用户名: 密码: 验证码:
水醇溶性有机光电材料与受体悬挂式共轭聚合物的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近三十年来,半导性的共轭聚合物和共轭小分子等有机材料因其在太阳电池和发光二极管等光电器件中的巨大应用前景而引起了学术界和产业界的持续关注。在这些材料中,具有水/醇溶性的共轭有机材料因其优异的光电性能、独特的溶解性、优异的界面修饰性能等优势而展现了广泛的用途。另一方面,有机/聚合物太阳电池(OPVs)因其低成本、可大面积加工等优势而备受关注。得益于性能优异的新型聚合物给体材料的研发,OPVs的能量转换效率不断攀升,正在逐渐接近其商业化的门槛。
     本论文主要涉及两个方面的研究:一是针对传统的水/醇溶性共轭聚合物所存在的问题,发展新型的水/醇溶性的共轭有机材料并对他们的新应用进行探索;二是为了开发新型的高性能的OPVs给体材料,发展了一个区别于传统的线性聚合物的全新材料体系。
     在第二章,我们为了克服传统的共轭聚电解质中自由移动的反离子对光电器件的不利影响和中性的水/醇溶共轭聚合物溶解性不足的缺陷,发展一系列的两性共轭聚电解质。两性离子基团的引入,不仅保证了聚合物在极性溶剂中的良好溶解性,而且最大程度地限制了离子的运动范围。我们发现两性共轭聚电解质作为界面修饰层应用于聚合物发光二极管(PLEDs)和OPVs时,能比传统共轭聚电解质更大幅度地提升器件的性能。以两性共轭聚电解质为基础,我们还研究了共轭主链结构对水/醇溶性共轭聚合物的界面修饰性能的影响。我们发现界面层与活性层之间的能级是否匹配,是决定水/醇溶性共轭聚合物能否充分发挥其界面修饰功能的重要因素之一。这对未来新界面材料的开发和光电器件的设计具有重要的意义。
     在第三章,我们设计并合成了一种磷酸酯功能化的醇溶性富勒烯衍生物,并研究了其作为ITO的修饰层在倒置OPVs中的应用。我们发现这类材料可以显著降低ITO的功函数,促进ITO对电子的收集,使器件的能量转换效率获得了30%的提升。这项研究表明,集理想的能级、优异的电子收集能力和良好的醇溶性等优点于一身的水/醇溶性富勒烯衍生物是一类非常有潜力的应用于OPVs的界面材料。
     在第四章,为了制备可采用环境友好溶剂加工的高效OPVs,我们设计并合成了胺基功能化的醇溶性窄带隙共轭聚合物和富勒烯衍生物。出乎意料地,这些材料作为活性层应用于OPVs时,完全没有光电流输出,而作为电子收集层时他们都能显著提升器件性能。经过深入研究,我们揭示了脂肪胺的空穴陷阱本质及脂肪胺与富勒烯的复合化作用。正是这两个原因,使得这类可环境友好溶剂加工的材料无法作为活性层应用于OPVs;而作为界面层时,脂肪胺对富勒烯的界面掺杂以及空穴陷阱在金属电极附近的累积又恰恰是他们的重要工作机制。这些发现对发展环境友好加工OPVs和理解水/醇溶性界面修饰材料的工作机制具有重要意义。
     在第五章,我们发展和丰富了一个有别于传统线性共轭聚合物的新材料体系—受体悬挂式D-A共轭聚合物,作为给体材料用于OPVs。与研究最多的线性D-A聚合物不同,受体悬挂式D-A共轭聚合物的主链全部由D单元组成,而将受体悬挂在侧链上。这种独特的分子结构赋予受体悬挂式D-A共轭聚合物一系列独特的优点,如:可通过调节给体单元和受体单元方便地实现对吸收光谱、光学带隙和能级结构的调控,更好的多方向电荷传输性能,更好的溶解性等。将具有优异的光电性能的分子构筑单元(硅芴、咔唑、茚芴等)与受体悬挂式D-A共轭聚合物的分子设计相结合,通过在聚合物的共轭侧链引入不同的受体单元(丙二腈、1,3-二乙基硫代巴比妥酸、3-(二氰基亚甲基)茚酮等)、增加D-π-A生色团的含量、改变烷基侧链等手段,我们发展了一系列新材料,实现了对聚合物的吸收光谱、光学带隙、能级结构实现了精确有效的调控。利用受体悬挂式D-A共轭聚合物的研究平台,我们为拓宽共轭聚合物的吸收光谱提出了一个新方法,即通过引入两个吸电子能力不同的受体单元,在同一个聚合物中构建两种不同的D-π-A生色团,使共轭聚合物的吸收光谱实现了对全部整个可见光区的覆盖并延伸到近红外光区。作为OPVs的给体材料,受体悬挂式D-A共轭聚合物表现出了良好的光伏性能,所有的器件都有很高的开路电压,最高能量转换效率达到4.47%。该系列工作为OPVs发展了一个新的给体材料体系。
Semiconducting conjugated polymers and small molecules have attracted growingattentions due to their great application potentials in optoelectronic devices such as solar cellsand light-emitting diodes over the past decades. Among them, water/alcohol-soluble organicconjugated materials have exhibited wide applications owing to their excellent optoelectronicproperties, unique solubility and outstanding interfacial modification functions. On the otherhand, organic/polymer solar cells (OPVs) have also gained much attentions due to their lowcost and compatibility with large-scale processing. The power conversion efficiencies ofOPVs have approached to the commercialization threshold mainly benefiting from thedevelopment of new conjugated polymer donors.
     The studies demonstrated in this thesis include two parts. The first part is thedevelopment of new water/alcohol soluble conjugated organic materials and the explorationof their new applications, which can overcome the shortcomings of traditional water/alcoholsoluble conjugated polymers. The second part is the development of a new high-performanceconjugated polymer family for use as donors in OPVs, which are different from theextensively studied linear conjugated polymers.
     In chapter2, a series of zwitterionic conjugated polyelectrolytes were developed withthe aim at overcoming the negative influences caused by the mobile counterions in traditionalconjugated polyelectrolytes and the limited solubility of neutral water/alcohol solubleconjugated polymers. The introduction of zwitterionic groups not only endowed the resultingpolymers with excellent solubility in polar solvents but also suppressed the movement of ions.It was found that zwitterionic conjugated polyelectrolytes is superior to tradition conjugatedpolyelectrolytes when used as interfacial modification layer in polymer light-emitting diodes(PLEDs) and OPVs. The effects of chemical structures of conjugated main chains on theinterfacial modification properties of water/alcohol conjugated polymers. It was revealed thatthe energy alignment between interfacial layer and active layer is a key factor that determinedthe interfacial modification abilities of water/alcohol soluble conjugated polymers. Thisdiscovery provided a guideline to design new interfacial materials and optoelectronic devices.
     In chapter3, a phosphate group-containing alcohol soluble fullerene derivative wasdeveloped to apply as modifier for indium tin oxide (ITO) in inverted OPVs. It was foundthat this fullerene derivative can lead to the decrease of work function of ITO significantly,and consequently enhance the electron collection in ITO electrode and improve the powerconversion efficiency of OPVs by30%. This study suggested that water/alcohol solublefullerene derivatives which combined ideal energy levels, excellent electron collectingabilities and unique solubilities are very promising interfacial materials for OPVs.
     In chapter4, an alcohol-soluble narrow-band gap conjugated polymer and a fullerenederivative which were functionalized with amino-group were developed towardenvironmentally-friendly solvents processed OPVs. Despite positive expects, the blendsystem was not able to lead to any output of photocurrent when they were incorporated intoOPVs as active layer. However, both of them performed well as electron-collecting layer inOPVs. In-depth studies revealed the hole-trap nature of aliphatic amine and the complexationbetween amine and fullerene, which suppressed the photocurrent output when they werepresence in active layer. On the other hand, the n-doping of fullerene by aliphatic amine andthe accumulation of hole traps adjacent to metal electrode are beneficial to the deviceperformances. The studies in this chapter are very important to develop new materials forenvironmentally-friendly processed OPVs in the future and to understand the workingmechanisms of water/alcohol soluble interfacial materials.
     In chapter5, a serious of acceptor-pended D-A conjugated polymers, which differedfrom extensively studied linear conjugated polymers were developed for use as donors inOPVs. Acceptor-pended conjugated polymers have a lot of advantages, such as facilities forcontrolling absorption spectra, band gap and energy level by simple chemical modification,better isotropic charge transport properties and better solubilities. A large family ofconjugated polymers was developed by combining the advantages of acceptor-pendedmolecular design and several promising building blocks (such as silicafluorene, carbazole andindenofluorene). The absorption spectra, band gaps and energy levels were finely tuned byattaching different acceptor groups (such as malononitrile,1,3-diethylthiobarbituric acid,2-(1,2-dihydro-1-oxoinden-3-ylidene)) onto the end of the conjugated side chains of the polymers, and by enhancing the concentration of D-π-A chromophores and changing thealkyl side chains. Moreover, two conjugated polymers whose absorption spectra covered thewhole visible light region and even extended into infrared light region were developed byconstructing two different D-π-A chromophores on one polymer chain, which provided a newapproach to extend the absorption spectra for conjugated polymers. All of theacceptor-pended conjugated polymers exhibited moderate performance as donors in OPVswith high open-circuit voltage and highest power conversion efficiency of4.47%. The studiesin these chapters developed a new system of donor materials for OPVs.
引文
[1] Krebs F. C., Espinosa N., Hosel M., et al.25th Anniversary Article: Rise toPower—OPV-based Solar Parks [J], Advanced Materials,2013DOI:10.1002/adma.201302031.
    [2] Tang C. W. Two-layer organic photovoltaic cell [J], Applied Physics Letters,1986,48,183.
    [3] Sariciftci N. S., Smilowitz L., Heeger A. J., et al. Photoinduced Electron Transfer from aConducting Polymer to Buckminsterfullerene [J], Science,1992,258,1474.
    [4] Morita S., Zakhidov A. A. and Yoshino K. Doping effect of buckminsterfullerene inconducting polymer: Change of absorption spectrum and quenching of luminescene [J],Solid State Communications,1992,82,249.
    [5] Sariciftci N. S., Smilowitz L., Heeger A. J., et al. Semiconducting polymers (as donors)and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunctiondevices [J], Synthetic Metals,1993,59,333.
    [6] Heeger A. J. and Sariciftci N. S. Patent US1992/5331183A.
    [7] Yu G., Gao J., Hummelen J. C., et al. Polymer photovoltaic cells: enhanced efficienciesvia a network of internal donor-acceptor heterojunctions [J], Science,1995,270,1789.
    [8] Halls J. J. M., Walsh C. A., Greenham N. C., et al. Efficient photodiodes frominterpenetrating polymer networks [J], Nature,1995,376,498.
    [9] Clarke T. M. and Durrant J. R. Charge Photogeneration in Organic Solar Cells [J],Chemical Reviews,2010,110,6736.
    [10] Chen J. and Cao Y. Development of Novel Conjugated Donor Polymers forHigh-Efficiency Bulk-Heterojunction Photovoltaic Devices [J], Accounts of ChemicalResearch,2009,42,1709.
    [11] Cheng Y. J., Yang S. H. and Hsu C. S. Synthesis of Conjugated Polymers for OrganicSolar Cell Applications [J], Chemical Reviews,2009,109,5868.
    [12] Liang Y. Y. and Yu L. P. A New Class of Semiconducting Polymers for BulkHeterojunction Solar Cells with Exceptionally High Performance [J], Accounts ofChemical Research,2010,43,1227.
    [13] Duan C. H., Huang F. and Cao Y. Recent development of push-pull conjugated polymersfor bulk-heterojunction photovoltaics: rational design and fine tailoring of molecularstructures [J], Journal of Materials Chemistry,2012,22,10416.
    [14] Li Y. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: TowardSuitable Electronic Energy Levels and Broad Absorption [J], Accounts of ChemicalResearch,2012,45,723.
    [15] Li G., Shrotriya V., Huang J., et al. High-efficiency solution processable polymerphotovoltaic cells by self-organization of polymer blends [J], Nature Materials,2005,4,864.
    [16] Peet J., Kim J. Y., Coates N. E., et al. Efficiency enhancement in low-bandgap polymersolar cells by processing with alkane dithiols [J], Nature Materials,2007,6,497.
    [17] Li G., Chu C. W., Shrotriya V., et al. Efficient inverted polymer solar cells [J], AppliedPhysics Letters,2006,88,253503.
    [18] Kim J. Y., Lee K., Coates N. E., et al. Efficient tandem polymer solar cells fabricated byall-solution processing [J], Science,2007,317,222.
    [19] He Z., Zhong C., Huang X., et al. Simultaneous Enhancement of Open-Circuit Voltage,Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells [J], AdvancedMaterials,2011,23,4636.
    [20] Yuan Y., Reece T. J., Sharma P., et al. Efficiency enhancement in organic solar cells withferroelectric polymers [J], Nature Materials,2011,10,296.
    [21] J rgensen M., Norrman K., Gevorgyan S. A., et al. Stability of Polymer Solar Cells [J],Advanced Materials,2012,24,580.
    [22] He Z. C., Zhong C. M., Su S. J., et al. Enhanced power-conversion efficiency in polymersolar cells using an inverted device structure [J], Nature Photonics,2012,6,591.
    [23] You J., Dou L., Yoshimura K., et al. A polymer tandem solar cell with10.6%powerconversion efficiency [J], Nature Communications,2013,4,1446.
    [24] http://www.heliatek.com/
    [25] Gilot J., Barbu I., Wienk M. M., et al. The use of ZnO as optical spacer in polymer solarcells: Theoretical and experimental study [J], Applied Physics Letters,2007,91,113520.
    [26] de Jong M. P., van IJzendoorn L. J. and de Voigt M. J. A. Stability of the interfacebetween indium-tin oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulphonate)in polymer light-emitting diodes [J], Applied Physics Letters,2000,77,2255.
    [27] Shrotriya V., Li G., Yao Y., et al. Transition metal oxides as the buffer layer for polymerphotovoltaic cells [J], Applied Physics Letters,2006,88,073508.
    [28] Irwin M. D., Buchholz B., Hains A. W., et al. p-Type semiconducting nickel oxide as anefficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells[J], Proceedings of the National Academy of Sciences of the United States of America,2008,105,2783.
    [29] Han S., Shin W. S., Seo M., et al. Improving performance of organic solar cells usingamorphous tungsten oxides as an interfacial buffer layer on transparent anodes [J],Organic Electronics,2009,10,791.
    [30] Hirose Y., Kahn A., Aristove V., et al. Chemistry, diffusion, and electronic properties of ametal/organic semiconductor contact: In/perylenetetracarboxylic dianhydride [J],Applied Physics Letters,1996,68,217.
    [31] Oji H., Ito E., Furuta M., et al. p-Sexiphenyl/metal interfaces studied by photoemissionand metastable atom electron spectroscopy [J], Journal of Electron Spectroscopy andRelated Phenomena,1999,103,517.
    [32] Pope M., Kallmann H. P. and Magnante P. Electroluminescence in organic crystals [J],The Journal of Chemical Physics,1963,38,2042.
    [33] Tang C. W. and VanSlyke S. A. Organic electroluminescent diodes [J], Applied PhysicsLetters,1987,51,913.
    [34] Burroughes J. H., Bradley D. D. C., Brown A. R., et al. Light-emitting diodes based onconjugated polymers [J], Nature,1990,347,539.
    [35] Ma Y. G., Zhang H. Y. and Shen J. C. Electroluminescence from Triplet Metal-LigandCharge-Transfer Excited State of Transition Metal Complexes [J], Synthetic Metals,1998,94,245.
    [36] Baldo M. A., O'Brien D. F., You Y., et al. High Efficiency Phosphorescent Emissiionfrom Organic Electroluminescent Devices [J], Nature,1998,395,151.
    [37] Holder E., Langeveld B. M. W. and Schubert U. S. New Trends in the Use of TransitionMetal–Ligand Complexes for Applications in Electroluminescent Devices [J], AdvancedMaterials,2005,17,1109.
    [38] Uoyama H., Goushi K., Shizu K., et al. Highly efficient organic light-emitting diodesfrom delayed fluorescence [J], Nature,2012,492,234.
    [39] Sato K., Shizu K., Yoshimura K., et al. Organic Luminescent Molecule withEnergetically Equivalent Singlet and Triplet Excited States for Organic Light-EmittingDiodes [J], Physical Review Letters,2013,110,247401.
    [40] Hoven C. V., Garcia A., Bazan G. C., et al. Recent Applications of ConjugatedPolyelectrolytes in Optoelectronic Devices [J], Advanced Materials,2008,20,3793.
    [41] Huang F., Wu H. B. and Cao Y. Water/alcohol soluble conjugated polymers as highlyefficient electron transporting/injection layer in optoelectronic devices [J], ChemicalSociety Reviews,2010,39,2500.
    [42] Zhong C. M., Duan C. H., Huang F., et al. Materials and Devices toward Fully SolutionProcessable Organic Light-Emitting Diodes [J], Chemistry of Materials,2011,23,326.
    [43] Duan C., Zhang K., Zhong C., et al. Recent advances in water/alcohol-solublepi-conjugated materials: new materials and growing applications in solar cells [J],Chemical Society Reviews,2013,42,9071.
    [44] Huang F., Wu H. B., Wang D. L., et al. Novel Electroluminescent ConjugatedPolyeletrolytes Based on Polyfluorene [J], Chemistry of Materials,2004,16,708.
    [45] Wu H. B., Huang F., Mo Y. Q., et al. Efficient electron injection from a bilayer cathodeconsisting of aluminum and alcohol-/water-soluble conjugated polymers [J], AdvancedMaterials,2004,16,1826.
    [46] Wu H. B., Huang F., Peng J. B., et al. High-efficiency electron injection cathode of Aufor polymer light-emitting devices [J], Organic Electronics,2005,6,118.
    [47] Huang F., Hou L. T., Wu H. B., et al. High-Efficiency, Environment-FriendlyElectroluminescent Polymers with Stable High Work Function Metal as a Cathode:Green-and Yellow-Emitting Conjugated Polyfluorene Polyelectrolytes and TheirNeutral Precursors [J], Journal of the American Chemical Society,2004,126,9845.
    [48] Huang F., Niu Y. H., Zhang Y., et al. A conjugated, neutral surfactant aselectron-injection material for high-efficiency polymer light-emitting diodes [J],Advanced Materials,2007,19,2010.
    [49] Jin Y., Bazan G. C., Heeger A. J., et al. Improved electron injection in polymerlight-emitting diodes using anionic conjugated polyelectrolyte [J], Applied PhysicsLetters,2008,93,123304.
    [50] Yang R. Q., Wu H. B., Cao Y., et al. Control of cationic conjugated polymer performancein light emitting diodes by choice of counterion [J], Journal of the American ChemicalSociety,2006,128,14422.
    [51] Hoven C., Yang R., Garcia A., et al. Ion Motion in Conjugated Polyelectrolyte ElectronTransporting Layers [J], Journal of the American Chemical Society,2007,129,10976.
    [52] Shi W., Fan S. Q., Huang F., et al. Synthesis of novel triphenylamine-based conjugatedpolyelectrolytes and their application as hole-transport layers in polymeric light-emittingdiodes [J], Journal of Materials Chemistry,2006,16,2387.
    [53] Shi W., Wang L., Huang F., et al. Anionic triphenylamine-and fluorene-basedconjugated polyelectrolyte as a hole-transporting material for polymer light-emittingdiodes [J], Polymer International,2009,58,373.
    [54] Zhao Y., Xie Z., Qin C., et al. Enhanced charge collection in polymer photovoltaic cellsby using an ethanol-soluble conjugated polyfluorene as cathode buffer layer [J], SolarEnergy Materials and Solar Cells,2009,93,604.
    [55] Na S.-I., Oh S.-H., Kim S.-S., et al. Efficient organic solar cells with polyfluorenederivatives as a cathode interfacial layer [J], Organic Electronics,2009,10,496.
    [56] Luo J., Wu H. B., He C., et al. Enhanced open-circuit voltage in polymer solar cells [J],Applied Physics Letters,2009,95,043301.
    [57] He C., Zhong C. M., Wu H. B., et al. Origin of the enhanced open-circuit voltage inpolymer solar cells via interfacial modification using conjugated polyelectrolytes [J],Journal of Materials Chemistry,2010,20,2617.
    [58] Seo J. H., Gutacker A., Sun Y. M., et al. Improved High-Efficiency Organic Solar Cellsvia Incorporation of a Conjugated Polyelectrolyte Interlayer [J], Journal of the AmericanChemical Society,2011,133,8416.
    [59] Zhong C. M., Liu S. J., Huang F., et al. Highly Efficient Electron Injection from IndiumTin Oxide/Cross-Linkable Amino-Functionalized Polyfluorene Interface in InvertedOrganic Light Emitting Devices [J], Chemistry of Materials,2011,23,4870.
    [60] Dong Y., Hu X., Duan C., et al. A Series of New Medium-Bandgap ConjugatedPolymers Based on Naphtho[1,2-c:5,6-c]bis(2-octyl-[1,2,3]triazole) forHigh-Performance Polymer Solar Cells [J], Advanced Materials,2013,25,3683.
    [61] Tang Z., Andersson L. M., George Z., et al. Interlayer for Modified Cathode in HighlyEfficient Inverted ITO-Free Organic Solar Cells [J], Advanced Materials,2012,24,554.
    [62] Zhu Y., Xu X., Zhang L., et al. High efficiency inverted polymeric bulk-heterojunctionsolar cells with hydrophilic conjugated polymers as cathode interlayer on ITO [J], SolarEnergy Materials and Solar Cells,2012,97,83.
    [63] Xu X. F., Zhu Y. X., Zhang L. J., et al. Hydrophilic poly(triphenylamines) withphosphonate groups on the side chains: synthesis and photovoltaic applications [J],Journal of Materials Chemistry,2012,22,4329.
    [64] Sun J., Zhu Y., Xu X., et al. High Efficiency and High Voc Inverted Polymer Solar CellsBased on a Low-Lying HOMO Polycarbazole Donor and a Hydrophilic PolycarbazoleInterlayer on ITO Cathode [J], The Journal of Physical Chemistry C,2012,116,14188.
    [65] Liao S. H., Li Y. L., Jen T. H., et al. Multiple Functionalities of Polyfluorene Graftedwith Metal Ion-Intercalated Crown Ether as an Electron Transport Layer forBulk-Heterojunction Polymer Solar Cells: Optical Interference, Hole Blocking,Interfacial Dipole, and Electron Conduction [J], Journal of the American ChemicalSociety,2012,134,14271.
    [66] Yang T., Wang M., Duan C., et al. Inverted polymer solar cells with8.4%efficiency byconjugated polyelectrolyte [J], Energy&Environmental Science,2012,5,8208.
    [67] Rider D. A., Worfolk B. J., Harris K. D., et al. Stable Inverted Polymer/Fullerene SolarCells Using a Cationic Polythiophene Modified PEDOT:PSS Cathodic Interface [J],Advanced Functional Materials,2010,20,2404.
    [68] Worfolk B. J., Hauger T. C., Harris K. D., et al. Work Function Control of InterfacialBuffer Layers for Efficient and Air-Stable Inverted Low-Bandgap Organic Photovoltaics[J], Advanced Energy Materials,2012,2,361.
    [69] Chang Y.-M., Zhu R., Richard E., et al. Electrostatic Self-Assembly ConjugatedPolyelectrolyte-Surfactant Complex as an Interlayer for High Performance PolymerSolar Cells [J], Advanced Functional Materials,2012,22,3284.
    [70] Shi T., Zhu X. G., Yang D., et al. Thermal annealing influence onpoly(3-hexyl-thiophene)/phenyl-C61-butyric acid methyl ester-based solar cells withanionic conjugated polyelectrolyte as cathode interface layer [J], Applied Physics Letters,2012,101,161602.
    [71] Chen Y., Jiang Z. T., Gao M., et al. Efficiency enhancement for bulk heterojunctionphotovoltaic cells via incorporation of alcohol soluble conjugated polymer interlayer [J],Applied Physics Letters,2012,100,203304.
    [72] Pho T. V., Kim H., Seo J. H., et al. Quinacridone-Based Electron Transport Layers forEnhanced Performance in Bulk-Heterojunction Solar Cells [J], Advanced FunctionalMaterials,2011,21,4338.
    [73] Reilly T. H., Hains A. W., Chen H.-Y., et al. A Self-Doping, O2-Stable, n-TypeInterfacial Layer for Organic Electronics [J], Advanced Energy Materials,2012,2,455.
    [74] Ye H., Hu X., Jiang Z., et al. Pyridinium salt-based molecules as cathode interlayers forenhanced performance in polymer solar cells [J], Journal of Materials Chemistry A,2013,1,3387.
    [75] Shaheen S. E., Brabec C. J., Sariciftci N. S., et al.2.5%efficient organic plastic solarcells [J], Applied Physics Letters,2001,78,841.
    [76] Wienk M. M., Kroon J. M., Verhees W. J. H., et al. EfficientMethano[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells [J],Angewandte Chemie International Edition,2003,42,3371.
    [77] Ma W., Yang C., Gong X., et al. Thermally Stable, Efficient Polymer Solar Cells withNanoscale Control of the Interpenetrating Network Morphology [J], AdvancedFunctional Materials,2005,15,1617.
    [78] Kim Y., Cook S., Tuladhar S. M., et al. A strong regioregularity effect in self-organizingconjugated polymer films and high-efficiency polythiophene: fullerene solar cells [J],Nature Materials,2006,5,197.
    [79] Guo X., Cui C., Zhang M., et al. High efficiency polymer solar cells based onpoly(3-hexylthiophene)/indene-C70bisadduct with solvent additive [J], Energy&Environmental Science,2012,5,7943.
    [80] Hou J. H., Tan Z. A., Yan Y., et al. Synthesis and Photovoltaic Properties ofTwo-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains[J], Journal of the American Chemical Society,2006,128,4911.
    [81] Zhu Z., Waller D., Gaudiana R., et al. Panchromatic conjugated polymers containingalternating donor/acceptor units for photovoltaic applications [J], Macromolecules,2007,40,1981.
    [82] Hou J. H., Chen H. Y., Zhang S. Q., et al. Synthesis, Characterization, and PhotovoltaicProperties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and2,1,3-Benzothiadiazole [J], Journal of the American Chemical Society,2008,130,16144.
    [83] Blouin N., Michaud A. and Leclerc M. A Low-Bandgap Poly(2,7-Carbazole) Derivativefor Use in High-Performance Solar Cells [J], Advanced Materials,2007,19,2295.
    [84] Wang E. G., Wang L., Lan L. F., et al. High-performance polymer heterojunction solarcells of a polysilafluorene derivative [J], Applied Physics Letters,2008,92,033307.
    [85] Zhou H., Yang L., Stuart A. C., et al. Development of Fluorinated Benzothiadiazole as aStructural Unit for a Polymer Solar Cell of7%Efficiency [J], Angewandte ChemieInternational Edition,2011,123,3051.
    [86] Qin R. P., Li W. W., Li C. H., et al. A Planar Copolymer for High Efficiency PolymerSolar Cells [J], Journal of the American Chemical Society,2009,131,14612.
    [87] Liu J., Choi H., Kim J. Y., et al. Highly Crystalline and Low Bandgap Donor Polymersfor Efficient Polymer Solar Cells [J], Advanced Materials,2012,24,538.
    [88] Dou L., Chen C.-C., Yoshimura K., et al. Synthesis of5H-Dithieno[3,2-b:2',3'-d]pyran asan Electron-Rich Building Block for Donor-Acceptor Type Low-Bandgap Polymers [J],Macromolecules,2013,46,3384.
    [89] Zhang M., Gu Y., Guo X., et al. Efficient Polymer Solar Cells Based onBenzothiadiazole and Alkylphenyl Substituted Benzodithiophene with a PowerConversion Efficiency over8%[J], Advanced Materials,2013,25,4944.
    [90] Wang E., Hou L., Wang Z., et al. An Easily Synthesized Blue Polymer forHigh-Performance Polymer Solar Cells [J], Advanced Materials,2010,22,5240.
    [91] He Z., Zhang C., Xu X., et al. Largely Enhanced Efficiency with a PFN/Al BilayerCathode in High Efficiency Bulk Heterojunction Photovoltaic Cells with a LowBandgap Polycarbazole Donor [J], Advanced Materials,2011,23,3086.
    [92] Chen H.-C., Chen Y.-H., Liu C.-C., et al. Prominent Short-Circuit Currents ofFluorinated Quinoxaline-Based Copolymer Solar Cells with a Power ConversionEfficiency of8.0%[J], Chemistry of Materials,2012,24,4766.
    [93] Wang M., Hu X. W., Liu P., et al. Donor Acceptor Conjugated Polymer Based onNaphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for High-Performance Polymer Solar Cells [J],Journal of the American Chemical Society,2011,133,9638.
    [94] Osaka I., Shimawaki M., Mori H., et al. Synthesis, Characterization, and Transistor andSolar Cell Applications of a Naphthobisthiadiazole-Based Semiconducting Polymer [J],Journal of the American Chemical Society,2012,134,3498.
    [95] Osaka I., Kakara T., Takemura N., et al. Naphthodithiophene-NaphthobisthiadiazoleCopolymers for Solar Cells: Alkylation Drives the Polymer Backbone Flat and PromotesEfficiency [J], Journal of the American Chemical Society,2013,135,8834.
    [96] Zou Y. P., Najari A., Berrouard P., et al. A Thieno[3,4-c]pyrrole-4,6-dione-BasedCopolymer for Efficient Solar Cells [J], Journal of the American Chemical Society,2010,132,5330.
    [97] Piliego C., Holcombe T. W., Douglas J. D., et al. Synthetic Control of Structural Order inN-Alkylthieno[3,4-c]pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells [J],Journal of the American Chemical Society,2010,132,7595.
    [98] Cabanetos C., El Labban A., Bartelt J. A., et al. Linear Side Chains inBenzo[1,2-b:4,5-b']dithiophene-Thieno[3,4-c]pyrrole-4,6-dione Polymers DirectSelf-Assembly and Solar Cell Performance [J], Journal of the American ChemicalSociety,2013,135,4656.
    [99] Chu T.-Y., Lu J., Beaupre S., et al. Bulk Heterojunction Solar Cells UsingThieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:2',3',d]silole Copolymer with aPower Conversion Efficiency of7.3%[J], Journal of the American Chemical Society,2011,133,4250.
    [100] Amb C. M., Chen S., Graham K. R., et al. Dithienogermole As a Fused Electron Donorin Bulk Heterojunction Solar Cells [J], Journal of the American Chemical Society,2011,133,10062.
    [101] Small C. E., Chen S., Subbiah J., et al. High-efficiency inverteddithienogermole-thienopyrrolodione-based polymer solar cells [J], Nature Photonics,2012,6,115.
    [102] Bijleveld J. C., Gevaerts V. S., Di Nuzzo D., et al. Efficient Solar Cells Based on anEasily Accessible Diketopyrrolopyrrole Polymer [J], Advanced Materials,2010,22,E242.
    [103] Li W., Furlan A., Hendriks K. H., et al. Efficient Tandem and Triple-Junction PolymerSolar Cells [J], Journal of the American Chemical Society,2013,135,5529.
    [104] Hendriks K. H., Heintges G. H. L., Gevaerts V. S., et al. High-Molecular-WeightRegular Alternating Diketopyrrolopyrrole-based Terpolymers for Efficient OrganicSolar Cells [J], Angewandte Chemie International Edition,2013,52,8341.
    [105] Dou L., You J., Yang J., et al. Tandem polymer solar cells featuring a spectrallymatched low-bandgap polymer [J], Nat Photonics,2012,6,180.
    [106] Dou L., Chang W.-H., Gao J., et al. A Selenium-Substituted Low-Bandgap Polymerwith Versatile Photovoltaic Applications [J], Advanced Materials,2013,25,825.
    [107] Qian D., Ma W., Li Z., et al. Molecular Design toward Efficient Polymer Solar Cellswith High Polymer Content [J], Journal of the American Chemical Society,2013,135,8464.
    [108] Cao J., Liao Q., Du X., et al. A pentacyclic aromatic lactam building block for efficientpolymer solar cells [J], Energy&Environmental Science,2013,6,3224.
    [109] Zhou H., Yang L., Price S. C., et al. Enhanced Photovoltaic Performance ofLow-Bandgap Polymers with Deep LUMO Levels [J], Angewandte ChemieInternational Edition,2010,49,7992.
    [110] Price S. C., Stuart A. C., Yang L. Q., et al. Fluorine Substituted Conjugated Polymer ofMedium Band Gap Yields7%Efficiency in Polymer-Fullerene Solar Cells [J], Journalof the American Chemical Society,2011,133,4625.
    [111] Wang E. G., Ma Z. F., Zhang Z., et al. An Easily Accessible Isoindigo-Based Polymerfor High-Performance Polymer Solar Cells [J], Journal of the American ChemicalSociety,2011,133,14244.
    [112] Li Z., Ding J., Song N., et al. Development of a New s-Tetrazine-Based Copolymer forEfficient Solar Cells [J], Journal of the American Chemical Society,2010,132,13160.
    [113] Zhang M. J., Guo X. and Li Y. F. Synthesis and Characterization of a Copolymer Basedon Thiazolothiazole and Dithienosilole for Polymer Solar Cells [J], Advanced EnergyMaterials,2011,1,557.
    [114] Liang Y. Y., Wu Y., Feng D. Q., et al. Development of New Semiconducting Polymersfor High Performance Solar Cells [J], Journal of the American Chemical Society,2009,131,56.
    [115] Liang Y., Feng D., Wu Y., et al. Highly Efficient Solar Cell Polymers Developed viaFine-Tuning of Structural and Electronic Properties [J], Journal of the AmericanChemical Society,2009,131,7792.
    [116] Hou J. H., Chen H. Y., Zhang S. Q., et al. Synthesis of a Low Band Gap Polymer andIts Application in Highly Efficient Polymer Solar Cells [J], Journal of the AmericanChemical Society,2009,131,15586.
    [117] Chen H.-Y., Hou J., Zhang S., et al. Polymer solar cells with enhanced open-circuitvoltage and efficiency [J], Nature Photonics,2009,3,649.
    [118] Liang Y., Xu Z., Xia J., et al. For the Bright Future—Bulk Heterojunction PolymerSolar Cells with Power Conversion Efficiency of7.4%[J], Advanced Materials,2010,22, E135.
    [119] Meerholz K. Device physics-Enlightening solutions [J], Nature,2005,437,327.
    [120] Lowe A. B. and McCormick C. L. Synthesis and Solution Properties of ZwitterionicPolymers [J], Chemical Reviews,2002,102,4177.
    [121] Zhou G., Qian G., Ma L., et al. Polyfluorenes with Phosphonate Groups in the SideChains as Chemosensors and Electroluminescent Materials [J], Macromolecules,2004,38,5416.
    [122] Kim J., Kim S., Kim J., et al. Di-aryl substituted poly(cyclopenta[def]phenanthrene)derivatives containing carbazole and triphenylamine units in the main chain for organiclight-emitting diodes [J], Macromolecular Research,2011,19,589.
    [123] Ranger M., Rondeau D. and Leclerc M. New Well-Defined Poly(2,7-fluorene)Derivatives: Photoluminescence and Base Doping [J], Macromolecules,1997,30,7686.
    [124] Wang H., Lu P., Wang B., et al. A Water-Soluble π-Conjugated Polymer with up to100mg·mL1Solubility [J], Macromolecular Rapid Communications,2007,28,1645.
    [125] Neto B. A. D., Lopes A. S. A., Ebeling G., et al. Photophysical and electrochemicalproperties of pi-extended molecular2,1,3-benzothiadiazoles [J], Tetrahedron,2005,61,10975.
    [126] Liu B., Yu W.-L., Lai Y.-H., et al. Blue-Light-Emitting Cationic Water-SolublePolyfluorene Derivatives with Tunable Quaternization Degree [J], Macromolecules,2002,35,4975.
    [127] Romaner L., Pogantsch A., de Freitas P. S., et al. The origin of green emission inpolyfluorene-based conjugated polymers: On-chain defect fluorescence [J], AdvancedFunctional Materials,2003,13,597.
    [128] Lu H.-H., Liu C.-Y., Jen T.-H., et al. Excimer Formation by Electric Field Inductionand Side Chain Motion Assistance in Polyfluorenes [J], Macromolecules,2005,38,10829.
    [129] Tan C. Y., Pinto M. R. and Schanze K. S. Photophysics, aggregation and amplifiedquenching of a water-soluble poly(phenylene ethynylene)[J], ChemicalCommunications,2002446.
    [130] Pommerehne J., Vestweber H., Guss W., et al. Efficient two layer leds on a polymerblend basis [J], Advanced Materials,1995,7,551.
    [131] Donley C. L., Zaumseil J., Andreasen J. W., et al. Effects of Packing Structure on theOptoelectronic and Charge Transport Properties inPoly(9,9-di-n-octylfluorene-alt-benzothiadiazole)[J], Journal of the AmericanChemical Society,2005,127,12890.
    [132] Campbell A. J., Bradley D. D. C. and Antoniadis H. Dispersive electron transport in anelectroluminescent polyfluorene copolymer measured by the current integrationtime-of-flight method [J], Applied Physics Letters,2001,79,2133.
    [133] Redecker M., Bradley D. D. C., Inbasekaran M., et al. High Mobility Hole TransportFluorene-Triarylamine Copolymers [J], Advanced Materials,1999,11,241.
    [134] Huang F., Zhang Y., Liu M. S., et al. Electron-Rich Alcohol-Soluble NeutralConjugated Polymers as Highly Efficient Electron-Injecting Materials for PolymerLight-Emitting Diodes [J], Advanced Functional Materials,2009,19,2457.
    [135] Ma W., Iyer P. K., Gong X., et al. Water/Methanol-Soluble Conjugated Copolymer asan Electron-Transport Layer in Polymer Light-Emitting Diodes [J], AdvancedMaterials,2005,17,274.
    [136] Garcia A., Yang R., Jin Y., et al. Structure-function relationships of conjugatedpolyelectrolyte electron injection layers in polymer light emitting diodes [J], AppliedPhysics Letters,2007,91,153502.
    [137] Zou J. H., Liu J., Wu H. B., et al. High-efficiency and good color quality whitelight-emitting devices based on polymer blend [J], Organic Electronics,2009,10,843.
    [138] Hau S. K., Yip H. L. and Jen A. K. Y. A Review on the Development of the InvertedPolymer Solar Cell Architecture [J], Polymer Reviews,2010,50,474.
    [139] Sun Y. M., Seo J. H., Takacs C. J., et al. Inverted Polymer Solar Cells Integrated with aLow Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer[J], Advanced Materials,2011,23,1679.
    [140] Waldauf C., Morana M., Denk P., et al. Highly efficient inverted organic photovoltaicsusing solution based titanium oxide as electron selective contact [J], Applied PhysicsLetters,2006,89,233517.
    [141] Jin Y., Wang J., Sun B., et al. Solution-Processed Ultraviolet Photodetectors Based onColloidal ZnO Nanoparticles [J], Nano Letters,2008,8,1649.
    [142] Hsieh C.-H., Cheng Y.-J., Li P.-J., et al. Highly Efficient and Stable Inverted PolymerSolar Cells Integrated with a Cross-Linked Fullerene Material as an Interlayer [J],Journal of the American Chemical Society,2010,132,4887.
    [143] Cheng Y.-J., Hsieh C.-H., He Y., et al. Combination of Indene-C60Bis-Adduct andCross-Linked Fullerene Interlayer Leading to Highly Efficient Inverted Polymer SolarCells [J], Journal of the American Chemical Society,2010,132,17381.
    [144] Cheng Y.-J., Cao F.-Y., Lin W.-C., et al. Self-Assembled and Cross-Linked FullereneInterlayer on Titanium Oxide for Highly Efficient Inverted Polymer Solar Cells [J],Chemistry of Materials,2011,23,1512.
    [145] Marvel C. S. and Tanenbaum A. L. THE PREPARATION OF1,4-DIHALOGENDERIVATIVES OF BUTANE [J], Journal of the American Chemical Society,1922,44,2645.
    [146] Yang T. B., Cai W. Z., Qin D. H., et al. Solution-processed zinc oxide thin film as abuffer layer for polymer solar cells with an inverted device structure [J], Journal ofPhysical Chemistry C,2009,114,6849.
    [147] Zhou H. X., Yang L. Q., Liu S. B., et al. A Tale of Current and Voltage Interplay ofBand Gap and Energy Levels of Conjugated Polymers in Bulk Heterojunction SolarCells [J], Macromolecules,2010,43,10390.
    [148] Lenes M., Wetzelaer G.-J. A. H., Kooistra F. B., et al. Fullerene Bisadducts forEnhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells [J], AdvancedMaterials,2008,20,2116.
    [149] Kim C. S., Lee S. S., Gomez E. D., et al. Transient photovoltaic behavior of air-stable,inverted organic solar cells with solution-processed electron transport layer [J], AppliedPhysics Letters,2009,94,113302.
    [150] Schmidt H., Zilberberg K., Schmale S., et al. Transient characteristics of invertedpolymer solar cells using titaniumoxide interlayers [J], Applied Physics Letters,2010,96,243305.
    [151] Chua L.-L., Zaumseil J., Chang J.-F., et al. General observation of n-type field-effectbehaviour in organic semiconductors [J], Nature,2005,434,194.
    [152] Campoy-Quiles M., Ferenczi T., Agostinelli T., et al. Morphology evolution viaself-organization and lateral and vertical diffusion in polymer:fullerene solar cellblends [J], Nature Materials,2008,7,158.
    [153] Hau S. K., Yip H. L., Acton O., et al. Interfacial modification to improve invertedpolymer solar cells [J], Journal of Materials Chemistry,2008,18,5113.
    [154] Xu Z., Chen L. M., Yang G. W., et al. Vertical phase separation inpoly(3-hexylthiophene):fullerene derivative blends and its advantage for invertedstructure solar cells [J], Advanced Functional Materials,2009,19,1227.
    [155] Li N., Lassiter B. E., Lunt R. R., et al. Open circuit voltage enhancement due toreduced dark current in small molecule photovoltaic cells [J], Applied Physics Letters,2009,94,023307.
    [156] Cahen D. and Kahn A. Electron energetics at surfaces and interfaces: Concepts andexperiments [J], Advanced Materials,2003,15,271.
    [157] Mihailetchi V. D., Blom P. W. M., Hummelen J. C., et al. Cathode dependence of theopen-circuit voltage of polymer: fullerene bulk heterojunction solar cells [J], Journalof Applied Physics,2003,94,6849.
    [158] Blom P. W. M., Mihailetchi V. D., Koster L. J. A., et al. Device physics of polymer:fullerene bulk heterojunction solar cells [J], Advanced Materials,2007,19,1551.
    [159] S ndergaard R., Helgesen M., J rgensen M., et al. Fabrication of Polymer Solar CellsUsing Aqueous Processing for All Layers Including the Metal Back Electrode [J],Advanced Energy Materials,2011,1,68.
    [160] Andersen T. R., Larsen-Olsen T. T., Andreasen B., et al. Aqueous Processing ofLow-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methods [J], Acs Nano,2011,5,4188.
    [161] Yu W., Zhang H., Fan Z., et al. Efficient polymer/nanocrystal hybrid solar cellsfabricated from aqueous materials [J], Energy&Environmental Science,2011,4,2831.
    [162] Yang J. H., Garcia A. and Nguyen T. Q. Organic solar cells from water-solublepoly(thiophene)/fullerene heterojunction [J], Applied Physics Letters,2007,90,103514.
    [163] Mwaura J. K., Pinto M. R., Witker D., et al. Photovoltaic Cells Based on SequentiallyAdsorbed Multilayers of Conjugated Poly(p-phenylene ethynylene)s and aWater-Soluble Fullerene Derivative [J], Langmuir,2005,21,10119.
    [164] Nan Y. X., Hu X. L., Larsen-Olsen T. T., et al. Generation of nativepolythiophene/PCBM composite nanoparticles via the combination of ultrasonicmicronization of droplets and thermocleaving from aqueous dispersion [J],Nanotechnology,2011,22,475301.
    [165] Larsen-Olsen T. T., Andreasen B., Andersen T. R., et al. Simultaneous multilayerformation of the polymer solar cell stack using roll-to-roll double slot-die coating fromwater [J], Solar Energy Materials and Solar Cells,2012,97,22.
    [166] Larsen-Olsen T. T., Andersen T. R., Andreasen B., et al. Roll-to-roll processed polymertandem solar cells partially processed from water [J], Solar Energy Materials and SolarCells,2012,97,43.
    [167] Freeman A. W., Urvoy M. and Criswell M. E. Triphenylphosphine-Mediated ReductiveCyclization of2-Nitrobiphenyls: A Practical and Convenient Synthesis of Carbazoles[J], Journal of Organic Chemistry,2005,70,5014.
    [168] Hou Q., Xu Y. S., Yang W., et al. Novel red-emitting fluorene-based copolymers [J],Journal of Materials Chemistry,2002,12,2887.
    [169] Park S. H., Roy A., Beaupre S., et al. Bulk heterojunction solar cells with internalquantum efficiency approaching100%[J], Nature Photonics,2009,3,297.
    [170] Cowan S. R., Leong W. L., Banerji N., et al. Identifying a Threshold Impurity Level forOrganic Solar Cells: Enhanced First-Order Recombination Via Well-Defined PC84BMTraps in Organic Bulk Heterojunction Solar Cells [J], Advanced Functional Materials,2011,21,3083.
    [171] Tanaka K., Sato T. and Yamabe T. Electronic and Vibrational Structures ofCountercation of Tetrakis(dimethylamino)ethylene (TDAE)-C60. Neutral and CationicStates of TDAE [J], The Journal of Physical Chemistry,1996,100,3980.
    [172] Hino S., Umishita K., Iwasaki K., et al. Electronic Structure of TDA-C60Complex [J],The Journal of Physical Chemistry A,1997,101,4346.
    [173] Li F., Zhou Y., Zhang F., et al. Tuning Work Function of Noble Metals As PromisingCathodes in Organic Electronic Devices [J], Chemistry of Materials,2009,21,2798.
    [174] Butanols: four isomers. International programme on chemical safety E. h. c., WorldHealth Organization, Geneva ISBN92-4-154265-9.(http://www.inchem.org/documents/ehc/ehc/ehc65.htm)(1987). Accessed17May2013.
    [175] Blom P. W. M., de Jong M. J. M. and Vleggaar J. J. M. Electron and hole transport inpoly(p-phenylene vinylene) devices [J], Applied Physics Letters,1996,68,3308.
    [176] Beiley Z. M., Hoke E. T., Noriega R., et al. Morphology-Dependent Trap Formation inHigh Performance Polymer Bulk Heterojunction Solar Cells [J], Advanced EnergyMaterials,2011,1,954.
    [177] Nicolai H. T., Kuik M., Wetzelaer G. A. H., et al. Unification of trap-limited electrontransport in semiconducting polymers [J], Nature Materials,2012,11,882.
    [178] Mihailetchi V. D., Wildeman J. and Blom P. W. M. Space-Charge Limited Photocurrent[J], Physical Review Letters,2005,94,126602.
    [179] Lampert M. A. and Mark P. Current Injection in Solids [J],1970.
    [180] Mark P. and Helfrich W. Space-Charge-Limited Currents in Organic Crystals [J],Journal of Applied Physics,1962,33,205.
    [181] Chiguvare Z. and Dyakonov V. Trap-limited hole mobility in semiconductingpoly(3-hexylthiophene)[J], Physical Review B,2004,70,235207.
    [182] Domercq B., Yu J. S., Kaafarani B. R., et al. A comparative study of charge mobilitymeasurements in a diamine and in a hexaazatrinaphthylene using different techniques[J], Molecular Crystals and Liquid Crystals,2008,481,80.
    [183] Cho S., Seo J. H., Park S. H., et al. A Thermally Stable Semiconducting Polymer [J],Advanced Materials,2010,22,1253.
    [184] Cho S., Seo J. H., Lee K., et al. Enhanced Performance of Fullerene n-ChannelField-Effect Transistors with Titanium Sub-Oxide Injection Layer [J], AdvancedFunctional Materials,2009,19,1459.
    [185] Osikowicz W., de Jong M. P., Braun S., et al. Energetics at Au top and bottom contactson conjugated polymers [J], Applied Physics Letters,2006,88,193504.
    [186] Koster L. J. A., Smits E. C. P., Mihailetchi V. D., et al. Device model for the operationof polymer/fullerene bulk heterojunction solar cells [J], Physical Review B,2005,72,085205.
    [187] Mihailetchi V. D., Koster L. J. A., Hummelen J. C., et al. Photocurrent Generation inPolymer-Fullerene Bulk Heterojunctions [J], Physical Review Letters,2004,93,216601.
    [188] Shuttle C. G., Hamilton R., O'Regan B. C., et al. Charge-density-based analysis of thecurrent-voltage response of polythiophene/fullerene photovoltaic devices [J],Proceedings of the National Academy of Sciences of the United States of America,2010,107,16448.
    [189] Shuttle C. G., Hamilton R., Nelson J., et al. Measurement of Charge-DensityDependence of Carrier Mobility in an Organic Semiconductor Blend [J], AdvancedFunctional Materials,2010,20,698.
    [190] Selberherr S. Analysis and Simulation of Semiconductor Devices [J],1984.
    [191] Zhang C. F., Tong S. W., Zhu C. X., et al. Enhancement in open circuit voltage inducedby deep interface hole traps in polymer-fullerene bulk heterojunction solar cells [J],Applied Physics Letters,2009,94,103305.
    [192] Walzer K., Maennig B., Pfeiffer M., et al. Highly Efficient Organic Devices Based onElectrically Doped Transport Layers [J], Chemical Reviews,2007,107,1233.
    [193] Drechsel J., Mannig B., Kozlowski F., et al. Efficient organic solar cells based on adouble p-i-n architecture using doped wide-gap transport layers [J], Applied PhysicsLetters,2005,86,244102.
    [194] Li C.-Z., Chueh C.-C., Yip H.-L., et al. Solution-Processible Highly ConductingFullerenes [J], Advanced Materials,2013,25,2457.
    [195] Li C.-Z., Chueh C.-C., Ding F., et al. Doping of Fullerenes via Anion-Induced ElectronTransfer and Its Implication for Surfactant Facilitated High Performance Polymer SolarCells [J], Advanced Materials,2013,25,4425.
    [196] Scharber M. C., Mühlbacher D., Koppe M., et al. Design Rules for Donors inBulk-Heterojunction Solar Cells—Towards10%Energy-Conversion Efficiency [J],Advanced Materials,2006,18,789.
    [197] Scharber M. C., Koppe M., Gao J., et al. Influence of the Bridging Atom on thePerformance of a Low-Bandgap Bulk Heterojunction Solar Cell [J], AdvancedMaterials,2010,22,367.
    [198] Wang E., Li C., Peng J., et al. High-efficiency blue light-emitting polymers based on3,6-silafluorene and2,7-silafluorene [J], Journal of Polymer Science Part A: PolymerChemistry,2007,45,4941.
    [199] Huang F., Chen K. S., Yip H. L., et al. Development of New Conjugated Polymers withDonor-π-Bridge-Acceptor Side Chains for High Performance Solar Cells [J], Journal ofthe American Chemical Society,2009,131,13886.
    [200] Li J. and Marks T. J. Air-Stable, Cross-Linkable, Hole-Injecting/TransportingInterlayers for Improved Charge Injection in Organic Light-Emitting Diodes [J],Chemistry of Materials,2008,20,4873.
    [201] Lee W.-H., Kong H., Oh S.-Y., et al. Field-effect transistors based on PPV derivativesas a semiconducting layer [J], Journal of Polymer Science Part A: Polymer Chemistry,2009,47,111.
    [202] Dierschke F., Grimsdale A. C. and Müllen K. Novel Carbazole-Based Ladder-TypePolymers for Electronic Applications [J], Macromolecular Chemistry and Physics,2004,205,1147.
    [203] Jeong E., Kim S. H., Jung I. H., et al. Synthesis and Characterization ofIndeno[1,2-b]fluorene-Based White Light-Emitting Copolymer [J], Journal of PolymerScience Part A: Polymer Chemistry,2009,47,3467.
    [204] Shang Y., Wen Y., Li S., et al. A Triphenylamine-Containing Donor-Acceptor Moleculefor Stable, Reversible, Ultrahigh Density Data Storage [J], Journal of the AmericanChemical Society,2007,129,11674.
    [205] Malliaras G. G., Salem J. R., Brock P. J., et al. Electrical characteristics and efficiencyof single-layer organic light-emitting diodes [J], Physical Review B,1998,58,13411.
    [206] Goh C., Kline R. J., McGehee M. D., et al. Molecular-weight-dependent mobilities inregioregular poly(3-hexyl-thiophene) diodes [J], Applied Physics Letters,2005,86,122110.
    [207] Chen H.-Y., Hou J., Hayden A. E., et al. Silicon Atom Substitution Enhances InterchainPacking in a Thiophene-Based Polymer System [J], Advanced Materials,2010,22,371.
    [208] Yao Y., Shi C. J., Li G., et al. Effects of C-70derivative in low band gap polymerphotovoltaic devices: Spectral complementation and morphology optimization [J],Applied Physics Letters,2006,89,153507.
    [209] Wang Z., Wang E., Hou L., et al. Mixed solvents for reproducible photovoltaic bulkheterojunctions [J], Journal of Photonics for Energy,2011,1,011122.
    [210] Wakim S., Aich B. R., Tao Y., et al. Charge transport, photovoltaic, and thermoelectricproperties of poly(2,7-carbazole) and poly(indolo[3,2-b]carbazole) derivatives [J],Polymer Reviews,2008,48,432.
    [211] Kim H., Schulte N., Zhou G., et al. A High Gain and High Charge Carrier MobilityIndenofluorene-Phenanthrene Copolymer for Light Amplification and Organic Lasing[J], Advanced Materials,2011,23,894.
    [212] Setayesh S., Marsitzky D. and Mullen K. Bridging the Gap between Polyfluorene andLadder-Poly-p-phenylene: Synthesis and Characterization of Poly-2,8-indenofluorene[J], Macromolecules,2000,33,2016.
    [213] Usta H., Risko C., Wang Z., et al. Design, Synthesis, and Characterization ofLadder-Type Molecules and Polymers. Air-Stable, Solution-Processable n-Channel andAmbipolar Semiconductors for Thin-Film Transistors via Experiment and Theory [J],Journal of the American Chemical Society,2009,131,5586.
    [214] Zheng Q., Jung B. J., Sun J., et al. Ladder-Type Oligo-p-phenylene-ContainingCopolymers with High Open-Circuit Voltages and Ambient Photovoltaic Activity [J],Journal of the American Chemical Society,2010,132,5394.
    [215] Kim J., Kim S. H., Jung I. H., et al. Synthesis and characterization ofindeno[1,2-b]fluorene-based low bandgap copolymers for photovoltaic cells [J],Journal of Materials Chemistry,2010,20,1577.
    [216] Liang Y. Y., Xiao S. Q., Feng D. Q., et al. Control in energy levels of conjugatedpolymers for photovoltaic application [J], Journal of Physical Chemistry C,2008,112,7866.
    [217] Chen C. P., Chan S. H., Chao T. C., et al. Low-bandgappoly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra foruse in high-performance bulk-heterojunction polymer solar cells [J], Journal of theAmerican Chemical Society,2008,130,12828.
    [218] Beaujuge P. M., Pisula W., Tsao H. N., et al. Tailoring structure-property relationshipsin dithienosilole-benzothiadiazole donor-acceptor copolymers [J], Journal of theAmerican Chemical Society,2009,131,7514.
    [219] Chen C. H., Hsieh C. H., Dubosc M., et al. Synthesis and characterization of bridgedbithiophene-based conjugated polymers for photovoltaic applications: acceptor strengthand ternary blends [J], Macromolecules,2010,43,697.
    [220] Oktem G., Balan A., Baran D., et al. Donor-acceptor type random copolymers for fullvisible light absorption [J], Chemical Communications,2011,47,3933.
    [221] Piyakulawat P., Keawprajak A., Jiramitmongkon K., et al. Effect of thiophene donorunits on the optical and photovoltaic behavior of fluorene-based copolymers [J], SolarEnergy Materials and Solar Cells,2011,95,2167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700