坡脚开挖的黄土滑坡机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原地区是人类重要的活动场所,近年来,黄土地区的经济得到了巨大发展,但由于黄土地区独特的地貌形态为当地经济发展和居民生活带来了很大局限,这也使得黄土地区的切破、削坡现象较为多见。这种对坡体的改造作用引发了很多严重的地质灾害,为当地居民的生产和生活带来了巨大威胁。2011年9月发生于西安灞桥白鹿塬北缘的滑坡造成了32人死亡严重地质灾害,多家依靠塬边取土生产的工厂被关停,引起了国内外的广泛关注。在此背景下,对由于人类工程活动所引起的黄土滑坡进行了大量的野外调查、地形测绘和资料分析,选取了以坡脚开挖所引起的黄土滑坡作为研究对象。从边坡开挖所引起的黄土滑坡的基本特征出发,对影响坡体开挖所造成边坡失稳的特征进行了分析。根据调查结果对由开挖活动引起的黄土滑坡进行了滑动模式的划分,在此基础上对坡脚开挖的黄土滑坡机理进行了研究。
     通过本文的研究,主要取得以下几点成果:
     (1)通过野外现场调查和文献资料分析,认为坡体开挖形成卸荷节理,节理走向与边坡走向近似一致,黄土大量发育的节理对坡体的稳定性起一定的控制作用;滑坡后缘裂缝呈弧形和“双耳”状展布;开挖边坡的高度不同,则坡体的运动速度不同,产生危害较为严重的边坡高度多为70m以上;工程开挖类型的滑坡在空间分布表现为:高度的集中性和条带性分布。
     (2)根据开挖速度的快慢和影响因素对由坡脚开挖所引起的黄土滑坡划分为:快速开挖-拉剪滑移模式黄土滑坡、开挖与降雨耦合模式的黄土滑坡和开挖与冻融耦合模式的黄土滑坡。并对每种类型滑坡发生机制和滑坡特征进行了分析。
     (3)对原状饱和黄土和非饱和黄土开展了三轴剪切RTC应力路径试验。试验结果表明RTC试验呈剪缩性的应变硬化特征。在非饱和黄土RTC应力路径下造成土体的破坏剪应力较小,土体更易破坏。在饱和黄土试验中,由于在土体变形破坏的过程中不排水条件,产生了超孔隙水压力,加速土体的破坏变形。
     (4)对不同条件下坡脚开挖所引起的坡体稳定性变化进行数值计算。计算结果表明:在边坡坡角一定的情况下,坡高控制了坡体的稳定性;其稳定性随放坡角度的增加逐渐降低,这种变化在开挖进尺较小时影响并不明显;地层结构对坡脚开挖的影响表现为:结构越复杂,则坡体越稳定;开挖进尺对坡体稳定性的影响表现为:随着开挖进尺增加,坡体的安全系数逐渐减小,在坡体开挖进尺过程中安全性存在拐点。
     (5)根据坡体破坏的表现形式分为:应力控制型、坡角控制型、地层结构控制型、开挖进尺控制型。根据坡体的受方式不同分为:拉裂破坏区、压剪滑移破坏区、减压剪切破坏区。
     (6)在坡脚开挖所引起坡体的应力分布特征、坡体变形的物理力学性质变化的基础上,解释了坡体开挖造成裂隙产生、裂缝扩展变形直至失稳的力学机制,认为坡脚开挖是造成坡体失稳变形的决定因素。
The Loess Plateau is an important arena for human activities. Loess region's economyhas been a huge development in recent years. But its unique topography makes a lot oflimitations for local economic development and human living, which makes the cutting slopephenomenon to be more common. This kind of behavior caused a lot of serious geologicaldisasters, which brought a great threat to production and living of local residents. Northernmargin slope of Bailu tableland of Xi'an city produced landslide and killed32people inSeptember2011, causing widespread concern at home and abroad and many factories wereshut down. In this background, the loess landslide caused by human engineering activitiesmake a large number of field surveys, topographic mapping and data analysis, and select theloess landslide caused by the slope toe excavation as the main object of study. The basiccharacteristics of the slope toe excavation loess landslide make the statistical analyses of theinfluence factor of slope toe excavation. On this basis of sliding mode of slope toe excavationclassified, the slope toe excavation induced mechanism of loess landslide is studied.
     Some main innovative ideas are got as follows in this paper:
     (1) Through wild field investigation and documentation analysis, that the slopeexcavation formed unloading joints, joints direction approximate unanimously with the slopetoward, To some extent, joints control the slope stability. Landslide edge cracks were "U"shape and "double ears"-shaped distribution. Different slope heights, there is a differentmoving speeds. The slope height70m above is more serious harm. Excavation types oflandslides distributed as follows: high degree concentration and bands distribution.
     (2) According to the excavation speed and the influence factors of slope toe excavationof loess landslides, which are divided into: quickly unload model of loess landslide,excavation and rainfall coupled model of loess landslide and excavation and freeze-thawcoupled model of loess landslides. The typical cases were analyzed by each type landslidemechanism and the landslide characteristic. And to every type of landslide mechanisms andcharacteristics were analyzed.
     (3) The triaxial shear RTC stress path tests carried out on undisturbed saturated loess and unsaturated loess. The test results show that the RTC test was contraction under shear andstrain hardening characteristics. Under the RTC stress path test results show that the soil shearstress is lower and easier to destroy. Undrained soil deformation process of destruction, thefailure process is so quick that the excess pores. Excess pore water pressure accelerateddestruction of deformation of the soil.
     (4) Under different slope toe excavation condition makes the numerical calculation ofslope stability. The results show that the slope angle of certain cases, the slope height controlsthe stability of the slope. Its stability gradually decreases with excavation angle increasing,this change of the slope toe excavation distance is lesser which effect is not obvious.Stratigraphic structure's influence on the slope toe excavation is: the more complex structure,the smaller impact of excavation. Excavation distance of the slope influence is: with theincrease of excavation distance, the safety factor of a slope gradually reduced, and there is aturning point in the process of excavation.
     (5) According to the slope failure modes are divided into: stress control type, slope anglecontrol type, control type stratigraphic structure, excavation footage control type. Accordingto the slope failure modes are divided into: stress control type, slope angle control type,control type stratigraphic structure, excavation footage control type. According to differentstress is divided into: tensile failure zone, compression and shear slip zone, reduced and shearfailure zone.
     (6) Based on the stress distribution characteristics and physical and mechanicalproperties changes of slope deformation and slope structural stress analysis caused by slopetoe excavation, which explains the slope excavation resulting in cracks generated andexpansion and deformation until failure mechanics. Considered slope toe excavation is adecisive factor cause the slope instability.
引文
[1]李天斌,王兰生.岩质工程高边坡稳定性及其控制[M].北京:科学出版社,2008
    [2]王思敬.论人类工程活动与地质环境的相互作用及其环境效应[J].地质灾害与环境保护,1997,8(1):19~26
    [3]罗宇生,汪国烈.湿陷性黄土研究与工程[M].北京:中国建筑工业出版社,2001
    [4]刘东生.黄土与环境[M].北京:科学出版社,1985
    [5] Zhou Jin-xing, Zhu Chun-yun, Zheng Jing-ming, et al. Landslide disaster in the loess of China[J],Journal of Forestry Research,2002,13(2):157~161
    [6]王念秦,张倬元.黄土滑坡灾害研究[M].兰州大学出版社,2004
    [7]雷祥义.黄土高原地质灾害与人类活动[M].北京:地质出版社,2001
    [8]吴玮江.甘肃省东都滑坡发育规律初探[J].兰州大学学报,1992.28(增刊).124~130
    [9]王念秦,张倬元.黄土滑坡灾害研究[M].兰州:兰州大学出社,2005
    [10]王佳运,魏兴丽,薛强.陕西延安杨崖滑坡的形成机理及其致灾分析[J].地质通报,2008,27(8):1230~1234
    [11]王念秦,张又安,王鹏,等.翟所滑坡的发育特征及演变趋势[J].甘肃科学学报.1998,10(2):40~46
    [12]殷跃平.中国典型滑坡[M].北京:中国大地出版社,2007
    [13]铁道部科学研究院西北分院.滑坡防治[M].北京:人民铁道出版社,1977
    [14]乔平定,李增均.黄土地区工程地质[M].北京:水利电力出版社, l990:l~50
    [15]雷祥义.陕西关中人为黄土滑坡类型的研究-人类活动的黄土斜坡地质环境负效应问题[J].水文地质工程地质,1996,3:36~42
    [16]吴玮江,王念秦.黄土滑坡的基本类型与活动特征[J].中国地质灾害与防治学报,2002,13(2):36~40
    [17]许领,戴福初,闵弘.黄土滑坡的研究现状与设想[J].地球科学进展,2008,23(3):236~242
    [18]李同录,龙建辉,李新生.黄土滑坡发育类型及其空间预测方法[J].2007,15(4):500~505
    [19]冯连昌.中国湿陷性黄土[M].北京:中国铁道出版社,1982
    [20]王正贵,康国瑾,马崇武.关于黄土垂直节理形成机制的探讨[J].中国科学B辑,1993,23(7):765-770
    [21]骆进,项伟,吴云刚,等.陕北黄土垂直节理形成机理的试验研究[J].长江科学院院报,2010,27(3):38-41
    [22]穆斯塔伐耶夫.湿陷性黄土地基和基础计算(张中兴译).北京:水利电力出版社,1984
    [23]孙建中.黄土学(上篇),香港:香港考古学会出版,2005,6
    [24] Terzaghi K. Mechanism of landslides [J], In S. Paige, ed Application of Geology to EngineeringPractice[J]. Geological Society of America, Berkey,1950:83~123
    [25] Fredlund D G, Morgenstern N R, Widger R A. The shear strength of unsaturated soils[J]. CanadianGeotechnical Journal,1978,15(3):313~321
    [26] Poulos S J, Castro G, France J W. Liquefaction evaluation procedure [J]. Journal of GeotechnicalEngineering, ASCE,1985,11(6):772~791
    [27] Lade P V. Static instability and liquefaction of loose fine Sandy slopes [J]. Journal of GeotechnicalEngineering, ASCE,1992,118(1):5l~71
    [28] Yamamuro J A, Lade P V. Steady-state concepts and static liquefaction of silty sands [J]. Journal ofGeotechnical and Geo environmental Engineering,1998,124(9):868~877
    [29] Hutchinson J N. General report: Morphological and geotechnical parameters of landslides in relationto geology and hydrogeology [A].5th International Symposium on Landslides [C]. Switzerland Lausanne,1988
    [30] Sassa K. The mechanism starting liquefied landslides and debris flows [A].4th InternationalSymposium Landslide [C]. Toronto,1984:349~354
    [31] Sassa K. The mechanism of debris flows [A].11th International Conference on Soil Mechanics andFoundation Engineering [C], Rotterdam, Netherlands,1985:1173~1176
    [32] Th.W.J. Van Asch), J. Buma, L.P.H. Van Beek. A view on some hydrological triggering systems inlandslides [J]. Geomorphology,1999(30):25~32
    [33] Wang Lanmin. Dynamic behaviors of loess under irregular seismic loading [A]. Proceedings of theSecond Intentional conference on earthquake construction and design[C],1994,1:1987~1994
    [34]王兰民,刘红玫.饱和黄土液化机理与特性的试验研究[J].岩土工程学报,2000,22(1):89~94
    [35]吴玮江.季节性冻结滞水促滑效应-滑坡发育的一种新因素[J].冰川冻土,1997,19(4):359~365
    [36]王念秦,姚勇.季节冻土区冻融期黄土滑坡基本特征与机理[J].防灾减灾工程学报,2008,28(2):163~166
    [37]周永习,张得煊,周喜德.黄土滑坡流滑机理的试验研究[J].工程地质学报,2010,18(1):72~77
    [38]雷祥义.泾阳南塬黄土滑坡与引水灌溉的关系[J].工程地质学报,1994,3(1):56~64
    [39]范立民,岳明,冉广庆.泾河南岸崩岸型滑坡的发育规律[J].中国煤田地质,2004,16(5):33~35
    [40]李佳,高广运,黄雪峰.非饱和原状黄土边坡浸水试验研究[J].岩石力学与工程学报,2011,30(5):1043~1048
    [41]曲永新,张永双,覃祖淼.三趾马红土与西北黄土高原滑坡[J].工程地质学报,1999,7(3):257~265
    [42] M.UENO, T. NISHIMURA, M.KATO et al.. Variation of Shearing Characteristics of Loess Soilafter Irrigation [J]. Northwestern Seismological Journal,2005,27(2):128~134
    [43]金艳丽,戴福初.灌溉诱发黄土滑坡机理研究[J].岩土工程学报,2007,29(l0):1493~1499
    [44]王家鼎.高速黄土滑坡的一种机理-饱和黄土蠕动液化[J].地质论评,1992,38(6):532~538
    [45]王家鼎.中国黄土山城“依山造居”的几个灾害问题讨论-黄土滑坡分析[J].西北大学学报(自然科学版),1996,26(1):57~61
    [46]王家鼎,张倬元.地震诱发高速黄土滑坡的机理研究[J].岩土工程学报,1999,21(6):670~674
    [47]王家鼎,惠泱河.黄土地区灌溉水诱发滑坡群的研究[J].地理科学,2002,22(3):305~310
    [48]武彩霞,许领,戴福初,等.黑方台黄土泥流滑坡及发生机制研究[J].岩土力学,2011,32(6):1767~1772
    [49]陈祖煜,汪小刚,杨健,等.岩质边坡稳定性分析-原理方法程序[M].北京:中国水利水电出版社,2005
    [50]黄昌乾,丁恩保.边坡工程常用稳定性分析方法[J]水电站设计,1999,15(1):53~58.
    [51] SARMA S K. Stability analysis of embankments and slopes[J]. Joumal of Geotechnical EngineeringDivision, ASCE,1979,105(12):1511~1524
    [52] BISHOP A W. The use of the slip circle in the stability analysis of slopes[J]. Geotechnique,1955,5(1):7~17
    [53] Janbu N. Slope stability computation. In Hieschfeld R C and Poulos S J (ed) Embankment–DamEngineering[M], Casagrande volume, Krieger Pub Co.1987:47~86
    [54] Fellenius W. Erdstatische Berechnungen mit Reibung und kohaesion[M].1927,Ernst, Berlin
    [55] Morgenstern N R, Price V E. The analysis of the stability of general slip surfaces [J]. Geotechnique,1965,15(1):79~93
    [56] SPENCER E A. Method of analysis of the stability of embankments assuming parallel intersliceforces[J]. Geotechnique,1967,17(1):11~26
    [57]赵学勐,陈运理.考虑垂直裂隙影响的均质黄土挖方边坡稳定性分析[J].土木工程学报,1981(3):21~25
    [58]高家美,顿志林.楔形体应力理论及其在工程中的应用[M].北京:煤炭工业出版社,2001,57~249
    [59]肖世国,周德培.边坡开挖应力场的近似解析解[J].水利学报,2005,36(1):16~21
    [60]肖世国.岩石高边坡开挖松弛区及加固支挡结构研究[D].成都:西南交通大学,2003
    [62]李彦兴.黄土挖方高边坡稳定性变化机理的分析研究[D].西安:西安理工大学,2004
    [62]莫进丰.开挖边坡变形稳定性分析与稳定性控制研究[D].长沙:中南大学,2010
    [63]黄铭,刘俊,葛修润.边坡开挖期实测位移的分解与合成预测[J].岩石力学与工程学报,2003,22(8):1320-1323
    [64]龚成明,程谦恭,杨林浩,等.黄土高边坡开挖过程的变形监测分析[J].铁道学报,2010,32(5):119-124
    [65]关坤.黄土高边坡开挖与支护的数值分析[D].成都:西南交通大学,2007
    [66]程建军,柳墩利,廖小平,等.路堑边坡开挖变形监测试验与坡体稳定评估分析[J].铁道学报.2011,33(5):85-90
    [67]吕远强,张兴勤,姜海波,等.晋西地区工程开挖形成的黄土边坡的最优坡率[J].煤田地质与勘探,2011,39(6):58-62
    [68]张加桂,曲永新.工程开挖的结构效应与防治对策-以兰州西郊滑坡为例[J].工程地质学报,2003,11(1):10-14
    [69]廖红建,韩波,殷建华,等.人工开挖边坡的长期稳定性分析与土的强度参数确定[J].岩土工程学报,2002,24(5):560-564
    [70]赵晓彦,胡厚田,庞烈鑫,等.类土质边坡开挖的卸荷作用及卸荷带宽度的确定[J].岩石力学与工程学报,2005,(04):710-711
    [71]刘悦,黄强兵.黄土路堑边坡开挖变形机理的离心模型试验研究[J].水文地质工程地质,2007,(3):59-62
    [72]陈丛新.边坡稳定离心模型试验中离心力分布不均匀的影响[J].岩土力学,1994,15(4):39-45
    [73]龚成明,程谦恭,刘争平.黄土边坡开挖与支护效应的离心模拟试验研究[J].岩土力学,2010,31(11):3481-3486
    [74]李明,张嘎,胡耘,等.边坡开挖破坏过程的离心模型试验研究[J].岩土力学,2010,31(2):366-340
    [75]李广信,郭瑞平.土的卸载体缩与可恢复剪胀[J].岩土工程学报,2000,22(2):158-161
    [76]李广信,武世锋.土的卸载体缩的试验研究及其机理探讨[J].岩土工程学报,2002,24(1):47-50
    [77]矫德全,陈愈炯.土的各向异性和卸荷体缩[J].岩土工程学报,1994,16(4):9-15
    [78] Shamoto Y, Zhang J-M, Goto S. Mechanism of large post-liquefaction deformation in saturatedsand[J].Soils and Foundations,1997,37(2):71-80
    [79]张建民.砂土的可逆性和不可逆性剪胀规律[J].岩土工程学报,2000,22(1):12-17
    [80]迟明杰,李小军,赵成刚,等.砂土卸载体缩细观机理研究[J].应用基础与工程科学学报,2010,18(S):181-188
    [81]张孟喜,孙钧.受施工卸载扰动黄土的变形与强度特性研究[J].岩石力学与工程学报,2005,24(13):2248-2254
    [82]何军芳.原状黄土的应力路径本构关系研究[D].西安:西安理工大学,2008,6
    [83]王浩,廖小平.边坡开挖卸荷松弛区的力学性质研究[J].中国地质灾害与防治学报.2007,18(增):5-10
    [84]肖世国,周德培.开挖边坡松弛区的确定与数值分析方法[J].西南交通大学学报,2003,38(3):318-321
    [85]刘力.黄土强度特性及节理对黄土高边坡稳定的影响研究[D].天津大学硕士学位论文.2007,6
    [86]阿布·里提甫.基于FLAC3D的黄土边坡稳定性分析[J].中国煤炭地质,2008,20(9):32-35
    [87]周建富,程谦恭,朱圻.黄土高陡边坡开挖及土钉支护数值模拟分析[J].路基工程,2010,3:9-12.
    [88]邓科,边坡开挖卸荷条件下稳定性研究[J].灾害与防治工程,2006,(1):44-49
    [89]林清,张季如.公路开挖边坡的稳定性分析方法研究[J].长江科学院院报,2003,20(5):42-44
    [90]蒋恒.黄土边坡开挖模拟及稳定性分析[J].四川建筑,2009,29(2):105-106
    [91]张季如.边坡开挖的有限元模拟和稳定性评价[J].岩石力学与工程学报,2002,21(6):843-847
    [92]张森,言志信,段建.边坡开挖数值模拟及其稳定性评价研究[J].西部探矿工程,2010,(7):1-3
    [93]魏海波,吴敏.边坡的有限元分析及ANSYS软件对边坡开挖的模拟[J].云南水力发电,2007(4):42-56
    [94]李红,宫必宁,陈琰.有限元强度折减法边坡失稳判据[J].水利与建筑工程学报,2007(5):79-82
    [95]赵法锁,胡广韬.西安白鹿塬边坡破坏规律及防治措施[J].中国地质灾害与防治学报,1994,5s:53-59
    [96]缪卫东.西安市白鹿塬边滑坡成因及空时分布预测研究[D].西安:西北大学,2002
    [97]缪卫东.西安市白鹿塬滑坡特征及成因分析[J].防灾减灾工程学报,2007,27(1):80-85
    [98]穆鹏,吴玮江,杨涛.2009年兰州市九州石峡口滑坡成因及其西侧高边坡稳定性研究[J].西北地震学报,2010,32(4):343-348
    [99]王景明,张骏.论黄土节理[J].长安大学学报:地球科学版,1985(2):33~44
    [100]卢全中,彭建兵,陈志新,等.黄土高原地区黄土裂隙发育特征及其规律研究[J].水土保持学报,2005,19(5):193-196
    [101]卢全中,彭建兵.黄土体结构面的发育特征及其灾害效应[J].西安科技大学学报,2006,26(4):446-450
    [102]彭建兵,李庆春,陈志新,等.黄土洞穴灾害[M].北京:科学出版社,2008
    [103]彭建兵,李喜安,孙萍,等.黄土洞穴的环境灾害效应[J].地球与环境,2005,33(4):1-7.
    [104]王景明,倪玉兰,孙建中.黄土构造节理研究及其应用[J].工程地质学报.1994,2(4):31-42
    [105]王念秦.黄土滑坡发育规律及其防治措施研究[D].成都:成都理工大学,2004
    [106]吉彬彬,许冲,李金玲.山西高速公路沿线黄土滑坡分类及分布规律研究[J].公路交通技术,2009(1):1-5
    [107]许领,戴福初.泾阳南塬黄土滑坡特征参数统计分析[J].水文地质工程地质,2008(5):28~32
    [108]张茂省,孙传尧,校培喜,等.延安市宝塔区地质灾害详细调查示范[J].西北地质.2007,40(2):29~55
    [109] Sassa K.Geotechnical Model for the Motion of Landslides[A]. Special Lecture of5th InternationalSymposium on Landslides,Landslides[C],1988,(1):37~55
    [110]许领,戴福初,邝国麟.台缘裂缝发育特征、成因机制及其对黄土滑坡的意义[J].地质论评,2009,55(1):85~90
    [111]李明,高维英,杜继稳.陕西黄土高原诱发地质灾害降雨临界值研究[J].陕西气象,2010,(5):1~5
    [112]颜斌,倪万魁,刘海松.黄土边坡降水入渗规律及其稳定性研究[J].水文地质工程地质,2009(3):77~81
    [113]彭建兵,苏生瑞.渭河盆地活断层与地质灾害的分维特征[J].西北大学学报(自然科学版),1993,23(6):555-561
    [114] Lambe, T.W.. Stress Path Method [J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1967,93(Sm6):268~277
    [115] Lambe, T.W., Marr, W.A. Stress Path Method: Second Edition[J]. Journal of the GeotechnicalEngineering Division,ASCE,1979,GT6
    [116] Lade P.V, Duncan J.M. Stress-Path Dependent Behavior of Cohesion less Soil [J], Proc. ASCE,1976,102(GT1):42~48
    [117] Nagaraj T S, Murthy M K, Sridharan. A Incremental loading device for strength Testing of soil[J].Geotechnica Testing Journal,1981,4(2):74~78
    [118] Simith P R, Jordine R J, Hight D W. The yielding of Bothkennar clay[J]. Geotechnique,1992,42(2):257~274
    [119] CharlesW W. Ng. Stress paths in relation to deep excavation[J]. Journal of Geotechnical andGeoenvironmental Engineering,1999,125(5):357~363
    [120] Gallipoli, D., Wheeler, S. J., Karstunen. M. Modelling the variation of degree of saturation in adeformable unsaturated soil[J]. Géotechnique,2003,53(1).:105~112
    [121]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996
    [122]李广信.高等土力学[M].北京:清华大学出版社,2004
    [123]江美英.应力路径对饱和黄土强度变形及孔压特性影响研究[D].杨陵:西北农林科技大学,2010,6
    [124] Fredlund D G. Rallardjo H.非饱和土土力学[M].陈仲颐,张在明,陈愈炯等译.北京:中国建筑工业出版社,1997
    [125] Ning Lu. William J. Likos.非饱和土力学[M].韦昌富,侯龙,简文星译.北京:高等教育出版社,2012,6
    [126] Skempton, A.W. The pore pressure coefficient A and B[J]. Géotechnique,1954,35(4):143~147
    [127] Henkel, D.J. The relationship between the strength, pore water pressure, and bolume-changecharacteristics of saturated clay[J]. Géotechnique,1959,40(9):119~135
    [128]谢定义,齐吉琳.土结构性及其定量化研究的新途径[J].岩土工程学报,1999,21(6):651~656
    [129]卢全中,彭建兵,范文.三轴压缩条件下裂隙性黄土的变形特征[J].公路,2006,(8):1-4
    [130]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形强度的关系[J].水利学报,1999,(10):1~6
    [131]谢定义,齐吉琳,张振中.考虑土结构性的本构关系[J].土木工程学报,2000,33(4):35~40
    [132]胡再强,沈珠江,谢定义.结构性黄土的变形特性[J].岩土力学与工程学报,2004,23(24):4142~4146
    [133]江美英,骆亚生.应力路径对黄土结构性的影响[J].岩土力学.2009,30(S):235~238
    [134]洪毓康.土质学与土力学(第二版)[M].北京:人民交通出版社,1999
    [135]徐日庆,龚晓南.土的应力路径非线性行为[J].岩土工程学报,1995,(4):56~60
    [136]陈正汉,刘祖典.黄土的湿陷变形机理[J].岩土工程学报,1986,(2):1~12
    [137]梁燕,谢永利,刘保健.应力路径对黄土固结不排水剪强度的影响[J].岩土力学.2007,28(2):364~366
    [138]陈育民. FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009
    [139]孙书伟,林杭,任连伟. FLAC3D在岩土工程中的应用[M].北京:中国水利水电出版社.2011
    [140] Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity andplasticity in soil mechanics [J]. Géotechnique,1975,25(4):671~689
    [141] Ugai K., A method of calculation of total factor of safety of slopes by elaso-plastic FEM [J]. Soilsand Foundations,1989,29(2):190~195
    [142] Matsui T, San K C. Finite element slope stability by shear strength reduction technique [J]. Soils andFoundations,1992,32(1):59~70
    [143] Griffiths D.V. Lane P A. Slope stability analysis by finite elements[J]. Géotechnique.1999,49(3):387~403
    [144] Dawson EM, Roth W H, Drescher A. Slope stability analysis by strength reduction[J].Géotechnique,1999,49(6):835~840
    [145]郑颖人,赵尚毅,时卫民,等.边坡稳定分析的一些进展[J].地下空间,2001,21(4):262~271
    [146]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407~411
    [147]赵尚毅,时卫民,郑颖人.边坡稳定分析的有限元法[J].地下空间.2001,21(5):450~454
    [148]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报.2002,24(3):343~346
    [149]张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析[J].岩土工程学报,2002,24(4):487~490
    [150]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381~3388
    [151]赵尚毅,郑颖人,张玉芳.极限分析有限元法讲座——Ⅱ有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332~336
    [152]张鲁渝,郑颖人,赵尚毅,等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,(1):21~27
    [153]林鸿州,于玉贞,李广信,等.强度折减有限元法在滑坡特性预测的应用探讨[J].岩土工程学报,2009,31(2):229~233
    [154]于玉贞,林鸿州,李广信.边坡滑动预测的有限元分析[J].岩土工程学报,2007,29(8):1264~1267
    [155] Duncan J M. State of the art: Limit equilibrium and finite-element analysis of slopes [J]. Journal ofGeotechnical Engineering, ASCE,1996,122(7):577~596
    [156] DAWSONEM, ROTHWH, DRESCHERA. Slope stability analysis by strength reduction[J],Geotechnique,1999,49(6):835~840
    [157]栗茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1~8
    [158]赵少飞,栗茂田,吕爱钟.土工极限平衡问题的非线性有限元数值分析[J].岩土力学,2004,25(s):121~125
    [159]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):l~7
    [160]郑宏,李春光,李悼芬,等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):323~328.
    [161]郑宏,刘德富.弹塑性矩阵Dep的特性和有限元边坡稳定性分析中的极限状态标准[J].岩石力学与工程学报,2005,24(7):1099~1105
    [162]吴春秋,朱以文,蔡元奇.边坡稳定临界破坏状态的动力学评判方法[J].岩土力学,2005,26(5):754~755
    [163]黄润秋,林峰,陈德基,等.岩质高边坡卸荷带形成及其工程性状质研究[J].工程地质学报,2000,9(3):227~232