用户名: 密码: 验证码:
宁夏银北地区耐盐植物改良盐碱土机理及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐碱化是当前农业生产的重要胁迫因素之一,盐碱土改良利用长期以来也是全球退化土地治理领域的热点问题之一。盐碱地的改良利用是一个长期的、复杂的系统工程,其改良利用的核心是减少土壤有害盐分,改善作物生长发育所需的土壤环境。针对传统技术已经不能满足盐碱地改良和持续提高农业生产力需求的问题,探索新的盐碱地改良技术成为急切解决的科学难题。当前,以耐盐植物利用为核心的技术被普遍认为是未来盐碱地改良修复和高效利用的突破口。
     本文为探求不同类型耐盐植物对盐碱土改良效果及其机理,在宁夏银北地区以盐碱荒地为对照,选取3种有代表性的不同类型耐盐植物(柽柳、苇状羊茅、油葵),从土壤、植物两方面入手进行试验研究。经过3年(2008-2010)的试验,观测分析了不同类型耐盐植物对盐碱土壤理化性质、土壤盐分含量、土壤微生物特性的变化、耐盐植物对盐分的吸收、运移的及其生物学响应等。得出以下主要结论:
     (1)耐盐植物对土壤物理性质改善明显。主要表现在:土壤容重的逐年减少,土壤孔隙度明显增加。改善的土层顺序为0-20cm>20-40cm>40-60cm。与对照相比,柽柳、苇状羊茅、油葵0-20cm土层,土壤容重分别降低了14.04%、15.73%和10.11%,土壤孔隙度增加了15.05%、18.50%和10.45%。对土壤物理性状改善能力为:柽柳>苇状羊茅>油葵。苇状羊茅和油葵对0-40cm土层物理性状改善明显,柽柳对0-60cm土层物理性状改善明显。土壤水分分布表明,耐盐植物作用下,表现出明显的抑制春季土壤返盐,增加秋季盐分向下淋洗;土壤的初始入渗速率和稳定入渗速率均得到不同程度的增加,入渗由强到弱的顺序为柽柳>苇状羊茅>油葵。三种耐盐植物作用下的土壤,通过物理性质的改善,与植物的覆盖、对水分的吸收,改变了土壤水盐的运动方向,抑制了盐分的上升,且盐分向下淋洗作用增强,利于土壤耕层排盐。
     (2)耐盐植物作用下土壤有机质均呈增加趋势,增幅顺序为柽柳>苇状羊茅>油葵。各土层的盐分呈现波动状降低,后一年春季大于前一年秋季,即春季返盐现象较为严重。土壤返盐程度为0-20cm>20-40cm>40-60cm。土壤全盐含量降低为0-20cm>20-40cm>40-60cm、柽柳>苇状羊茅>油葵。耐盐植物根系作用区土壤营养成分均呈现波动状变化趋势,播种前高于收获后;柽柳对土壤中的碱解氮总体具有富集作用,而苇状羊茅和油葵对碱解氮消耗较大,需要及时施用氮可提高其改良效果。柽柳和油葵可以促进土壤中缓效磷向速效磷转化,而种植苇状羊茅需要及时施磷肥可提高其改良效果。油葵作用下的土壤含钾量略有上升,苇状羊茅和柽柳作用下的土壤则呈现相反趋势。这主要是由于经过改良后的土壤物理性质得到改善,土壤固持的钾素得到释放,因此盐碱土中的钾的释放、肥力的发挥与全盐含量密切相关;碱化度变化均随治理时间的延长呈现波动状减少趋势。油葵第一个生长期亚表层出现代换性钠离子“聚集”现象,表明浅层翻耕、耙磨对土壤洗盐效果不明显,改善土壤的通透性才是洗盐的前提条件。
     (3)耐盐植物对盐碱土微生物环境有明显的改善作用。对微生物环境的改善能力由强到弱的顺序为柽柳>苇状羊茅>油葵。土壤全盐、容重和碱化度均与土壤细菌、真菌呈显著负相关。说明盐碱胁迫不利于土壤微生物环境的良好发展。有机质、速效钾分别与碱解氮、速效磷、真菌、放线菌呈显著正相关,表明增加土壤有机肥可提高土壤微生物数量,改善土壤微生物环境。由此可知,盐碱地改良目标就是降低盐分含量、容重,增加土壤通透性和土壤肥力,从而改善土壤理化性质和微生态环境。
     (4)试验结果表明,土壤全盐含量与耐盐植物出苗(返青)率呈线性负相关。从连续3年的出苗(返青)率可以看出,土壤含盐量逐渐减少,土壤结构逐渐改善;从相对生长速率(RGV)和自由水与束缚水比值综合来看,三种植物的耐盐性能为:苇状羊茅>柽柳>油葵。一年生经济作物作为研究对象,其生物量的增加可更清楚地反映治理效果。
     (5)初步得出各盐基离子在植物根茎叶中的分配比例(Cl-在柽柳、苇状羊茅和油葵体内根茎叶分配比例分别为:1.7:1:7.0、0.5:1:2和0.3:1:0.3;Ca2+分别为:1.5:1:4、4.7:1:2、1:1:5;K+分别为:1.4:1:2.1、0.6:1:1.5和0.2:1:1;Na+分别为:1.3:1:2.2、5:1:1.3和2.5:1:0.8)。柽柳对Na+的主动吸收、运输能力很强,柽柳更适合在含Na+高的盐碱土上种植。计算出耐盐植物对土壤盐分的主动吸收量。计算出三种耐盐植物(柽柳,苇状羊茅和油葵)的“吸收运移脱盐率”(分别为0.8%、2.0%和4.3%)和“增渗抑蒸脱盐率”(分别为81.1%、65.9%和46.8%)。所以,土壤盐分的降低不但与水分的淋洗有关,而且与耐盐植物的吸收亦有密切关系。植物对盐分的主动吸收、运移,使其在众多改良措施具有不可替代性。测试得出柽柳对盐碱土土壤性质影响的“作用范围”,并提出柽柳的密植度及种植方式——株行距80cm×80cm,且为“品”字形交错栽植为宜。
     综上所述,种植耐盐植物是盐碱土改良的有效途径,即可以改良土壤理化、微生物性质,又可对盐分的主动吸收、运移,且可产生一定的经济效益,具有不可替代性。另外,复合耐盐植物改良措施、耐盐植物与耕作措施相结合等措施将会取得更为显著的改良效益。
Soil salinity is one of forth major hazards of the world. Remediation and utilizationsaline-alkali soil is one of the hot issues for a long time in the world's areas of governancedegraded land. And remediation and utilization saline-alkali soil is a long time, complex andsystematic engineering, and the core is to reduce the harmful soil salinity, and to improve thesoil environment for crop growth. Traditional technology can not solve the problem of theimprovement saline-alkali soil and continued to increase its agricultural productivity. Explorenew saline-alkali soil improvement techniques become an urgent difficult scientific problemsto be solved. At present, the halophyte availability as the core technology is generallyconsidered a breakthrough of remediation and efficient utilization saline-alkali soil in thefuture.
     The objective of this article was to investigate further the effects and mechanisms ofdifferent halophytes growing in a saline-alkali soil.A saline-alkali soil was planted with threerepresentative halophyte (Tamarix ramosissima Ledeb. Festuca arundinacea Schreb.Helianthus annuus) monocultures in the north region of Yin Chuan City, Ning Xia Province,uncultivated soil was used as a control for comparison. The field experiment was conductedfor3years (2008-2010), and soil chemical and physical properties, soil salt content,microbiological properties, halophyte absorption and transportation salt and biologicalresponse of halophyte were systematically investigated and analyzed. Main results lie below:
     (1) Soil physical properties was mproved clearly. Soil bulk density decreas, soil porosityincreased improved significantly. Soil layer of improvement was0-20cm>20-40cm>40-60cm. With planting Tamarix ramosissima Ledeb. Festuca arundinacea Schreb.Helianthus annuus, in0-20cm depth soil layer, soil bulk density were debased by14.04%,15.73%,10.11%and soil porosity were increased by15.05%,18.50%,10.45%. Ability ofimproving soil physical was in the order of Tamarix ramosissima Ledeb.>Festucaarundinacea Schreb.>Helianthus annuus. With planting Festuca arundinacea Schreb.andHelianthus annuus, physical properties of0-40cm depth soil improved clearly and so as to0-60cm depth soil with planting Tamarix ramosissima Led.. The soil moisture profiles showthat halophytes inhibiting salt movement to the soil surface in spring and enhancing salt leaching through the soil profile in autumn. The initial soil infiltration rate and the stable soilinfiltration rate increased significantly, and in the order of Tamarix ramosissima Ledeb.>Festuca arundinacea Schreb.>Helianthus annuus.. Halophytes improved soil physicalproperties, increased soil surface coverage and absorpted soil water, so changed soil watermovment, which could be shown to affect the soil by inhibiting salt movement to the soilsurface and enhancing salt leaching through the soil profile, and will help cultivated soil saltdrainage.
     (2) Soil organic matter showed an increasing trend, in the order of Tamarix ramosissimaLedeb.>Festuca arundinacea Schreb.>Helianthus annuus. Soil salinity showed fluctuatingchanges which could be shown that sailt content in spring was higher than that in the lastautum, because salt back to the soil surface was more serious in spring. The same can be seenthat the degree of salt backing was in the order of0-20cm>20-40cm>40-60cm, and the totalsalt content of soil reduce in the same order with halophyte-reclamation. The sequence ofreducing the total salt content was Tamarix ramosissima Ledeb.>Festuca arundinaceaSchreb.>Helianthus annuus. Soil nutrients in halophyte roots depth showed fluctuatingchanges, that is soil nutrients in spring was higher than that in the last autum. Availibal N inthe soil with planting Tamarix ramosissima Ledeb was higher than that before reclaimation,but Festuca arundinacea Schreb and Helianthus annuus consumpted more available N, andalso explained that application N fertilizer during growing season could enhance reclamationeffects. Tamarix ramosissima Ledeb and Helianthus annuus could promote the slowlyavailable P translating to available P in the soil, but P fertilizer would be applicated to theFestuca arundinacea Schreb to increase its reclamation effects. Under Helianthus annuus,available K increase slight, but decreased in soil with planting Tamarix ramosissima Ledeband Festuca arundinacea Schreb. Soil physical properties was improved and soil retentionK was released that could be absorpted and utilizated by halophyte. Therefore, releasing Kand fertility were both closely relating to the total salt content. With thehalophyte-reclamation time gone, ESP%changes showed a fluctuating decreasing trend. Inthe first growing season, substitution Na+in20-40cm depth soil under Helianthus annuusshowed by the "clustering" phenomenon, therefor shallow plouge and rake little halpe to soilsalt drainage. Improve the permeability of the soil is a prerequisite of washing salt.
     (3) With planting halophyte, microbial environment of saline-alkali soil was improvedsignificantly. The ability of improvement was in the order of Tamarix ramosissima Ledeb.>Festuca arundinacea Schreb.>Helianthus annuus. Salt content, bulk dencity and ESP%allcorrelate to bacteria and fungi negativly in soil. Salinity stress is bad to soil microbialenvironment development. Organic matter, available K correlate to both fungi andactinomyces negativly in soil respectively, reducing salt content, bulk dencity and application organic fertilizer can increase soil microbial quantity and improve the soil microbialenvironment.
     (4) The test result show that soil total salt content and halophyte emergence (reviving)rate was a negative linear correlation. Emergence (reviving) rate in three consecutive yearsshowed that soil salt content was gradually reduced, and soil structure was graduallyimproved. The relative growth velocity (RGV) together with the ratio of free water and boundwater showed that salt tolerance of this three types of halophytes are Festuca arundinaceaSchreb.>Tamarix ramosissima Ledeb.>Helianthus annuus. The increase of biomass annualcash crops can be more clearly reflect the treatment effect.
     (5) The distribution of salt ions in root, stem and leaf of halophyte was ensured (In theorder of Tamarix ramosissima Ledeb, Festuca arundinacea Schreb and Helianthus annuus,distributions of Cl-in root, stem and leaf of halophyte was1.7:1:7.0,0.5:1:2and0.3:1:0.3,Ca2+was1.5:1:4,4.7:1:2and1:1:5, K+was1.4:1:2.1,0.6:1:1.5and0.2:1:1, Na+was1.3:1:2.2、5:1:1.3and2.5:1:0.8respectively). The capacity of Tamarix ramosissima Lede.absorption and transport Na+was strongest in this three types of halophyte, so Tamarixramosissima Ledeb. is more suitable for cultivation in the saline-alkali soil full of Na+. Theactive absorption of halophytes to soil salinity was calculated, and (Tamarix ramosissimaLedeb, Festuca arundinacea Schreb, Helianthus annuus)“AM desalination rate”(0.8%,2.0%and4.3%) and “EPIE desalination” rate (81.1%,65.9%and46.8%) were calculated. Thereforthe reduction of soil salinity is not only relating to the leaching of water but also to absorptionof halophyte. With the active of absorption and migration salt of halophyte,halophyte-reclamation is irreplaceable in a number of reclamation measures. Test showedTamarix ramosissima Ledeb reclamation scope of soil properties, which would proposeTamarix ramosissima Lede planting mode——80×80cm, and the “品”shaped staggeredplanting is appropriate.
     In summary, halophyte-reclamation is an effective way of saline-alkali soil improvement,which not only can improve soil physical, chemical and microbiological propoties, but alsocan absorb and migrate the salt, and which also can produce some economic benefit. Therefor,halophyte-reclamation is irreplaceable. In addition, the complex halophyte-reclamation,halophyte-reclamation cooperating to farming measures would made more significantreclamation effects.
引文
[1] Yeo A.R. Predicting the interaction between the effects ofsalinity and climate change on crop plants [J].Sci. Hortic.(Amsterdam),1999(78):159–174.
    [2] Developing salt-tolerant crop plants:challenges and opportunities Toshio Yamaguchi and EduardoBlumwald[J]. TRENDS in Plant Science.2005,12(10):615-620.
    [3] M. Ashraf. Biotechnological approach of improving plant salt toleranceusing antioxidants as markers[J]. Biotechnology Advances,2009(27):84–93.
    [4]王遵亲等.中国盐渍土[M].北京:科学出版社,1993,470-483.
    [5] Ashraf M.Breednig for sailntiy tolerance in plants [J].Crti Rev Plant Sci,1994(13):17-42.
    [6]俞仁培,扬道平,石万普,等.土壤碱化及其防治[M].北京:农业出版社,1984,39-42.
    [7]范富,徐寿军,宋桂云,等.玉米秸秆造夹层处理对西辽河地区盐碱地改良效应研究[J].土壤通报,2012,43(3):697-701.
    [8]肖国举,罗成科,张峰举等.燃煤电厂脱硫石膏改良碱化土壤的施用量[J].环境科学研究.2010,6(6):762-767.
    [9]金光德,南桂仙.植物盐胁迫响应及耐盐的分子机制[J].农技服务,2011,28(10):1448-1449,1495.
    [10]张华新,宋丹,刘正祥.盐胁迫下11个树种生理特征及其耐盐性研究[J].林业科学研究,2008,21(2):168-175.
    [11]米文精,刘克东,赵勇刚.大同盆地盐碱地生态修复利用植物的初步选择[J].北京林业大学学报,2011,33(1):49-54.
    [12] Jian-Kang Zhu. Plant Salt Tolerance[J],Trends in Plant Science2001,2(6):66-71.
    [13] Malcolm E,Sumner R N. Sodic soils-distribution,properties,management,and environmentalconsequences[M]. New York:O xford University Press,1998.
    [14] Rhoades, J.D.,1982. Cation exchange capacity. In: A.L. Page (Editor), Methods of soil analysis.Chemical and microbiological properties. Part2.2nd Ed. Agron. Monogr.9. ASA and SSSA, Madison,WI, pp.152-154.
    [15] Kovda V A. Loss of productive land due to salinazation [J]. Ambio,1983,X II(2):91-93.
    [16]钦佩,周春霖,安树青,等.海滨盐土农业生态工程[M].化学工业出版社,2002.
    [17]刘永信,王玉珍.盐碱地区域化种植耐盐植物可行性研究[J].宁夏农林科技,2011,52(5):49-50.
    [18]李陪夫.盐碱地的生物改良与抗盐植物的开发利用[J],垦植与稻作,1999,3:38-40.
    [19]张建锋,张旭东,周金星,等.世界盐碱地资源及其改良利用的基本措施[J].水土保持研究,2005(6):28-31.
    [20]温静.天津滨海新区盐碱地景观生态化设计研究[D].河北农业大学,2008(6).
    [21]尹喜霖,王勇,柏钰春.浅论黑龙江省的土地盐碱化.水利科技与经济,2004.12(6):361-363.
    [22] Asish Kumar Parida, Anath Bandhu Das. Salt tolerance and salinity effects on plants:a review[J],Ecotoxicology and Environmental Safety,2005,60:324-349.
    [23] Balba AM. The quantitative expression of water salinity on plant growth and nutrient absorption[J].Proc of Intern Symp Salt Affected Soils [C].1980:451-456.
    [24] Santiago Maiale, Diego H. Sanchez,Alejandra Guirado,Alfonso Vidal,Oscar A Rulz. Spermineaccumulation under salt stress[J],Plant Physiol,2004,161:35-42.
    [25] Marcum KB.Salinity tolerance mechanism sofgrasses in the subfamily chloridoideae[J].Crop Science,1999,39:1153-1160.
    [26] M. Qadir,R.H. Qureshi,N. Ahmad. Horizontal flushing: a promising ameliorative technology for hardsaline-sodic and sodic soils [J]. Soil&Tillage Research45(1998):119–131.
    [27]Yasin, M., Rauf, A. and Sarfraz, M.1987. Effect of saline irrigation water and amendments on theyield and chemical composition of wheat [J]. J. Agric. Res.25(1):81-91.
    [28] Qureshi, R. H. and Barrett-Lennard, E. G.1998. Saline Agriculture for Irrigated Land in Pakistan. AHandbook [J].Australian Center for International Agriculture Research, Canberra, Australia.142pp.
    [29] G. Guo,K. Araya,H. Jia,et al. Improvement of Salt-affected Soils, Part1: Interception of Capillarity[J]. Biosystems Engineering (2006)94(1),139–150.
    [30]刘阳春,何文寿,何进智,等.盐碱地改良利用研究进展[J].农业科学研究,2007,28(2):68-71.
    [31]张文渊.单井提排对土壤脱盐有效影响半径的观测试验[J].地下水,2000(9):107-109.
    [32]张建新,王丽玲,王爱云.滴灌技术在重盐碱地上种植棉花的试验[J].干旱区研究,2001(3):43-45.
    [33]司振江,张忠学,黄彦.大庆市盐碱土深松改良生态修复试验研究[J].土壤通报,2010,4(41):952-956.
    [34]李慧萍.冲洗改良盐碱土[J].黑龙江水利科技,2010,4(28):45-46.
    [35] Ventura, Y., W. A. Wuddineh, et al.(2011)."Effect of seawater concentration on the productivity andnutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops."Scientia Horticulturae128(3):189-196.
    [36]张国明,张峰.开发海冰水资源及改良滨海盐碱土的研究[J].安徽农业科学,2009,37(23):11139-11141.
    [37]乔海龙,刘小京,李伟强,等.秸秆深层覆盖对土壤水盐运移及小麦生长的影响[J].土壤通,2006,37(5):885-889.
    [38]宋玉珍.微生物肥料在松嫩平原盐碱地造林中的应用研究[D].东北林业大学,2009,4.
    [39] B. A.柯夫达〔席承藩等译).盐渍土的发生演化[M].北京:科学出版社,1957,80-82.
    [40] G.J.Clark,N.Dodgshun,et al. Changes in chemical and biological properties of a sodic clay subsoilwith addition of organic amendments[J]. Soil Biology&Biochemistry,2007(39):2806–2817.
    [41]王久志.沥青乳剂改良盐碱地的效果[J].山西农业科学,1986,(5):13-14.
    [42]王诠庄,徐树贞.麦田秸杆覆盖的作用及其节水效应的初步研究[J].干旱地区农业研究,1989,(2):7-15.
    [43]李新举,张志国.秸杆覆盖对盐渍土水分状况影响的模拟研究[J].土壤通报,1999,30(4):176-177.
    [44]杨勇.滨海盐碱地公路绿化植树对比试验初报[J].公路,2000(3):1-4.
    [45]张素瑛,白莲香,李素爱.生物覆盖对盐碱地的改良效果[J].山西农业科学2004(3):40-42.
    [46]周学武.粉煤灰与污泥配施改良山东郑路、华丰盐碱地的实验研究[D].中国地质大学博士论文,2006.
    [47]陈伏生,曾德慧,王桂荣.泥炭和风化煤对盐碱土的改良效应[J].辽宁工程技术大学学报,2004,23(6):861-864.
    [48]郑福云,马献发,曹洪杰,等.泥炭改良盐碱土田间定位试验研究[J].国土与自然资源研究,2008(1):41-42.
    [49] Charles, B.E. and Sickle, K.V.,1984. Punching holes in plowpans [J]. Solutions,28:38-41.
    [50]吴普特、黄占斌、高建恩等.人工汇集雨水利用技术研究[M].黄河水利出版社,2002,2-3.
    [51]刘阳春,何文寿,何进智,等.盐碱地改良利用研究进展[J].农业科学研究,2006,6(2):69-73.
    [52] Ghafoor, A., Muhammad S. and Ahmad, N.1985. Reclamation of Khurrianwala saline-sodic soil [J].Bull. Pakistan Council of Research in Water Resources.15(1):23-28.
    [53]赵锦慧,李杨,乌力更,等.石膏改良碱化土壤的效果(Ⅰ~Ⅲ)[J].长江大学学报(自科版)2006(9):111-116
    [54]毛文娟,李新平,安东,等.不同改良剂对宁夏地区盐碱土土壤结构的影响[J].水土保持通报,2010,4(30):190-192.
    [55]官娅莉,陈静曦,李洪飞.磷石膏对盐碱土的改良研究[J].内蒙古环境科学,2008,20(1):57-59.
    [56]孙昌禹,薛志忠,王文成,等.磷石膏对滨海盐碱土的改良效果研究[J].中国园艺文摘,2012(2):23-24.
    [57] Bower. C. A,. Swarner, L. R. larch, A. W. and Tileston. F.1951. The improvement of an alkali soil bytreatment with manure and chemical amendments [J]. Organs Agric. Expt. Stat. Tech. Bull1951(22):37.
    [58] M. SADIQ, G. HASSAN, S. M. MEHDI, et al. Amelioration of Saline-Sodic Soils with TillageImplements and Sulfuric Acid Application [J]. AMELIORATION OF SALINE-SODIC SOILS,2007,7(2):182-190
    [59] S. Chun,M. Nishiyama, S. Matsumoto. Sodic soils reclaimed with by-product from flue gasdesulfurization: corn production and soil quality [J]. Environmental Pollution114(2001)453-459.
    [60] G. Guo,K. Araya,H. Jia,et al. Improvement of Salt-affected Soils, Part1: Interception of Capillarity[J]. Biosystems Engineering (2006)94(1),139–150.
    [61]赵兰坡,王宇,马晶,等.吉林省西部苏打盐碱土改良研究[J].土壤通报,2001,32(专辑):91-96.
    [62]孙宇男,耿玉辉,赵兰坡.硫酸铝改良苏打盐碱土后各离子的变化[J].中国农学通报,2011,23(27):255-258.
    [63]郝秀珍,周东美.沸石在土壤改良中的应用研究进展[J].土壤,2003(2):103-106.
    [64]白亚妮,来航线,温小玲,等.硫磺改良盐碱土的微生物效应研究[J].西北农林科技大学学报(自然科学版),2010,38(2):153-158.
    [65]曹莹菲,赵毅,赵文田,等.硫磺改良对宁夏引黄灌区盐碱土pH及微量元素有效性的影响研究[J].干旱地区农业研究,2010,28(3):199-201.
    [66]王彬,肖国举,毛桂莲,等.燃煤烟气脱硫废弃物对盐碱土的改良效应及对向日葵生长的影响[J].植物生态学报,2010,34(10):1227-1235.
    [67]赵旭,彭培好,李景吉.盐碱地土壤改良试验研究———以粉煤灰和煤矸石改良盐碱土为例[J].河南师范大学学报(自然科学版),2011,39(4):70-75.
    [68]牛东玲,王启基.盐碱地治理研究进展[J].土壤通报,2002(6):449-455.
    [69]郭晓华,关丽菊.酸性有机肥改良重盐碱的效果对比[J].新疆农业科技,2007(3):22.
    [70]严慧峻,逄焕成,李玉义,等.微生物复混肥对盐碱土及白菜品质改良的影响[J].中国农学通报,2008,24(12):270-273.
    [71] LI Fa-Hu,R. KEREN. Calcareous Sodic Soil Reclamation as Affected by Corn Stalk Application andIncubation: A Laboratory Study [J]. Soil Science Society of China Published by Elsevier Limited andScience Press,2009,19(4):465-475.
    [72]宋玉珍.微生物肥料在松嫩平原盐碱地造林中的应用研究[D].东北林业大学,2009.
    [73] Chaudhry, M. R., Ihsanullah, Hamid, A. and Javed, M. A.1982. Role of Inorganic and OrganicAmendments in Reclamation of Saline-Sodic Soils [J]. Mona Publication No.124. MREP, WAPDA,Lahore.25pp.
    [74] Liu, W.C., Lund, L.J. and Page, A.L.,1989. Acidity produced by leguminous plants through symbioticdinitrogen fixation [J]. J. Environ. Qual.,18:529-534.
    [75] Youssef, R.A. and Chino, M.,1989. Root-induced changes in the rhizosphere of plants and pHChanges in relation to the bulk soil [J]. Soil Sci. Plant Nutr.35:461-468.
    [76] M. SADIQ, G. HASSAN, S. M. MEHDI, et al. Amelioration of Saline-Sodic Soils with TillageImplements and Sulfuric Acid Application [J]. AMELIORATION OF SALINE-SODIC SOILS,2007,7(2):182-190.
    [77]苏洪君,孙钊,钱喜友.土壤调理剂在盐碱地造林实验研究[J].林业科技情报,2005(4):1-3.
    [78]杨自立.低洼盐碱地日光温室杏树丰产栽培试验[J].现代农业科技,2007(19):10-11.
    [79]李茜,孙兆军,秦萍,等.燃煤烟气脱硫废弃物和糠醛渣对盐碱土的改良效应[J].干旱地区农业研究,2008,26(4):70-73.
    [80]张静,王清,李晓茹,等.利用硫氧化细菌改良盐碱土[J].吉林大学学报(地球科学版),2009,39(1):147-152.
    [81] Frenkel, H., Gerstle, Z. and Alperovitch, N.,1989. Exchange-induced dissolution of gypsum and thereclamation of sodic soils [J]. J. Soil Sci.,40:599-611.
    [82]马超颖,李小六,石洪凌.常见的耐盐植物及应用[J].北方园艺,2010(3):191-196.
    [83]张建锋,乔勇进,焦明,等.盐碱地改良利用进展[J].山东林业科技,1997(3):5-7.
    [84]于雷,潘文利,郑景明,等.柽柳防护林对海堤重盐土改良作用的研究[J].辽宁林业科技,1998(3):34-37.
    [85]余桂红,张春银,张旭,等.耐盐蔬菜海蓬子栽培技术[J].中国蔬菜,2009(7):15-17.
    [86] Melcher S.G. Haploid higher plants for plant breeding [J]. Z.Pflanz ensuchtg,1972(67):19-32.
    [87] Sawahel W.A., and Hassan A.H.,2002, Generation of transgenic wheat plants producing high leves ofthe osmoprotectant proline, Biotechnology Letters,24(9):721-725.
    [88] Hmida-Sayari A., Gargouri-Bouzid R., Bidani A., Jaoua L.,et al. Over expression of1-pyrroline-5-carboxylate snthetase increases proline production and confers salt tolerance in transgenicpotato plants, Plant Science,2005,169(4):746-752.
    [89] Wang W,Vinocur B,Altman A.Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance[J]. Planta,2003,218(1):1-14.
    [90]陈丽萍,何道一.植物抗旱耐盐基因的研究进展[J].基因组学与应用生物学,2010,29(3):542-549.
    [91]徐照龙,易金鑫,余桂红,等.藜科6种耐盐植物遗传多样性的EST-SSR分析[J].植物遗传资源学报,2011,1(12):113-120.
    [92]姚曼红,曾幼玲.极端耐盐植物盐穗木编码未知多肽基因HcUKPP的克隆与表达[J].中国生物化学与分子生物学报,2012,28(3):261-266.
    [93]樊华.15种常见园林绿化植物的耐盐性研究[D].西南大学,2007(6):65-68.
    [94]王彦芹,贺江舟,赵小亮,等.塔里木盆地荒漠植物花花柴和碱蓬耐盐、耐旱性比较[J].基因组学与应用生物学,2009,28(6):1128-1134.
    [95]张永宏.盐碱地种植耐盐植物的脱盐效果[J].甘肃农业科技,2005(3):48-49.
    [96]班乃荣,陈兴会,张永宏,等.耐盐植物对盐碱地的改良效果试验[J].宁夏农林科技,2004(1):26-27.
    [97]管志勇,陈素梅,王艳艳,等.菊花近缘种属植物耐盐筛选浓度的确定及耐盐性比较[J].生态学杂志,2010,29(3):467-472.
    [98]张振荣,臧东,杨静慧,等.北方三种木本能源植物耐盐生长特性研究[J].北方园艺,2011(15):101-103.
    [99]黄昌勇,土壤学[M].中国农业出版社,1999
    [100] Meek, B.D., DeTar, W.R., Rolph, D., Rechel, E.A. and Carter, L.M.,1990. Infiltration rate aseffected by an alfalfa and no-till cotton cropping system [J]. Soil Sci. Sot. Am. J.,54:505-508.
    [101] Meek, B.D., Rechel, E.A., Carter, L.M. and DeTar, W.R.,1989. Changes in infiltration under alfalfaasinfluenced by time and wheel traffic [J]. Soil Sci. Sot. Am. J.,53:238-241.
    [102] Qadir M,Qureshi R H,Ahmad N,et al·Salt-tolerance forage cultivation on a saline-sodic field forbiomass production and soil reclamation[J]·Land-Degradation and Development,1996,7(1):11-18.
    [103] Ashutosh Mishra, S.D. Sharma,G.H. Khan. Improvement in physical and chemical properties ofsodic soil by3,6and9years old plantation of Eucalyptus tereticornis Biorejuvenation of sodic soil [J].Forest Ecology and Management184(2003)115–124.
    [104] K.C. Ravindran,K. Venkatesan,V. Balakrishnan. Restoration of saline land by halophytes for Indiansoils [J]. Soil Biology&Biochemistry39(2007)2661–2664.
    [105]邢尚军,张建锋,郗金标,等.白刺造林对重盐碱地的改良效果[J].东北林业大学学报,2003(11):96-98.
    [106]张文军,玉井重信,矢部胜彦,等.利用柽柳改良盐碱地土壤的机制与措施初报[J].内蒙古林业科技,2003(4):3-7.
    [107]彭红春,李海英,沈振西,等.利用人工种草改良柴达木盆地弃耕盐碱地[J].草业学报,2003(10):26-30.
    [108]张晓琴,胡明贵.紫花苜蓿对盐渍化土地理化性质的影响[J].草业学报,2004,11(24):31-34.
    [109]李志丹,干友民,泽柏,等.牧草改良盐渍化土壤理化性质研究进展[J].草业科学,2004,21(6):17-20.
    [110]赵芸晨,秦嘉海.几种牧草对河西走廊盐渍化土壤改土培肥的效应研究[J].草业学报,2005,14(6):63-66.
    [111]罗廷彬,任崴,李彦,等.北疆盐碱地采用生物措施后的土壤盐分变化[J].土壤通报,2005,36(3):304-308.
    [112]张建锋.盐碱地的生态修复研究[J].水土保持研究,2008,4(15)74-77.
    [113] M. Ashraf. Biotechnological approach of improving plant salt toleranceusing antioxidants as markers[J]. Biotechnology Advances,2009(27):84–93.
    [114]张永宏,班乃荣,等.银北地区盐碱地耐盐牧草高效种植技术的研究.中国牛业科学,2007(1):51-54.
    [115]鲍士旦.土壤农化分析[M].北京:中国农业出版社,1999.
    [116]范亚文.种植耐盐植物改良盐碱土的研究[D].东北林业大学,2001:48.
    [119]任继周,朱兴运.河西走廊盐渍地的生物改良与优化生产模式[M].科学出版社,1998:76.
    [118]北京林业大学.土壤学[M].中国林业出版社,1981:98.
    [119]袁可能.植物营养元素的土壤化学[M].科学出版社,1983:45-48.
    [120]贾丙瑞,周广胜.土壤微生物与根系呼吸作用影响因子分析[J].应用生态学报,2005,16(8):1547-1552.
    [121] Bhatti A U, Khan Q, etal.Effect of Organic Manure and Properties and Crop Yield on ChemicalAmendments on Soil a Salt[J]. Afected Entiso Pedosphe,2005,15(1):46-51.
    [122]岳中辉,孙国荣,阎秀峰.不同改良方法对盐碱土壤氮素营养状况的影响[J].植物研究.2004,24(3):369-373.
    [123]李志丹,千友民.牧草改良盐渍化土壤理化性质研究进展[J].草业科学,2004,21(6):17-20.
    [124]雷金银,班乃荣,张永宏,等.柽柳对盐碱土养分与盐分的影响及其区化特征[J].水土保持通报,2011,32(4):1-4.
    [125]张锋.子午岭地区植被破坏加速侵蚀对土壤质量退化过程的影响[D].西北农林科技大学,2006.
    [126]胡曰利,吴晓芙.土壤微生物生物量作为土壤质量生物指标的研究[J].中南林学院学报,2002,22(3):51-53.
    [127]王帅,窦森,刘艳丽,等.微生物对黑土添加麦秸后腐殖质结构特征影响的红外光谱研究[J].光谱学与光谱分析,2012,32(9):2409-2413.
    [128]愈慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413-422.
    [129]张成娥,陈小丽.植被破坏前后土壤微生物的分布与肥力的关系[J].土壤侵蚀与水土保持学报,1996,2(4):77-83.
    [130]程丽娟,薛泉宏.微生物实验技术[M].西安:世界图书出版公司,2000.
    [131]鲍耀贤.黄土丘陵沟壑区坝地和梯田土壤理化性质研究[D].西北农林科技大学,2005.
    [132]柏新富,朱建军,王仲礼,等.干旱区木本植物盐分积累与其耐旱性的关系[J].林业科学,2012,48(7):45-49.
    [133]余美,芮孝芳.宁夏盐碱地改良利用研究进展[J].水利水电科技进展,2006,26(6):85-89.
    [134]陶晶,宋全民,秦彩云等.杨树基因工程抗性育种的研究现状与发展前景[J].吉林林业科技,2001,30(5):6-9.
    [135]贾文.林木耐盐力测定中几个问题的商榷[J].山东林业科技,2003,1:45-47.
    [136]刘文娜,吴文良,等.不同土壤类型和农业用地方式对土壤微生物量碳的影响[J].植物营养与肥料学报,2006,12(3)406-411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700