用户名: 密码: 验证码:
氧化沟工艺污水处理厂优化与综合评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污水处理厂是控制水环境污染缓解城市水资源紧缺的重要公共基础设施,在其设计和运营过程中,存在很多尚未明确的问题,这些问题的决策过程许多按照实际工程人员的经验确定,不但缺乏理论支持而且带有一定的片面性和局限性。本文针对曝气机叶轮与中间隔墙间距、弯道导流墙的偏心距按经验设计、污水处理表面曝气设备充氧机理尚不明确,同时表面曝气设备和鼓风曝气设备选用上的困难和争议以及如何综合对比污水处理厂运营绩效的问题,通过流体力学模拟、现场实验以及对各种评价和优化方法的对比与应用,对上述问题进行了研究,具体包括:
     1.氧化沟工艺倒伞型表面曝气机叶轮与中间隔墙间距优化研究。叶轮与中间隔墙的间距直接影响到沟内的水力特性和叶轮的能耗,之前该参数的设计仅根据工程人员的经验和直觉决定,缺乏一定的理论支持。文中基于计算流体力学模拟得到了不同速度段的面积分布,并结合不同间隔下的速度云图,对结果分别利用均值法、层次分析法、灰色关联法评价进行了评价。通过三种评价方法的分析,结果分析认为采用均值法对沟内水力特性进行评价是不合理的;层次分析法得出的最佳间距范围中包括能耗不可接受的情况;灰色关联分析法评价得出的最佳间距范围适中,在该评价法得出的范围内叶轮的能耗适中,同时沟内0.3m/s-0.5m/s的流速分布面积最大,因此可以采用灰色关联分析法来评价氧化沟内流场的改善情况。
     2.氧化沟弯道半宽导流墙偏心距优化研究。氧化沟弯道半宽导流墙的设置可以有效改善沟内的流场状况,基于流体力学软件探讨了弯道半宽导流墙设置前后以及设置不同的偏心距时整个沟内的流速改变情况,通过速度云图分布及各速度段分布面积百分比的分析,借助灰色关联分析法评价了氧化沟内的流态,证实了导流墙设置适宜的偏心距有助于改善整个沟内的流速分布,但也会带来叶轮额外的功率消耗。对于同样的沟型,当曝气机叶轮改变后会对最佳偏心距产生影响。
     3.基于生命周期成本法的不同曝气方式综合评价。针对表面曝气和鼓风曝气设备选用上的困难和争议,文中对于两个处理水量、处理工艺相同,分别采用表面曝气系统和鼓风曝气系统的污水厂,利用生命周期成本法对曝气系统进行分析评价,结果显示在达标排放的前提下,虽然鼓风曝气系统年运行电耗比表面曝气节约90万元,但是在20年的生命周期内,表面曝气系统因其维修方便、使用寿命长的优点使其综合经济成本小于鼓风曝气系统的综合运行成本,因此在现阶段鼓风曝气头的寿命没有革命性更新的前提下,从长远考虑应首先选择表面曝气设备。工作在最佳工况点的曝气机可以有效的节省能耗成本,为了研究小型倒伞形表面曝气机的充氧性能和高效工况,以提高曝气设备的能量利用率,采用间歇非稳态法测试水中溶解氧浓度并记录相关参数,最终得到反应表曝机充氧性能的动力效率与浸没深度和转速之间的关系,研究结果表明每个曝气机都存在一个特征曲面,在该特征曲面上存在一个与电机和减速机无关的最佳匹配点,在该点处曝气机的动力效率最高。
     4.基于投影寻踪模型的多污水处理厂运营绩效综合评价。污水处理厂的综合运营绩效代表了该厂的技术水平和可持续发展的能力,本文将投影寻踪模型引入到污水处理领域中,实现了不同工艺、不同地域污水厂综合运营绩效的比较,并证实了比较结果的可信性。与主成分分析法的结果相比,投影寻踪模型不但可以实现绩效的正确排序,还可以利用最佳投影方向找出绩效较差污水厂的症结所在并给出诊断方案,从而实现污水处理厂的自我改善和相关部门的监管。
     以上研究结论可以直接用于优化污水处理厂的设计与运行,不断提高污水厂生命周期内的综合运营绩效,以便最大程度的发挥其优势,从而在控制水资源污染过程中发挥其重要作用。
The wastewater treatment plant(WWTP) is an essential public infrastructure to control the pollution and shortage of water. In the process of design and operation in WWTP. There are a lot of issues that should be give a definite answer, but now they are usually determined by the practical engineering experience, which lead to a lack of theoretical support and a certain one-sidedness and limitations. The issues that the spacing of aerator impeller and the intermediate guide wall, and eccentric position of half-width of the guide wall of bend, the oxygenation mechanism of surface aeration equipment and how to choose the right aeration equipment, comprehensive comparison of operational performance of WWTP always perplex the engineering. Fluid dynamics simulation, experiments and various evaluation and optimization methods are applied to solve the above questions, the main contexts are summarized as follows:
     1.The Optimization of spacing between umbrella-type surface aerator impeller and the intermediate guide wall in Oxidation ditch process. The optimal spacing between the impeller and the intermediate guide wall directly affects the hydraulic characteristics and the energy consumption of the impeller, but now the design of the parameters is based on the experience, and it must be lack of theoretical support. Based on computational fluid dynamics simulation, mean method, analytic hierarchy process (AHP)and gray correlation method(GRA) were used to evaluate the distribution of the different speed ranges, the results shows that:mean method can't be unreasonable to evaluate the hydraulic characteristics in the Oxidation ditch; the optimal spacing range obtained by AHP contains the energy consumption of the impeller beyond the acceptable quantity; the optimal spacing range obtained by GRA is moderate,in which energy consumption of the impeller can be accepted and the area of speed in0.3-0.5m/s is maximum, so GRA method can be used to evaluate the flow field characteristics in oxidation ditch.
     2. The Optimization study of eccentricity of the half-width guide wall in oxidation ditch bend. In the bend of the oxidation ditch, if the eccentricity of the half-width guide wall is set appropriate, the hydraulic characteristics can be effectively improved. By the analysis of results of the FLUENT and GRA method, confirmed that the setting of half-width guide wall could improve the velocity distribution in the entire ditch, but it could also cause additional power consumption. To the same oxidation ditch,when the aeration impeller changes will affect the best eccentricity.
     3. The comprehensive evaluation of different aeration equipments based on life cycle cost method. Currently, the selection of the surface aeration and blast aeration equipment is difficult and has controversy. In order to solve this puzzle, two WWTPs were selected,which have the same water consumption and treatment process and different aeration, to compare the costs of life cycle.The results show that in normal operation time, blast aeration can save electricity charges about900OOOyuan compared with surface aeration every year, but the number of the total costs in20years of surface aeration are only one-half compared with blast aeration, because surface aeration has the feature of easy maintenance and long service life. Therefore, for the long-term consideration, surface aeration equipment should be selected of the first until the life of the diffuser has revolutionary update. Based on the above results, the intermittent unsteady state method was adopted to study the performance and efficient conditions of inverted umbrella surface aerator impeller, and showed that there is a characteristic curved surface and have a best matching point in the surface for each aerator, and in the point the aerator impeller has the highest power efficiency and no matter with the reducer and motor.
     4. The evaluation of operation performance of WWTPs based on projection pursuit. The operational performance of the WWTP behalves the technical level and the capacity for sustainable development, genetic algorithm and projection pursuit(PP) model are used to make multidimensional evaluation indexes project to the one-dimensional space, horizontal comparison of complex systems is achieved for the plants having the different processes and in different regions, and confirmed the credibility of results. Compared with the evaluation results of principal component analysis, PP model can not only achieve the sort of performance of WWTPs,optimum projection direction of PP model can also be used to improve the operation performance of WWTP with the poor performance. The results can contribute to the continuous self-improvement of the WWTP and compare operation performance of different WWTPs.
     The conclusion of the research can be directly used to optimize the design and operation of the WWTP to continuously improve the operational performance in the whole life cycle, so as to achieve the purpose that WWTP plays its important role in the control of water pollution.
引文
[1]刘善建.水的开发与利用[M].北京:中国水利水电出版社,2000,1-4.
    [2]魏东岩.水资源危机论[J].化工矿产地质,2006,3(28):176-184.
    [3]周生贤.2011年中国环境状况公报[R].北京:中国环境保护部,2011.
    [4]JH Ryu,TJ Kim,TY Lee,IB Lee,et al. A study on modeling and simulation of capacitive deionization process for wastewater treatment[J].Journal of the Taiwan Institute of Chemical Engineers,2010,41:506-511.
    [5]Wenhao Shen, Xiaoquan Chen, M.N. Ponsb,et al. Model predictive control for wastewater treatment process with feed-forward compensation[J]. Chemical Engineering Journal,2009, 155(1):161-174.
    [6]Zuo Jinlong.Simulation course with DO and external carbon controller[C]. International Conference on Innovative Computing and Communication,2010.
    [7]关于公布全国城镇污水处理设施等重点减排工程的公告(环保部公告2012年第29号)[EB/OL].http://www.hbepb.gov.cn/zwgk/zcwj/hbbwj/201204/t20120425_52521.html.
    [8]朱五星,舒锦琼.城市污水处理厂能量优化策略研究[J].给水排水,2005,31(12):31-33.
    [9]黄浩华,张杰,文湘华,等.城市污水处理厂A2/O工艺的节能降耗途径研究[J].环境工程学报,2009,3(1):35-38.
    [10]G Olsson, M Nielsen, Z Yuan, et al. Instrumentation,control and automation in wastewater systems[M]. London:IWA Publishing,2005.
    [11]RongJong Wai, MengChang Lee. Intelligent optimal control of single link flexible robot arm[J]. IEEE Transactions on Industrial Electronics,2004,51(1):201-220.
    [12]Lee TH Ge, S S. Intelligent control of mechatronic systems[C]. Proceedings of the 2003 IEEE International Symposium on Intelligent Control,2003:646-660.
    [13]杨凌波,曾思育,鞠宇平,等.我国城市污水处理厂能耗规律的统计分析与定量识别[J].给水排水,2008,34(10):42-45.
    [14]林荣忱,李金河.污水处理厂泵站与曝气系统的节能途径[J].中国给水排水,1999,15(1):21-23.
    [15]吕乃熙.城市污水处理厂节能技术及其发展主要趋向[J].建筑选刊,1990(1):15-23.
    [16]蒋如.基于不确定性理论与方法的城市污水处理厂优化决策研究[D].长沙:湖南大学,2007: 9-10.
    [17]Yu Gengzhi,MAO Zaisha,WANG Rong.A novel surface aeration configuration for improving gas-Liquid mass transfer[J]. Chinese Journal of Chemical Engineering,2002,10(1):39-44.
    [18]毛在砂,禹耕之,王蓉.组合式表面曝气搅拌桨[P].中国:ZL00102745.X,2000-02-14.
    [19]李向阳,禹耕之,毛在砂.双层桨表面曝气反应器构型优化[J].过程工程学报,2005,5(6):601-604.
    [20]David G.Long, LeRoy. Method and apparatus for aerating wastewater[P].US:U86787036B2, 2004-9-7.
    [21]G.Deronzier,Ph.Duchene, A.Heduit. Optimization of transfer in clean water by fine bubble diffused air system and separate mixing in aeration ditches[J].Water Science Technology,1998,38(3):35-42.
    [22]J.C.T. Vogelaar,A.Klapwijk,J.B.Van,et al.Temperature effects on the oxygen transfer fate between 20 and 55℃[J].Water Research,2000,34(3):1037-1041.
    [23]段立文,黄志雄.浅析污水处理厂风机选型[J].环境技术,2005,23(1):46-48.
    [24]牛住元,张雅君,王文海.污水处理厂污水提升节能措施研究[J].给水排水,2009,35(5):154-159.
    [25]Zijun Zhang, Andrew Kusiak. Models for optimization of energy consumption of pumps in a wastewater processing plant[J].Journal of Energy Engineering,2011,137:159-168.
    [26]L Akca,C Kinaci,M Karpuzcu.A model for optimum design of activated sludge plants[J]. Water Research,1993,27(9):1461-1468.
    [27]Helen X Littleton,Glen T Daigger,Peter F Strom. Application of computational fluid dynamic to closed-loop bioreactors:Ⅰ. characterization and simulation of fluid-flow pattern and oxygen transfer[J].Water Environment Research,2007,79(6):600-612.
    [28]Helen X Littleton,Glen T Daigger,Peter F Strom. Application of computational fluid dynamics to closed-loop bioreactors:Ⅱ.simulation of biological phosphorus removal using computational fluid dynamics[J].Water Environment Research,2007,79(6):613-624.
    [29]Oda T,Yano T,Niboshi Y. Development and exploitation of a multipurpose CFD tool for optimization of microbial reaction and sludge flow[J].Water Science Technology,2006,53(3): 101-110.
    [30]罗麟,李伟民,邓荣森,等.一体化氧化沟的三维流场模拟与分析[J].中国给水排水,2003,19(12):15-18.
    [31]许丹宇,张代钧,陈园,等.卡鲁塞尔氧化沟液-固两相流动混合物模型与两相水力特性模拟 [J].环境科学学报,2008,28(12):2622-2627.
    [32]曾光明,葛卫华,秦肖,等.数值模拟法在二维沉淀池优化设计中的应用[J].环境工程,2002,20(2):10-12.
    [33]屈强,马鲁铭,王红武,等.折流式沉淀池流态模拟[J].中国给水排水,2005,21(4):58-61.
    [34]Siping Zhou,John A. McCoruqodale. Modeling of rectangular settling tanks[J].Journal of Hydraulic Engineering,1992,118(10):1391-1405.
    [35]沈鹏飞,王红武,马鲁铭.计算流体力学模拟技术在污水处理构筑物中的应用[J].中国给水排水.2011,27(22):36-41.
    [36]侯拴弟,钟孝湘,王英琛.斜叶涡轮搅拌槽流动场数值研究[J].北京化工大学学报,1999,26(4):1-4.
    [37]刘敏珊,张丽娜,董其伍.450涡轮桨搅拌槽内搅拌特性数值模拟研究[J].郑州大学学报(工学版).2008,29(1):1-4.
    [38]夏建业,唐演,张嗣良.不同搅拌系统气液氧传递的计算流体力学模拟[J].化学工程,2009,37(8):28-31.
    [39]孙海燕.搅拌槽内流场数值模拟和表面曝气的研究[D].北京:中国科学院过程工程研究所,2003:82-84.
    [40]宋月兰,高正明,李志鹏.多层新型桨搅拌槽内气—液两相流动的实验与数值模拟[J].过程工程学报,2007,1(7):24-28.
    [41]Khopkar A. R., Rammohan A. R., Ranade V. V.,et al.Gas-liquid flow generated by a rushton turbine in stirred vessel:CARPT/CT measurements and CFD simulations[J]. Chemical Engineering Science,2005,60(8):2215-2219.
    [42]Javed K H,Mahmud T,Zhu J M. Numerical simulation of turbulent batch mixing in a vessel agitated by a rushton turbine[J].Chemical Engineering and Processing,2006,45(2):99-112.
    [43]Kerdouss F., Bannari A., Proulx P. CFD modeling of gas dispersion and bubble size in a double turbine stirred tank[J]. Chemical Engineering Science,2006,61(10):3313-3322.
    [44]刘广立,种云霄,樊青娟,等.氧化沟水力特性对处理效果和能耗的影响[J].环境科学,2006,27(11):2323-2326.
    [45]陈志澜,杨人卫.导流墙偏置位置对氧化沟性能影响的分析[J].环境科学与技术[J],2010,33(10):162-165
    [46]陈威,柳溪.氧化沟中导流墙二维水流流态模拟研究[J].环境保护工程,2011,29(1):110-113
    [47]Irina Krasnochtanov,Andreas Rauh,Marco Kletting. Interval methods as a simulation tool for the dynamics of biological wastewater treatment processes with parameter uncertainties[J]. Applied Mathematical Modeling,2010,34(3):744-762.
    [48]马勇,彭永臻译.污水系统的仪表、控制和自动化[M].北京:中国建筑工业出版社,2007.56-57.
    [49]Krist V,Gernaey,Sten B. Jrgensen. Benchmarking combined biological phosphorus and nitrogen removal wastewater treatment processes[J]. Control Engineering Practice,2004, 12(3):357-373.
    [50]李岚.PLC在化学工厂污水处理中的应用[J].制造业自动化,2002,24(3):57-58.
    [51]范石美.活性污泥法污水处理计算机仿真软件的开发及应用[D].浙江:浙江大学,2004:36-43.
    [52]樊立萍,于海斌,袁德成,等.SBR污水生化处理系统的最优控制及改进[J].控制与决策,2005,20(2):237-240.
    [53]R Tzoneva.Optimal PID Control of the Dissolved Oxygen Concentration in the Wastewater Treatment Plant[A]. IEEE transactions on industrial electronics,2007,50(1):1116-1121.
    [54]徐华,薛恒新,王士同.活性污泥污水处理系统的最优鲁棒H∞保成本控制[J].中南大学学报:(自然科学版),2010,41(3):1047-1051.
    [55]范程华,朱武.污水生化处理中溶解氧的非线性控制研究[J].自动化技术与应用,2008,27(2):22-23.
    [56]王丽娟,张建锋.活性污泥水处理模糊控制系统设计[J].计算机工程与设计,2009,30(18):4263-4266.
    [57]Meyer U,Popel HJ. Fuzzy-control for improved nitrogen removal and energy saving in WWTP with pre-denitrification[J]. Water Science Technology.2003,47(11):69-76.
    [58]Carlos-Hernandez, E.N Sanchez,J.F. Beteauc. Fuzzy observers for anaerobic WWTP: development and implementation[J]. Control Engineering Practice,2009,17 (6):690-720.
    [59]管秋,王万良,徐新黎,等.基于神经网络的污水处理指标软测量研究[J].环境污染与防治,2002,28(2):156-158.
    [60]Xiongwei Shi, Junfei Qiao. Neural network predictive optimal control for wastewater treatment[C]. Proceedings of the 2010 International Conference on Intelligent Control and Information Processing,2010,248-252.
    [61]Kang JY, Mi LN.An Expert System for Anaerobic Wastewater Treatment Process[C]. International Conference on Information and Automation,2009,422-425.
    [62]Huang MZ,Ma YW. Simulation of a paper mill wastewater treatment using a fuzzy neural network [J]. Expert Systems with Applications,2009,36(3):5064-5070.
    [63]Yuri Lawryshyn, Sebastian Jaimungal. Optimization of a municipal wastewater plant expansion:A real options approach[J] Journal of Applied Operational Research,2010,2 (1):1735-8523.
    [64]ChingGung Wen, Chih Sheng Lee. Development of a cost functions for wastewater treatment systems with fuzzy regression[J]. Fuzzy Sets and Systems,1999,106(11):143-153.
    [65]HoWen Chen, NiBin Chang. A comparative analysis of methods to represent uncertainty in estimating the cost of constructing wastewater treatment plants[J] Journal of Environmental Management,2002,65(4):383-409
    [66]T.Y. Pai,Y.P. Tsai, H.M. Lo. Grey and neural network prediction of suspended solids and chemical oxygen demand in hospital wastewater treatment plant effluent[J].Computers & Chemical Engineering,2007,31(10):1272-1281.
    [67]Zeng Guangming, Jiang Ru, Huang Guohe, et al. Optimization of wastewater treatment alternatives selection by hierarchy gray relational analysis[J].Journal of Environmental Management,2007,82:250-259.
    [68]G. Houillon, O. JoLLie. Life cycle assessment of processes for the treatment of wastewater urban sludge:energy and global warming analysis[J]. Journal of Cleaner Production,2005, 13(3):287-299.
    [69]赵星明,王宣.减少氧化沟弯道沉泥的模拟与研究[J].环境工程,2007,25(6):37-39.
    [70]刘帮樑.氧化沟中倒伞型表曝机的选型设计[J].中国给水排水[J],2007,23(22):30-34.
    [71]周雪漪.计算水力学[M].北京:清华大学出版社,1995.
    [72]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [73]Stamou A I.Prediction of hydrodynamic characteristics of oxidation ditches using the k-ε turbulence model [C].2nd Int. Symposium on Eng. Turbulence Modeling and Measurements, 1993,25(3):261-271.
    [74]刘帮樑.氧化沟中倒伞型表曝机的选型设计[J].中国给水排水,2007,23(22):30-34.
    [75]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [76]Luo J V, Gosman A D, Issa R I, et al. Full flow field computation of mixing in baffled stirred reactors[J]. Trans I.Chem E.,1993,71(A):342-344.
    [77]Luo J V, Issa R I, Gosman A D. Prediction of impeller induced flows in mixing vessels using multiple frames of reference[J].I. Chem E. Symposium Series,1994,140:47-58.
    [78]李明辉.基于层次分析法的节能指标全解研究[D].广州:中南大学,2011.
    [79]徐俊,刘娜.层次分析法的基本思想与实际应用[J].情报探索.2008,12:113-116.
    [80]Saaty T L.The analytic hierarchy process [M].New York:McGraw-Hill,1980.
    [81]赵洁.基于AHP的高校学生综合素质评价研究[J].科学技术与工程,2005,5(7):460-463.
    [82]刘思峰,郭天榜.灰色系统理论及其应用[M].北京:科学出版社,1999.
    [83]Koot A C J, Zeper J. Carrousel. A new type of aeration system with low organic load[J]. Water Research,1972,6:401-406.
    [84]I.D. Mantziaras, A.Stamou, A katsiri. Effect of operational cycle time length on nitrogen removal in an alternating oxidation ditch system[J]. Bioprocess and Bio-systems Engineering, 2011,34(5):597-606.
    [85]张红亚,汤利华.氧化沟导流墙偏置设置的探讨[J].安徽理工大学学报,2007,27(2):21-23.
    [86]常江,杨岸明,甘一萍,等.城市污水处理厂能耗分析及节能途径[J].中国给水排水,2011,4(27):33-37.
    [87]黄浩华,张杰,文湘华,等.城市污水处理厂A2/O工艺的节能降耗途径研究[J].环境工程学报,2009,3(1):35-38.
    [88]夏文辉,刘芬,周雹.污水处理厂曝气控制研究[J].给水排水,2009,35(1):121-125.
    [89]邵林广,杨盼,熊峰.改良A2/O氧化沟表曝与鼓风曝气能耗比较研究[J].工业安全与环保,2012.38(9):18-20.
    [90]杨盼.城市污水处理厂表曝与鼓风曝气系统能耗比较研究[D].武汉:武汉科技大学,2012:12-24.
    [91]胡庆年,陈海棠,王浩.化学需氧量二氧化硫排污权价格测算[J].水资源护.2011,27(4):79-82.
    [92]王海.城市污水处理厂曝气系统节能降耗影响因素及控制模式研究[D].青岛:青岛理工大学,2010.
    [93]赵国志,余陶.宝鸡市某污水处理厂节能改造工程实例[J].中国给水排水,2011,27(14):96-97.
    [94]JR McWhirter, JM Chern, JC Hutter.Oxygen mass transfer fundamentals of surface aerators[J]. Industrial & engineering Chemistry Research.1995,34(8):2644-2654.
    [95]John R. Mcwhirter.Surface aeration impellers[P],US 6877959B2.2005-4-15.
    [96]John R. Mcwhirter.Surface aeration impellers[P],US 6715912B2.2004-4-15.
    [97]曹瑞钰,陈秀成,张焕文.大功率倒伞型曝气机性能检测和研究[J].给水排水,2002,10(28):67-10.
    [98]刘涛.LY1高效表面曝气机研制和性能分析[D].上海:同济大学,2005:70-75.
    [99]龙腾锐,高旭.泵型叶轮表面曝气机的性能评价新方法[J].水处理术,2007,5(27):277-280.
    [100]Jordan N, Boddy G, Broussard W,et al. Sustainable development of the agricultural bio -economy[J]. Science.2007,316(5831):1570-1571.
    [101]Wang M, Webber M, Finlayson B, et al. Rural industries and water pollution in China[J]. Journal of Environmental Management,2008,86(4):648-659.
    [102]Ballo S, Liu M, Hou LJ, et al. Pollutants in storm-water runoff in Shanghai (China): Implications for management of urban runoff pollution[J]. Progress in natural sciences,2009, 19(7):873-880.
    [103]关于公布全国城镇污水处理设施等重点减排工程的公告(环保部公告2012年第29号)[EB/OL]. http://www.hbepb.gov.cn/zwgk/zcwj/hbbwj/201204/t20120425_52521.html.
    [104]Taesup Moon, Yejin Kim, Hyosu Kim,et al. Fuzzy rule-based inference of reasons for high effluent quality in municipal wastewater treatment plant[J]. Korean Journal of Chemical Engineering,2011,28(3):817-824.
    [105]Xianchun Tan, Junyi Xu, Sheng Wang. Application of life cycle analysis (LCA) in evaluating energy consuming of integrated oxidation ditch (IOD)[J]. Procedia Environmental Sciences.2011,5:29-36.
    [106]郭景海.物元分析法在污水处理厂运管理绩效果综合评价中的应用[J].环境工程,1990,9(3):26-28.
    [107]刘开第,李思敏,庞彦军.污水处理厂运行管理效果评价模型[J].中国给水排水,2000,16(8):45-47.
    [108]龚宏伟.污水处理厂运行效果的模糊综合评价[J].河北建筑工程学院学报,2005.23(4):10-13.
    [109]李为.城市污水处理工艺的能耗评价体系研究[D].西安:西安建筑科技大学,2007:45-53.
    [110]王峰青,周智强,苏素,等.西部地区山地城市污水处理厂运行效率评价与分析[J].科技与产业,2012,12(10):58-63.
    [111]王敬敏,郭继伟,连向军.两种改进的灰色关联分析法的比较研究[J].华北电力大学学报.2005,32(6):73-76.
    [112]周惠成,董四辉.基于投影寻踪的水质评价模型[J].水文,2005,28(4):14-17.
    [113]陈广洲,徐晓春,汪家权等.基于投影寻踪插值模型的围岩稳定性分类研究[J],岩土力学,2010,31(6):1898-1901.
    [114]张欣莉,丁晶,王顺久.投影寻踪分类模型评定相似流域[J].水科学进展,2001,12(3):356-360.
    [115]陈广洲,汪家权.基于投影寻踪插值模型鉴别化合物毒性的研究[J].计算机与应用化学,2009,26(1):121-124.
    [116]Friedman J H,Stuetzle W.Projection pursuit regression[C].Journal of the American Statistical Association,1981,76(376):817-823.
    [117]Diaconis P,Friedman D. Asymptotics of graphical projection pursuit[C].The Annals of Statistics,1984,12(3):793-815.
    [118]Huber P J. Projection pursuit(with discussion)[M].The Annals of Statistics,1985:435-525.
    [119]付强,赵小勇.投影寻踪模型原理及其应用[M].北京:科学出版社,2006:1-79.
    [120]城镇污水处理厂运营质量评价标准(S).(http://wenku.baidu.com/view/103160d6clc708a 1284 a445d.html)
    [121]黄勇辉,朱金福.基于加速遗传算法的投影寻踪聚类评价模型研究与应用[J].系统工程,2009,27(11):107-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700