可靠性。在此基础上,设计和优化了1Kbit的并行铁电存储器电路并成功流片。该成果为大容量高可靠铁电存储器的进一步研制奠定了坚实的基础。
     3.实验研究了一种新结构的非破坏性读出的铁电场效应晶体管。利用多晶硅/二氧化硅/硅结构具有良好的界面态、漏电流小,以及PZT薄膜在Pt电极上具有良好结晶性能的特点,制备了结构为Pt/PZT/Pt/Ti/Poly-Si/SiO2/Si的铁电场效应晶体管。测试结果表明,该晶体管在±5V的写入电压下,具有1.5V的存储窗口,开/关电流比大于104,栅极漏电流小于10-13A;其次研究了n沟道铁电场效应晶体管的铁电电容与氧化层电容面积比(SOX/SF)对存储窗口的影响。
     4.将PZT铁电薄膜应用到LDMOS器件中,首次实现了高压功率器件的存储功能。器件测试结果表明,PZT薄膜不仅使LDMOS器件的耐压提高了3倍,而且该LDMOS在±10V的栅压下,具有2.2V的存储窗口,开/关电流比大于104,表现出良好的存储功能。
     5.实验研究了铁电存储器和铁电场效应晶体管的总剂量辐射效应。结果表明,未加固的铁电存储器的抗总剂量能力均低于100krad(Si)。为此,研究了铁电存储器抗总剂量的方法。另外,提出并实验验证了一种可用于高性能铁电存储器设计的加固型NPN管。测试结果表明,在总剂量为100krad(Si)的辐射条件下,所制备的加固型NPN管辐照后的电流增益比常规结构的同比高10%~20%,有效提高了器件的抗总剂量能力,这种加固措施可用于BiCMOS工艺的高性能铁电存储器的设计。
     6.分析了铁电存储器单粒子翻转的机理,提出了一种抗单粒子的铁电存储器读出电路器件结构,通过采用部分绝缘硅技术在器件敏感节点引入部分埋氧层,同时采用PN结埋层的方法,可有效降低单粒子瞬态电流脉冲时间和大小,减少积累电荷,降低积累电荷对铁电电容电荷的影响,提高铁电存储器抗单粒子效应的能力,而且可避免自热效应。另外,提出了一种采用双向互锁存结构(DICE)+铁电电容的存储单元结构,该结构具有高抗单粒子翻转的能力和非挥发性的特点,可应用于抗单粒子高速非挥发存储的领域。
Ferroelectric random access memory (FRAM) is a new semiconductor memory, inwhich ferroelectric material is integrated with conventional semiconductor technologyas storage dielectric. Because of the advantages of nonvolatile, low power consumption,fast access time, high endurance and high radiation tolerance, FRAM is regarded as oneof the vigorous next-generation semiconductor memory. Nowadays, the requirement ofFRAM is urgent for China; however, a great number of key technical problems areeager to be solved. Based on the above background,some key research works have beendone in this dissertation aimed at FRAM. The main contents are as following:
     1.The integrated process of FRAM is studied and successfully accomplished. Thelead zirconate titanate (PZT) thin films are deposited by the radio frequency magnetronsputtering. The effects of the sputtering power, the annealing method and the annealingtemperature on the PZT film’s performance are studied, including remnant polarization,leak current, crystal phase and so on. The optimized sputtering power and annealingmethod are obtained. The etch technology of PZT film, etching damage andcorresponding recovery methods are investigated by several experiments. The volatilityof lead from the PZT thin film at different temperature has been investigated, and theeffects of ferroelectric capacitors process on the CMOS devices and circuits have beenanalyzed. The hydrogen-induced damage to the PZT film and defendable ways areresearched. Other problems in the integration process, such as the hilloch formation andcrack of the PZT,are analyzed and solved. Based on the optimized fabrication process,ferroelectric device testchips have been realized.
     2.Research and testing of FRAM capacitor model and cell signal. The ferroelectriccapacitor model of HSIM is amended by extracting model parameter from the hysteresisloops fabricated by UESTC. Based on the model, the ferroelectric2T-2C memory cell isdesigned and simulated. The affect of the total parasitic capacitance of the bit-line onsensing margin is analyzed. The integrated of ferroelectric process with CMOS processis accomplished and the chips of ferroelectric memory cell are tested. The maximalsensing margin about1.3V is obtained by adjusting parasitic capacitance of the bit-line. The results approves that the read and write operation of this circuit are correct and thesimulated model is accurate. Based on this model,1Kbit FRAM is desiged andoptimized. The FRAM prototypes are tested.
     3.A field effect transistor with gate stack of Pt/Pb(Zr_(0.52),Ti_(0.48))O_3/Pt/Ti/Poly-Si/SiO_2/Si is fabricated and tested. I-V and C-V memory window about1.5V are obtainedat a sweep voltage of±5V and an on/off source-drain current ratio of>104is achieved.The relation between the memory windows and the area ratio of SiO2capacitor and PZTcapacitor (SOX/SF) is researched.
     4.A novel application of PZT film in high voltage LDMOS device is proposed.The results show that the PZT LDMOS not only achieved triple breakdown voltagecompared with conventional LDMOS with SiO2dielectric, but also has a memorycharacterization. A drain current-gate voltage (Id-Vg) memory window of about2.2Vwas obtained at the sweep voltages of±10V for the350V LDMOS. The retention timeof about270s was recorded for the LDMOS through a controlled Id-Vg measurement.
     5.The radiation effects and hardening techniques of FRAM are researched. Atotal-dose hardened NPN bipolar transistor is proposed and fabricated. Theexperimental results indicate that after the radiation total dose of100krad(Si),the currentgain of the hardened NPN is greater10%~20%than the common NPN.
     6.The mechanisms of single-event upset in FRAM are analyzed by simulation anda novel single event radiation tolerant CMOS device structure is proposed. The singleevent transient voltage pulses height and width are reduced by introducing partial buriedoxide layer and extra doping layers in sensitive nodes. The structure can availablydecrease SEU sensitivity and alleviate the self-heating. In addition, a new nonvolatileDual Interlocked Cell (NV-DICE) storage element is proposed. The cell includes aDICE latch and four backup ferroelectric capacitors. It can perform store automaticallywhen the power is off abruptly and has high tolerance to SEU. The developed NV-DICEcan be applied to nonvolatile memory device which require high tolerance to SEU.
引文
[1] K. F. Strauss, T. Daud. Overview of radiation tolerant unlimited write cycle non-volatilememory[C]. IEEE Aerospace Conference Proceedings,2000,5:399-408
    [2] A. K.Sharma.曾莹,伍冬,等译.先进半导体存储器—结构、设计与应用[M].北京:电子工业出版社,2004:1-8
    [3] J. F. Scott. Applications of modern ferroelectrics[J]. Science,2007,315:954-959
    [4] M. Dawber, K. M. Rabe, and J. F. Scott. Physics of thin-lm ferroelectric oxides[J]. Reviews ofModern Physics,2005,77(4):1083-1130
    [5] L. Mickael. Ferroelectrics–Applications[M]. Croatia:InTech,2011,35-40
    [6] J. F. Scott.朱劲松,吕笑梅,等译.铁电存储器[M].北京:清华大学出版社,2004,2-8
    [7]翟亚红.铁电存储器的设计及工艺研究[D].成都:电子科技大学,2005,1-2
    [8] Grandis pioneer in STT-RAM Technology[EB/OL]. http://sttram.com/, August21,2011
    [9] Ramtron datasheet[EB/OL].http://www.ramtron-china.com/products/low-energy-memory/,December25,2012
    [10]汽车和物联网领跑铁电存储器市场[EB/OL]. http://www.hqew.com/info-182154.html,December8,2010
    [11] Ramtron. RamTRON(铁电)半导体[EB/OL]. www.zlgmcu.com/catalog/ramtron.pdf, July26,2011
    [12] H. Ishiwara, M. Okuyama, Y. Arimoto. Ferroelectric randomndamentals and applications [M].Berlin: Springer,2004,71-73
    [13] G. H. Haertling. Ferroelectric ceramics: history and technology[J]. American Ceram Society,1999,82[4]:797-818
    [14] F-RAM technology brief[EB/OL]. http://www.ramtron.com. July6,2012
    [15]翟亚红,李威,李平,等.抗辐射铁电存储器的研究进展[J].材料导报,2012,26(12):34-38
    [16] Ferroelectric RAM[EB/OL]. http://en.wikipedia.org/wiki/Ferroelectric_RAM. July11,2012
    [17] J. Eliason, P. Staubs, J. Groat, J. Rodriguez. Composite bitmap visualization techniques foradvanced ferroelectric memories[C].17th IEEE International Symposium on the Applications ofFerroelectrics,2008,1-4
    [18]东芝公司成功开发世界最大最速FeRAM. http://nbpc.chinabyte.com/19/8707019.shtml.August10,2009
    [19] Cypress和Ramtron达成并购协议[EB/OL].http://www.21ic.com/csdt/201211/150504.htm,2012-11-7
    [20] C. Verbeck, P. Gaucher. Nuclear evaluation of PZT thin films for non volatile memories[C].Second European Conference on Radiation and its Effects on Components and Systems,1993,166-173
    [21] J. R. Schwank, R. D. Nasby, S. L. Miller, et al. Total-dose radiation-induced degradation of thinfilm ferroelectric capacitors[J]. IEEE Transactions on Nuclear Science,1990,37(6):1703-1712
    [22] J. F. Scott, C. A. Araujo, H. B. Meadows, et al. Radiation effects of ferroelectric thin-filmmemories: Retention failure mechanisms [J]. Journal of Applied Physics,1989,66(3):1444-1453
    [23] J. X. Gao, L. R. Zheng, B. P. Huang, et al. Total dose radiation effects of Pt/PZT/Ptferroelectric capacitors fabricated by PLD method[J]. Semiconductor Science Technology,1999,14(9):836-839
    [24] J. M. Benedetto, R. A. Moore, F. B. McLean, et al. The effect of ionizing radiation on sol-gelferroelectric PZT capacitors[J]. IEEE Transactions on Nuclear Science,1990,37(6):1713-1717
    [25] S. C. Lee, G. Teowee, R. D. Schrimpf, et al. Total-dose radiation effects on sol-gel derivedPZT thin films[J]. IEEE Transactions on Nuclear Science,1992,39(6):2036-2043
    [26] R. A. Moore, J. Benedetto, B. J. Rod. Total dose effect on ferroelectric PZT capacitors used asnon-volatile storage elements[J]. IEEE Transactions on Nuclear Science,40(6):1591-1596
    [27]娄利飞,杨银堂,柴常春,等.铁电材料的总剂量辐照效应实验研究[J].强激光与粒子束,2007,19(12):2091-2093
    [28] A. Basavaraj, P. Victor, V. M. Jali, et al. High energy Li ion irradiation effects in ferroelectricPZT and SBT thin films[J]. Thin Solid Films,2003,434(1):40-48
    [29] Y. Zhong, L. Y. Cheng, Y. Xi. Effect of space charge on micro-macro domain transition ofPLZT[J]. IEEE Transactions on Electrical Insulation,1992,27(4):773-776
    [30] S. C. Philpy, D. A. Kamp, G. F. Derbenwick. Hardened by design ferroelectric memories forspace applications[C]. Non-Volatile Memory Technology Symposium,2003,11-13
    [31] D. A. Kamp, A. D. DeVilbiss, S. C. Philpy, et al. Adaptable ferroelectric memories for spaceapplications[C]. Non-Volatile Memory Technology Symposium,2004,149-152
    [32] V. Joshi, M. Ohno, J. Ida. Integrated silicon on insulator-ferroelectric capacitor process forradiation hard non volatile universal memory applications[C]. Non-Volatile MemoryTechnology Symposium,2005,39-40
    [33] C. Todd, W. MacLeod, S. Herb. A. Kosta. Results from on-orbit testion of the FRAM memorytest experiment on the fastsat micro-statellite[EB/OL]. http://www.nasa.com, August8,2010
    [34] F-RAM无线存储器在伽玛辐射环境中的应用[EB/OL].http://www.ramtron-online.cn/down/action=show&id=1724, August22,2011
    [35]安黎,魏朝刚,任天令.一种4kb铁电存储器的设计[J].微电子学,2005,35(4):437-440
    [36]程旭,汤庭鳌,王晓光,等.一种新的铁电电容模型及其在1T/1C FeRAM中的应用[J].固体电子学研究与进展,2004,24(1):123-128
    [37]汤祥云,王岸如,程旭,等.一种4k位串行铁电不挥发存储器的VLSI实现[J].微电子学,2001,31(4):255-259
    [38]闻心怡.铁电存储器关键工艺与器件建模研究[D].武汉:华中科技大学,2011,22-25
    [39]李建军.用于铁电存储器的Bi3.25La0.75Ti3O12薄膜生长与性能研究[D].武汉:华中科技大学,2009,21-22
    [40]杨峰.铁电薄膜与隧道结存储器件性能模拟及失效机理研究[D].湘潭:湘潭大学,2010,28-29
    [41]刘敬松. FRAM铁电材料的微结构与电性能研究[D].成都:电子科技大学,2005,11-12
    [42] U. Chon, H. M. Jang, M. G. Kim. Layered perovskites with giant spontaneous polarizations fornonvolatile memories[J]. Physics Reviews Letter,2002,89(8):8760l-87604
    [43] V. Ezhil, S. Victor, T. Seng. Ferroelectric properties and leakage current cbaracteristics ofradio-frequency-sputtered SrBi2(V0.1Nb0.9)2O9thin films[J]. Applied Physics,2004,96(4):2181-2186
    [44] T. Matsumoto, A. Niino, Y. Ohtsu. Influence of substrate biasing on (Ba,Sr)TiO3films preparedby electron cyclotron resonance plasma sputtering[J].Japanese Journal of Applied Physics,2004,143(3):1144-1148
    [45] K. Suu, A. Osawa, Y. Nishioka, et al. Stability control of composition of RF-sputtered Pb(Zr,Ti)O3ferroelectric thin film[J]. Japanese Journal of Applied Physics,1997,36(9B):5789-5792
    [46] T. Oikawa, H. Morioka, A. Naga. Thickness scaling of poiycrystalline Pb(Zr,Ti)O3films downto35nm prepared by metalorganic chemical vapor deposition having good ferroelectricproperties[J]. Applied Physics Letters,2004,85(10):1754-1756
    [47] H. J. Sun, E. Choi, K. Tae. Effect of high-emperature metal-organic chemical vapor depositionof Pb(Zr,Ti)03thin films on structural stabilities of hybrid Pt/IrO2/Ir stack and single layer Irbottom Electrodes[J]. Japanese Journal of Applied Physics,2004,43(5A):2651-2654
    [48] J. W. Zhai, P. Hung, H. D. Chen. Relaxor and nonlinear behaviors of SrTiO3/BaTi03muti-laversderived by a sol-gel process[J]. Applied Physics Letters,2004,85(11):2026-2029
    [49]王龙海.用于嵌入式铁电存储器的集成铁电电容研究[D].武汉:华中科技大学,2005,8-11
    [50] M. Quirk, J. Serda.韩郑生等译. Semiconductor manufacturing technology (半导体制造技术)[M].北京:电子工业出版社,2004,281-431
    [51] H.J. Zhao, Y. X. Liu. Fabrication and etching processes of silicon-based PZT thin films[C].Proceedings of SPIE.2001,4414,351-354
    [52] J. Baborowski. Microfabrication of Piezoelectric MEMS[J]. Journal of Electroceramics,2004,12:33-51
    [53] J. Xie, M. Hu. Fabrication and characterization of piezoelectric cantilever for microtransducers[J]. Sensors and Actuators A,2006,126:18-186
    [54]方华斌,刘景全. PZT厚膜拾振器微图形化工艺研究[J].微细加工技术,2005,4:48-51
    [55]刘秦,林殷茵. PZT薄膜微图形的制作精度的研究[J].压电与声光,1998,20(6):411-413
    [56]郑可炉,褚家如. PZT铁电薄膜湿法刻蚀技术研究[J].压电与声光,2005,27(2):209-212
    [57]李建康,姚熹.锆钛酸铅铁电薄膜的制备及在红外探测器中的应用[J].太原理工大学学报,2004,35(4):387-391
    [58] A.M. Efremov,D.P. Kim,K.T. Kim, et al. Etching characteristics and mechanism of Pb(Zr,Ti)O3thin films in CF4/Ar inductively coupled plasma[J]. Vacuum,2004,75(4):321–329
    [59] C. Soyer, E. Cattan, D. Rèmiens. Electrical damage induced by reactive ion-beam etching oflead-zirconate-titanate thin films[J]. Journal of Applied Physics,2005,97(11):114110-114117
    [60] M. G. Kang, K. T. Kim. Plasma-induced damage in PZT thin films etched by inductivelycoupled plasma[J]. Thin Solid Films,2003,435(1-2):222-226
    [61] P. F. Werbaneth. Production manufacturing of PZT-based devices: Plasma etch processoptimization and results for PZT used as a ferroelectric, as a High k dielectric, and as apiezoelectric material[C].17th IEEE International Symposium on the Applications ofFerroelectric,2008,23-28
    [62] G. C. Feancis, T. Mahesh, K. G. Mark, et al. Plasma etch processes for embedded FRAMintegration[J]. Integrated Ferroelectrics,2003,53(1):269–277
    [63] K. L. June. Process-induced degradation during the integration of Pb(ZrxTi1-x)O3ferroelectriccapacitors[D]. Blacksburg: Virginia Polytechnic Institute and State University,1999,20-24
    [64] N. lkarashi, N. Hosoi. Ti-O coordination at a Pb(Zr,Ti)O3/Pt interface annealed in ahydrogen-containing ambient analyzed using spatially resolved electron energy-lossspectroscopy[J]. Appl. Phys,1999,85(11):7874-7878
    [65] N. Ikarashi. Analytical transmission electron microscopy of hydrogen-induced degradation inferroelectric Pb(Zr,Ti)O3on a Pt electrode[J]. Applied Physics Letters,1998,73(14):1955-1961
    [66] J. P. Han, T. P. Ma. Electrode dependence of hydrogen-induced degradation in ferroelectric Pb(Zr, Ti)O3and SrBi2Ta2O9thin films[J]. Applied Physics Letters,1997,71(9):1267-1269
    [67] Y. Nagano, T. Mikawa. Embedded ferroelectric memory technology eith completelyencapsulated hydrogen barrier structure[J]. IEEE Transactions on SemiconductorManufacturing,2005,18(1):49-54
    [68] K. Jung, J. J. Dong. Highly manufacturable1T1C4Mb FRAM with novel sensing scheme(C).Electron Devices Meeting,1999,279-282
    [69] H.Shiga, D.Takashima, S. Shiratake,et al. A1.6GB/s DDR2128Mb chain FeRAM withscalable octal bitline and sensing schemes[J]. IEEE Jounal of Solid-State Circuits,2009,45(1):142-148
    [70] D. Takashima. High-density chain ferroelectric random access memory (chain FRAM)[J].Solid-State Circuits,1998,33:787–792
    [71] D. akashima, Y. agadomi, K.Hatsuda, et al. A128Mb chain FeRAM and system design forHDD application and enhanced HDD performance[J]. IEEE Jounal of Solid-State Circuits,2011,46(2):530-536
    [72]周益春,唐明华.铁电薄膜及铁电存储的研究进展[J].材料导报,2009,23(5):1-19
    [73] J. Hoffman, X. Pan, J. W. Reiner, et al. Ferroelectric field effect transistors for memoryapplications[J]. Advanced Materials,2010,22:2957-2961
    [74] X. Pan, T. P. Ma. Retention mechanism study of the ferroelectric field effect transistor[J].Applied Physics Letters,2011,99:013505-1-013505-3
    [75] Y. Arimoto, H. Ishiwara. Current status of ferroelectric random-access memory[J]. MRS Bull,2004,29(11):823-831
    [76] S. L. Miller, P. J. McWhorter. Physics of the ferroelectric nonvolatile memory field effecttransistor[J]. Applied Physics,1992,72(12):5999-6010
    [77] T. P. Ma, J. P. Han. Why is nonvolatile ferroelectric memory field-effect transistor stillelusive[J]. IEEE Electron Device Letter,2002,23(7):386-388
    [78] M. H. Tang, Z. H. Sun, Y. C. Zhou, et al. Capacitance-voltage and retention characteristics ofPt/SrBi2Ta2O9/HfO2/Si structures with various buffer layer thickness[J]. Applied Physics Letter,2009,94(21):2907-2910
    [79] S. Sakai, R. Ilangovan. Metal–ferroelectric–insulator–semiconductor memory FET with longretention and high endurance[J]. IEEE Electron Device Letter,2004,25(6):369-371
    [80] G. Tokumitsu, G. Fujii, H. Ishiwara. Nonvolatile ferroelectric-gate field-effect transistors usingSrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures[J]. Applied Physics Letter,1999,75(4):575-578
    [81] B. S. Kang, J. G. Yoon, T. W. Noh, et al. Polarization dynamics and retention loss in fatiguedPbZr0.4Ti0.6O3ferroelectric capacitors [J]. Applied Physics Letter,2003,82(2):248-249
    [82] D. L. Cai, P. Li, S. R. Zhang, et al. Fabrication and characteristics of ametal/ferroelectric/polycrystalline silicon/insulator/silicon field effect transistor[J]. AppliedPhysics Letters,2007,90:153513
    [83]刘忠立.先进半导体材料及器件的辐射效应[M].北京:国防工业出版社,2008,20-63
    [84]赖祖武,包宗明,宋铁歧,等.抗辐射电子学-辐射效应及加固原理[M].北京:国防工业出版社,1998,46-86
    [85] D. G. Cleveland. Dose rate effects in MOS microcircuits[J]. IEEE Transactions on NuclearScience,1984,31(6):1348-1353
    [86]何宝平,姚志斌.互补金属氧化物半导体器件空间低剂量率辐射效应预估模型研究.物理学报,2010,59(3):1985-1990
    [87] D. N. Nguyen, L. Z. Scheick. TID testing of ferroelectric nonvolatile RAM[C]. IEEE RadiationEffects Data Workshop,2001,57-61
    [88]范雪.一种新型反熔丝存储器的研制及其抗辐射加固方法研究[D].成都:电子科技大学,2011,4-5
    [89]薛玉雄,曹洲,杨世宇,等.单粒子效应不同模拟源的等效性试验研究初探[J].核技术,2008,31(2):123-128
    [90]杨帆,孙跃,李伟力,等.磁控溅射工艺参数对Pb(Zr,Ti)O_3薄膜织构的影响[J].功能材料,2006,37(1):61-62
    [91]杨艳,张树人,刘敬松,等.铁电存储器集成工艺中关键技术研究进展[J].材料导报,2006,20(11):104
    [92]杨艳,刘敬松,张树人,等.锆钛酸铅薄膜化学刻蚀技术研究[J].压电与声光,2008,30(2):248-250
    [93]申泮文,车云霞.无机化学丛书.第8卷[M],北京:科学出版社,1998,69-71
    [94] C. Soyer, E. Cattan, D. Remiens. Electrical damage induced by reactive ion-beam etching oflead-zirconate-titanate thin films[J]. Journal of Applied Physics,2005,97(11):114110-1-114110-7
    [95]翟亚红,李平,张树人,等.铁电电容工艺与标准CMOS工艺兼容性研究[J].压电与声光,2007,29(5):609-611
    [96] H. Achard, H. Mace, L. Pecoud. Device processing and intergration of ferroelectric thin filmsfor memory applications[J]. Microelectronic Engineering,1995,29(1-4):19-18
    [97] S. Aggarwal, S. R. Perussec, C. W. Tipton, et al. Effect of hydrogen on Pb(Zr,Ti)O3-basedferroelectric capacitors[J]. Applied Physics Letters,1998,73(14):1973-1978
    [98] S. Aggarwal. Recovery of forming gas damaged Pb(Nb,Zr,Ti)O3capacitors[J]. Applied PhysicsLetters,2000,76(7):918-920
    [99] Y. J. Song, H. H. Kim, S. Y. Lee, et al. Integration and electrical properties of diffusion barrierfor high density ferroelectric memory[J]. Applied Physics Letters,1999,76(4):451-454
    [100] J. K. Lee, Y. Park, I. Chung. Investigation of hydrogen-induced degradation inPb(ZrxTi1–x)O3thin film capacitors for the application of memory devices[J]. AppliedPhysics,2002,92(5):2724-2728
    [101] Y. Shimamoto. H2damage of ferroelectric Pb (Zr,Ti)O3thin-film capacitors—The role ofcatalytic and adsorptive activity of the top electrode[J]. Applied Physics Letters,1997,70(23):3096-3097
    [102] S. Aggarwal, S. R. Perussec, C. W. Tipton, et al. Effect of hydrogen on Pb(Zr,Ti)O3-basedferroelectric capacitors[J]. Applied Physics Letters,1998,73(14):1973-1978
    [103] J. S. Lee and S. K. Joo. Role of grain boundaries on hydrogen-induced degradation in leadzirconate titanate thin films[J]. Applied Physics Letters,2002,81(17):3230-3232
    [104] A. Chowdhury. Aluminum oxide and silicon nitride as hydrogen barriers for ferroelectricmemory devices[J]. Masters Abstracts International,2008,46(5):2786-2787
    [105] A. Sheikholeslami, P. G. Gulak. A Survey of circuit innovations in ferroelectric random-accessmemories[J]. PROCEEDINGS OF THE IEEE,2000,88(5):667-689
    [106]魏朝刚.铁电存储器器件模型与集成工艺研究[D].北京:清华大学,2006,22-23
    [107] S. L. Miller, J. R. Schwank, R. D. Nasby, et al. Modeling ferroelectric capacitor switching withasymmetric nonperiodic input signals and arbitrary initial conditions[J]. Journal of AppliedPhysics,1991,70(5):2849-2860
    [108] K. Lim, K. Kim, S. Hong, et al. A semi-empirical CAD model of ferroelectric capacitor forcircuit simulation[J]. Integrated Ferroelectrics,1997,17:1-4
    [109]陈小明.铁电电容的性能测试方法和建模方法研究[D].上海:复旦大学,2004,10~20
    [110] A. Sheikholeslami, P. G. Gulak. Transient modeling of ferroelectric capacitors for nonvolatilememories[J]. Ultrasonics, Ferroelectrics and Frequency Control,1996,5(43):450-456
    [111]任天令,张武全,李春晓,等.一个改进的用于铁电存储器设计的铁电电容宏模型[J].电子学报,2001,29[8]:1136-1137
    [112] X. H. Du, B. Sheu. Modeling ferroelectric capacitors for memory application[J]. IEEE circuits&devices magazine,2002,9:10-16
    [113] Nassda Corporation. HSIM v5.0User’s Manual. HSIM software document[S].2004
    [114] Silvaco International.Temperature Effects in SmartSpice Level=6Ferroelectric CapacitanceModel From Ramtron International Corporation[S]. Simulation Standard,12(10),2002
    [115] K. Dragosits. Modeling and simulation of ferroelectric devices[D]. Vienna: Technischeuniversity Wien,2000,18-25
    [116] K. Dragosits and S. Selberherr. Two-dimensional simulation of ferroelectric memory Cells[J].IEEE Transactions on Electron Devices,2011,48(2):316-322
    [117] Synopsys. Sentaurus Device User Guide (Version A-2008.09)[S].September2008,543
    [118] J. F. Scott,朱劲松,吕笑梅等译.铁电存储器[J].北京:清华大学出版社,2004,1-6
    [119] H. Koike, K. Amanuma, T. Miwa, et al. FeRAM retention analysis method based on memorycell read signal voltage measurement[J]. IEEE Transactions on Semiconductor Manufacturing,2002,15(2):201-208
    [120] N. Tanabe, H. Koike, T. Miwa, et al. Individual cell measuring method for FeRAM retentiontesting [J]. IEEE Transactions on Semiconductor Manufacturing,2002,15(2):201-208.
    [121] M. Dawber, P. Chandra, P. B. Littlewood, et al. Depolarization corrections to the coercive fieldin thin-film ferroelectrics[J]. JOURNAL OF PHYSICS,2003,15(24):393-398
    [122] Y. Lin, B. R. Zhao, H. B. Peng, et al. Asymmetry in the hysteresis loop ofPb(Zr0.53Ti0.47)O3/SiO2/Si structures[J]. Journal of Applied Physics,1999,86(8):4467-4472
    [123] S. M. Sze, K. K. Ng. Physics of Semiconductor Devices (3th Ed.)[M]. New York: Wiley,2006,305
    [124] J. P. Han and T. P. Ma. Ferroelectric-gate transistor as a capacitor-less DRAM cell(FEDRAM)[J]. Integrated Ferroelectrics,1999,27(4):1053-1062
    [125] S. M. Yoon, H. Ishiwara. Memory operations of1T2C-type ferroelectric memory cell withexcellent data retention characteristics[J]. Electron Devices,2001,48(9):2002-2008
    [126] T. Li, S. T. Hsu, B. D. Ulrich, et al. One transistor ferroelectric memory withPt/Pb5Ge3O11/Ir/Poly-Si/SiO2/Si gate stack[J]. Electron Device Letters,2002,23[6]:339-341
    [127] C. A. Nguyen, S. G. Mhaisalkar and P. S. Lee. Enhanced organic ferroelectric field effecttransistor characteristics with strained poly(vinylidene fluoride-trifluoroethylene dielectric[J].Organic Electronics,2008,9(6):1087-1092
    [128] C. Y. Chang, T. P. Juan and J. Y. Lee. Fabrication and characterization of metal-ferroelectric(PbZr0.53Ti0.47O3)-insulator (Dy2O3)-semiconductor capacitors for nonvolatile memoryapplications[J]. Applied Physics Letters,2006,88(7):2917-2920
    [129] J. H. Li, P. Li, W. R. Huo, et al. Analysis and fabrication of an LDMOS with high-permittivitydielectric[J]. IEEE Electron Device Letters,2011,32(9):1266-1268
    [130] X. B. Chen. Lateral high-voltage semiconductor devices with surface covered by thin film ofdielectric material with high permittivity[P]. U.S,6936907,2005
    [131] X. B. Chen. Super-junction voltage sustaining layer with alternating semiconductor andHigh-K dielectric regions[P]. U.S,7230310,2007
    [132]王党会.用于筛选的VDMOS器件抗辐照能力表征参量研究[D].西安:西安电子科技大学,2007,31-46
    [133]王刚.新型反熔丝器件及抗总剂量辐射PROM的研究与实现[D].成都:电子科技大学,2012,48-52
    [134]刘新宇,刘运龙,孙海锋,等.氮化H2-O2合成薄栅氧抗辐照特性[J].半导体学报,2001,22(12):1596-1599
    [135] M. L. McLain, H. J. Barnaby, I. S. Esqueda, et al. Reliability of high performance standardtwo-edge and radiation hardened by design encolosed geometry transistors[C]. IEEEInternational Reliability Physics Symposium, Montreal,2009,174-179
    [136] D. C. Mayer, R. C. Lacoe, E. E. King, et al. Reliability enhancement in high-performanceMOSFETs by annular transistor design[J]. IEEE Transactions on Nuclear Science,2004,51(6):3615-3620
    [137]刘必慰.集成电路单粒子效应建模与加固方法研究[D].长沙:国防科技大学,2009,6-8
    [138] P. E. Dodd, L. W. Massengill. Basic mechanisms and modeling of single-event upset in digitalmicroelectronics[J]. IEEE Transactions on Nuclear Science,2003,50(3):583-602
    [139] D. Kobayashi, H.Saito, K.Hirose. Estimation of single event transient voltage pulses in VLSIcircuits from heavy-ion-induced transient currents measured in a single MOSFET [J]. IEEETransactions on Nuclear Science,2007,54(4):1037-1041
    [140] B.S. Haran, B.S.Haran, A.Kumar, L.Adam,et al.22nm technology compatible fully functional0.1μm26T-SRAM cell[C]. IEDM Tech. Dig.,2008,625-628
    [141] L. Scheick, S. Guertin, D. N. Nguyen. SEU evaluation of FeRAM memories for spaceapplications [C]. Radiation Effects Data Workshop,2000,61-63
    [142] S. C. Philpy, D. A. Kamp, G. F. Derbenwick. Hardened by design ferroelectric memories forspace applications[C]. Non-Volatile Memory Technology Symposium,2003,11-13
    [143] D. A. Kamp, A. D. DeVilbiss, S. C. Philpy, et al. Adaptable ferroelectric memories for spaceapplications[C]. Non-Volatile Memory Technology Symposium,2004,149-152
    [144]韩郑生,赵元富.抗辐射集成电路概论[M].北京:清华大学出版社,2011,66-78
    [145] S. L. Kosier, R. D. Schrimpft, D. M. Fleetwood, et al. Physically based comparison ofhot-carrier-induced and ionizing-radiation-induced degradation in BJT's[J]. IEEE Transactionson Nuclear Science,1995,42(3):436-44
    [146] R. L. Pease, R. D. Schrimpf and D. M. Fleetwood. ELDRS in bipolar linear circuits: Areview[J]. IEEE Transactions on Nuclear Science,2009,6(4):1894-1902
    [147] X. J. Chen, H. J. Barnaby,R. D. Schrimpf R, et al. Nature of interface defect buildup in gatedbipolar devices under low dose rate irradiation[J]. IEEE Transactions on Nuclear Science,2006,53(6):3649-3654
    [148]翟亚红,李平,张国俊,等.抗总剂量双NPN晶体管的研究[J].物理学报,2011,60(8):088501-1-088501-5
    [149]郑玉展,陆妩,任迪远,等.不同发射极面积npn晶体管高低剂量率辐射损伤特性[J].物理学报,2009,58(8):5572-5577
    [150] R. N. Nowlin, D. M. Fleetwood, R. D. Schrimpf, et al. Hardness-assurance and testing issuesfor bipolar/BiCMOS devices[J]. IEEE Transactions on Nuclear Science,1993,40(6):1686-1693
    [151]陈星弼,张庆忠.晶体管原理与设计[M].北京:电子工业出版社,2007,276
    [152]陈盘训.半导体器件和集成电路的辐射效应[M].北京:国防工业出版社,2005,25-68
    [153] Nicolaas W. Radiation hardened bipolar junction transistor[P]. US,7187056B2,Mar.6,2007
    [154] Z. S. Zhang, Z. L. Liu, G. Q. Zhang, et al. Effect of the technology of implanting nitrogen intoburied oxide on the radiation hardness of the top gate oxide for partially depletedSOIPMOSFET[J]. Chinese Physics,2005,14(3):565-570
    [155] S. L. Kosier, R. D. Schrimpft, R. N. Nowlin, et al. Charge separation for bipolar transistors [J].IEEE Transactions on Nuclear Science,1993,40(6):1276-1278
    [156] T. Miwa, J. Yamada, H. Koike, H. Toyoshima, et al. NV-SRAM: a nonvolatile SRAM withback-up ferroelectric capacitors[J]. IEEE Solid-State Circuits,2001,51:522
    [157] T. Calin, M. Nicolaidis, R. Velazco. Upset hardened memory design for submicron CMOStechnology[J]. IEEE Transactions on Nuclear Science,1996,43(6):2874
    [158] Y. H. Zhai, W. Li, P. Li, et al. NV-DICE: A ferroelectric nonvolatile DICE storage element fortolerance to single event upsets[C]. International Conference on Intelligent Systems Designand Engineering Applications (ISDEA2011) SanYa2011.12.24-26