高韧性水泥混凝土铺装材料特性与结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普通水泥混凝土具有抗拉强度低、韧性差和开裂后裂缝发展迅速等缺点,给结构物的耐久性带来极大的影响,尤其是随着混凝土强度的提高其固有缺点更加突出。随着我国交通基础设施建设的快速发展,重轴载和高速化的交通流特点给混凝土的弯拉强度和变形性能提出了更高的要求。本文采用混杂纤维增强体系,综合考虑从工作性到宏观力学性能的多维度因素,制备出具有应变硬化和多缝开裂特征的高韧性水泥混凝土铺装材料,采用室内试验与数值模拟相结合的方法,对其材料性能和结构特征进行了深入研究。
     论文从原材料性能分析入手,对聚乙烯(PE)和聚丙烯粗合成纤维(CPP)的耐酸碱性能进行了测试,结果表明所选纤维均具有优良的抗腐蚀性能。为提高拌合物的流动性并保证纤维的均匀分散及其与基体的粘结,自主配制了纤维分散助剂(M1)和功能复合粉体材料(M2),M1的加入能显著提高纤维分散均匀性,M2的加入则大幅提高了纤维与基体的粘结,在单掺M1与复掺M1和M2的情况下,拌合物的流动性和均匀性均较好。
     为检测两种纤维的分散性能,采用数字图像处理与分析技术,建立了CPP纤维识别与分散性评价系统,并提出了相应的评价指标。该评价方法不仅适合有机粗合成纤维,对于钢纤维同样适用。采用SEM微观观测对PE纤维的分散性进行了定性评价,结果表明M1与M2的配合使用可以促进PE纤维的均匀分散,CPP和PE纤维的分散性具有相同的规律。
     采用四点弯曲试验和落锤冲击试验对制备的高韧性混凝土强韧化特性进行了评价。在弯拉荷载作用下制备的高韧性混凝土具有明显的变形硬化特征,试件的开裂模式均较曲折,且在开口附近都可观察到大量微细裂缝。在冲击荷载作用下高韧性混凝土的初裂和破坏冲击次数均远大于普通混凝土,根据冲击开裂发展规律推荐了冲击韧性指标,该指标与纤维混凝土的变形能力有较好的相关性,抗弯变形能力强的纤维混凝土其冲击抗力也大。
     基于纤维水泥基复合材料的桥联法则,对高韧性混凝土裂缝发展规律进行了分析。采用SEM测试手段分析了CPP纤维/基体界面的微结构,结果表明,CPP纤维与水泥基体的粘结较差,界面区内部有少量的孔隙和微裂缝,同时有大量板状C-H晶体聚集。功能材料M2的加入导致C-S-H凝胶的大量产生并提高了界面区的密实性,应力和变形的传递效果得以改善,界面区力学特征由脆性转变成韧性,纤维增韧效应范围增大,所以混凝土的韧性性能被明显提高。
     采用单轴拉伸和压缩试验对高韧性混凝土的单轴受力特征进行了评价,其弹性模量约是同等抗压强度普通混凝土的2/3,极限抗压和抗拉应变均大大提高;六组推荐配比在单轴受拉条件下出现明显的应变硬化和多缝开裂现象。根据应力-应变全曲线特点,建立了高韧性混凝土本构关系模型,该模型在峰值前和峰值后均能准确拟合高韧性混凝土的变形特征。结合材料弯曲与受拉力学特征,推荐出高韧性混凝土单轴极限抗拉强度和拉应变的简易反算公式。
     基于细观层次建立了高韧性混凝土弯曲、受压与受拉试件的二维数值模型,并对这三种试验过程进行了数值模拟,模拟结果能够较好的反应出高韧性水泥混凝土在三种受力状态下的应力-应变特点以及开裂损伤发展规律。
     采用弯曲疲劳试验对高韧性混凝土的疲劳性能进行了评价,在疲劳荷载作用下高韧性混凝土试件的跨中挠度-循环次数比曲线同样符合3阶段模式。基于威布尔分布模型,建立了在0.05和0.50失效概率下的双对数疲劳方程,并推导得出高韧性混凝土面板的疲劳应力系数计算公式。
     建立三维有限元模型对高韧性混凝土路面结构力学行为进行了分析,结果表明,在设计参数常规变化范围内,高韧性路面板的受力特征变化较小;高韧性混凝土面板抵抗荷载和温度应力综合疲劳作用的能力要远高于普通混凝土。根据计算结果,并结合工程实际,推荐出高韧性混凝土面板的横缝间距以及各交通等级下高韧性混凝土面板的厚度范围。
Due to its low tensile strength, poor toughness and cracking potential, ordinarycement concrete has caused a great influence to the durability of concrete structures,which is more prominent with the increase of concrete strength. As the construction ofChina’s transportation infrastructures develops, the traffic flow with heavey axle loadand high speed has put forward higher requirements to the flexural strength anddeformation performance of concrete. Considering the multi-dimensional factors fromworkability to macroscopic mechanical properties, hybrid fiber were adopted toprepare high-toughness cement concrete paving material featuring the characteristicsof strain hardening and multiple cracking, the material properties and structuralfeatures of which was analyzed intensively in this paper with the combination ofindoor experiment and numerical simulation.
     This paper was started from analyzing the performance of raw materials. Thechemical stability of polyethylene (PE) and coarse polypropylene fibers (CPP) wastested, with the results showing that the employed fibers have good resistance tochemical corrosion. A fiber dispersing agent (M1) and a functional composite powder(M2) was invented to enhance the flowability of concrete mixture and improve thebond strength between fiber and matrix. It’s shown that the addition of M1cansignificantly improve the dispersion of fibers, while M2causes better interface bondto fiber and matrix. The flowability and fiber dispersion are preferable with the use ofM1or compound M1and M2.
     For the detection of the dispersion properties of these two fibers, digital imageprocessing and analysis technology was employed to establish a recognition anddispersion evaluation system of CPP fiber, with the evaluation index presented. Theevaluation method is not only suitable for coarse synthetic fiber, but also suitable forsteel fiber. The qualitative evaluation of PE fiber was conducted with the use of SEMobservation. Results show that the compound use of M1and M2can promote theuniform dispersion of PE fiber, and the dispersion of CPP and PE fibers have the samerules.
     Four point bending test and impact test were adopted to evaluate the toughnesscharacteristics of prepared high-toughness concrete. Obvious strain hardeningcharacteristics were observed under the flexural load and large amounts of fine cracksCPPeared near the opening surface. The initial crack and failure impact numbers ofprepared concrete are far higher than that of normal concrete under impact load. Theimpact toughness index was proposed according to the development of impactcracking, which has a good correlation with the deformation performance of fiberreinforced concrete.
     The cracking development law of high-toughness concrete was analyzed basedon the bridging law of fiber reinforced cementitious composites. SEM method is usedto analyze the microstructure of the interface between CPP fiber and matrix. Theobservation results show that the adhesion is poor, and there are a small number ofpores and micro-fractures in the interface zone with a large number of plate-likeaggregations of C-H crystals. The addition of M2leads to a large number of C-S-Hgel and improve the compactness of the interfacial zone. Thus, the stress anddeformation of the transfer effect can be improved, the mechanical characteristics ofinterface transform from brittle into toughn, and fiber toughening effect rangeincreases, leading to the significantly improvement of toughness in concrete.
     The uniaxial performance of high-toughness of concrete was evaluated inuniaxial tensile and compression tests. The elastic modulus is approximately the2/3of ordinary concrete with the same compressive strength, and the compressive andtensile strain capacity is greatly improved. The unique multiple cracking and strainhardening phenomenon occur for the six recommended mix proportion. According tothe features of stress-strain curve of high-toughness concrete, the constitutive modelwas built which can accurately fitting the deformation characteristics of concrete bothbefore and after the peak load. In the combination of bending and tensioncharacteristics, the inverse formula for determining the tensile strength and straincapacity of high-toughness concrete was recommended.
     Two-dimensional numerical models were established for the bending,compression and tensile concrete specimens at the mesoscopic level. The three kind of test process was simulated. The simulation results can better reflect the stress-straincharacteristics and the law of cracking damage development for the high-toughnessconcrete.
     The fatigue performance of high-toughness concrete was evaluated by bendingfatigue test. The curves of mid-span deflection-cycle ratio under fatigue load alsoaccord with the3stage model. The double logarithm fatigue equations with0.05and0.50of the failure probability were established based on the Weibull distributionmodel. The formula of fatigue stress coefficient in high-toughness slab is also derived.
     A three-dimensional finite element model was established for the analysis of thecharacteristics of high-toughness concrete pavement structure. It’s shown that thevariation of design parameters in the conventional range has less influence on themechanics characteristics of high-toughness concrete pavement which has superioranti-fatigue performance to the combination action of load and temperature fatigueeffect than that of ordinary concrete. According to the calculation results, combinedwith the engineering practice, the slab length and thickness under different trafficlevels were recommended for the high-toughness concrete pavement.
引文
[1]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社.1999.
    [2]陈拴发.高性能混凝土应力腐蚀与腐蚀疲劳研究[D].西安:长安大学.2004.
    [3]中国建筑材料联合会信息部.2011年水泥产量和产能统计分析报告[J].中国水泥.2012.3:10-12.
    [4]冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社.1996.
    [5] Toshiyuki Kanakubo. Tensile Characteristics Evaluation Method for Ductile Fiber-ReinforcedCementitious Composites[J]. Journal of Advanced Concrete Technology.2006.4(1):3-17.
    [6]祝云华.钢纤维喷射混凝土力学特性及其在隧道单层衬砌中的应用研究[D].重庆:重庆大学.2009.
    [7] Shuanfa Chen, Mulian Zheng, Binggang Wang. Study of High-Performance ConcreteSubjected to Coupled Action from Sodium Sulfate Solution and Alternating Stresses[J].Journal of Materials in Civil Engineering.2009.21(4):148-152.
    [8] L. Amleh, Z. Lounis, M. S. Mirza. Assessment of Corrosion-damaged Concrete Bridge Decks–A Case Study Investigation[C]. Proceedings of6thInternational Conference on Short andMedium Span Bridges. Vancouver, July31-Aug.2,2002, v. II, pp.837-844.
    [9] Li Hedong, Xu Shilang, Christopher K Y. Leung. Tensile and Flexural Properties of UltraHigh Toughness Cemontious Composite[J]. Journal of Wuhan University of Technolotgy(Materials Science Edition).2009.24(4):677-683.
    [10] Michael P. Enright, Dan M. Frangopol. Survey and Evaluation of Damaged ConcreteBridges[J]. Journal of Bridge Engineering.2000.5(1):31-38.
    [11] Wang K, Jansen D, Shah S, Karr A. Permeability Study of Cracked Concrete[J]. Cement andConcrete Research.1997.27(3):381–93.
    [12]查进.超大跨径混合梁斜拉桥宽箱梁高性能混凝土防裂技术与耐久性研究[D].武汉:武汉理工大学.2008.
    [13] Farhad Ansari. Sensing Issues in Civil Structural Health Monitoring[M]. Springer.2005.
    [14]张劲泉.公路桥梁养护技术现状与发展[R].交通运输部公路科学研究院.2011.12.
    [15]西部交通建设科技项目(2003-318-490-18).公路隧道健康诊断的应用技术研究项目及成果简介[R].中交第一公路勘察设计研究院.2006.8.
    [16]张擎.考虑冲刷脱空的水泥混凝土路面设计研究[D].西安:长安大学.2009.
    [17]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京:中国建材工业出版社.2004.3.
    [18] H.W. Reinardt, A.E. Naaman. High Performance Fiber Reinforced Cement Composites[M].London: E&FN Spon.1992.
    [19]杨萌.钢纤维高强混凝土增强、增韧机理及基于韧性的设计方法研究[D].大连:大连理工大学.2006.
    [20] N.P. Romualdi, G.B. Batson. Mechanics of Crack Arrest in Concrete[C]. Proceedings of theASCE Journal of Engineering Mechanics Division.1963.89(EM3):147-168.
    [21]韩静云,蒋家奋.欧洲玻璃纤维增强水泥(GRC)的回顾与展望[J].混凝土与水泥制品.2003.6:33-37.
    [22]陈润锋,张国防,顾国芳.我国合成纤维混凝土研究与应用现状[J].建筑材料学报.2001.4(2):167-173.
    [23]张伟.聚丙烯纤维高强混凝土的力学性能试验研究[D].太原:太原理工大学.2010.
    [24] R.F. Zollo. Collated Fibrillated Polypropylene Fibers in FRC[J]. Fiber Reinforced ConcreteInternational Symposium. ACI Special Publication.1984:397-409.
    [25]赵帅.聚丙烯纤维增强水泥复合材料的性能与机理研究[D].济南:济南大学.2009.
    [26]黄平.高强高模聚乙烯醇纤维的研究进展[J].合成纤维工业.2001.24(5):26-30.
    [27] Yixin Shao, Surendra P. Shah. Mechanical Properties of PVA Fiber Reinforced CementComposites Fabricated by Extrusion Processing[J]. ACI Materials Journal.1997.94(6):555-564.
    [28] Cynthia Wu. Micromechanical Tailoring of PVA-ECC for Structural CPPlications[D]. AnnArbor. University of Michigan.2001.
    [29]王德松,罗青枝,杨景兴,李淑敏,李法杰. PVA对维纶增强水泥材料力学性能的影响[J].混凝土与水泥制品.1997.5:47-48
    [30] Jun Zhang, Victor C. Li. Monotonic and Fatigue Performance in Bending of Fiber-reinforcedEngineered Cementitious Composite in Overlay System[J]. Cement and Concrete Research.2002.32:415-423.
    [31]徐世烺,李贺东.超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报.2008.41(6):45-60.
    [32]张晓虎,孟宇,张炜.碳纤维增强复合材料技术发展现状及趋势[J].纤维复合材料.2004.1:50-58.
    [33]王闯.碳纤维分散性及其增强水泥基复合材料的电学性能[D].西安:西北工业大学.2007.
    [34]侯作富.融雪化冰用碳纤维导电混凝土的研制及应用研究[D].武汉:武汉理工大学.2003.
    [35]赵刚,赵莉,谢雄军.超高分子量聚乙烯纤维的技术与市场发展[J].纤维复合材料.2011.50(1):50-56.
    [36] K. Kobayashi, R. Cho. Flexural Characteristics of Steel Fiber and Polyethylene Fiber HybridReinforced Concrete[J]. Composites.1982.13(2):164-168.
    [37] Victor C. Li, Dhanada K. Mishra, Hwai-Chung Wu. Matrix Design forPseudo-strain-hardening Fibre Reinforced Cementitious Composites[J]. Materials andStructures.1995.28:586-595.
    [38] Shaikh Faiz Uddin Ahmed, Mohamed Maalej, P. Paramasivam. Flexural Responses of HybridSteel–polyethylene Fiber Reinforced Cement Composites Containing High Volume Fly Ash[J].Construction and Building Materials.2007.21:1088-1097.
    [39] S.F.U. Ahmed, M. Maalej. Tensile Strain Hardening Behaviour of Hybrid Steel-polyethyleneFibre Reinforced Cementitious Composites[J]. Construction and Building Materials.2009.23:96-106.
    [40]吉伯海,高建明,董祥.有机合成纤维增强高性能轻集料混凝土的研究[J].混凝土与水泥制品.2004.5:45-47.
    [41]华渊,曾艺,刘荣华.混杂纤维增强混凝土耐久性试验研究[J].低温建筑技术.1998.3(73):18-20.
    [42]孙伟,钱红萍,陈惠苏.纤维混杂及其与膨胀剂复合对水泥基材料的物理性船的影响[J].硅酸盐学报.2000.28(2):95-99.
    [43]王成启,吴科如.不同几何尺寸纤维混杂混凝土的混杂效应[J].建筑材料学报.2005.8(3):250-255.
    [44]王凯,陈梦成,杨洋. S-P混杂纤维对混凝土长期性能与耐久性影响[J].哈尔滨工业大学学报.2009.41(10):206-209.
    [45]刘开平,韩定海,钟佳墙,王尉和. FB/PP混杂纤维对混凝土性能的影响[J].哈尔滨工业大学学报.2009.41(2):193-195.
    [46]高淑玲. PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究[D].大连:大连理工大学.2006.
    [47] J.Aveston, G.A. Cooper, A. Kelly. Single and Multiple Fracture[C]. In The Properties of FiberComposites, Conference Proceedings, pp.15-24. IPC Science and Technology Press,Guildford, U.K.1971.
    [48] G. Chanvillard, S. Rigaud. Complete Characterization of Tensile Properties of DuctalUHPFRC according to the French Recommendations[C]. In Proceedings of the FourthInternational RILEM Workshop on High-Performance Fiber-Reinforced Cement Composites(HPFRCC4), A.E. Naaman and H.W. Reinhardt, Eds., pp.21–34. RILEM, Paris.2003
    [49] Edward G. Nawy. Concrete Construction Engineering Handbook[M]. Boca Raton: CRC Press.2008.
    [50] D.R. Lankard. Preparation, Properties and CPPlications of Cement Based CompositesContaining5-20Percent Steel Fiber Reinforcement[C]. In Steel Fiber Concrete, Shah, S.P. andSkarendahl, A., Eds. Elsevier, Amsterdam.1986.
    [51] A.E. Naaman. SIFCON: Tailored Properties for Structural Performance[C]. InHigh-Performance Fiber-Reinforced Cement Composites, Reinhardt, H.W. and Naaman, A.E.,Eds., pp.18–38. E&FN Spon, London.1992.
    [52]蔡向荣.超高韧性水泥基复合材料基本力学性能和应变硬化过程理论分析[D].大连:大连理工大学.2010.
    [53]呼素娟.渗浇纤维混凝土(SIFCON)性能研究[D].大连:大连理工大学.2005.
    [54] P. Richard, M.H. Cheyrezy. Reactive Powder Concretes with High Ductility and200-800MPaCompressive Strength. ACI SP144-24.1994.507-518.
    [55]余自若.活性粉末混凝土疲劳性能及其构件疲劳验算方法研究[D].北京:北京交通大学.2006.
    [56]曹峰,覃维祖.超高性能纤维增强混凝土初步研究[J].工业建筑.1999.29(6):42-44.
    [57]陈广智,孟世强,阎培渝.养护条件和配合比对活性粉末混凝土变形率的影响[J].工业建筑.2003.33(9):63-66.
    [58]彭艳周.钢渣粉活性粉末混凝土组成、结构与性能的研究[D].武汉:武汉理工大学.2009.
    [59] Victor C. Li, Michael Lepech. Crack Resistant Concrete Material for TransportationConstruction[C]. Transportation Research Board. Transportation Research Board83rd AnnualMeeting, Washington, D.C., Compendium of Papers CD ROM, Paper04-4680,2004.
    [60] V.C. Li, Y. Wang, S. Backer. Effect of Inclining Angle, Bundling, and Surface Treatment onSynthetic Fiber Pull-out From a Cement Matrix[J]. Composites.1990.21(2):132-140.
    [61] Victor C. Li, Christopher K. Y. Leung. Steady-state and Multiple Cracking of Short RandomFiber Composites[J]. Journal of Engineering Mechanics.1992.118(11):2246-2264.
    [62] Victor C. Li, Youjiang Wang, Stanley Backer. A Micromechanical Model of Tension-softeningand Bridging Toughening of Short Random Fiber Reinforced Brittle Matrix Composites[J].Journal of Mechanics and Physics of Solids.1991.39(5):607-625.
    [63] Carl Redon, Victor C. Li, Cynthia Wu, Hideki Hoshiro, Tadashi Saito, Atsuhisa Ogawa.Measuring and Modifying Interface Properties of PVA Fibers in ECC Matrix[J]. Journal ofMaterials in Civil Engineering.2001.13(6):399-406.
    [64]李贺东,徐世烺.超高韧性水泥基复合材料弯曲性能及韧性评价方法[J].土木工程学报.2010.43(3):32-39.
    [65] Min Wu, Bj rn Johannesson, Mette Geiker. A review: Self-healing in Cementitious Materialsand Engineered Cementitious Composite as a Self-healing Material[J]. Construction andBuilding Materials.2012.28:571-583.
    [66] Xu Shilang, Cai Xinhua. Mechanics Behavior of Ultra High Toughness CementitiousComposites after Freezing and Thawing[J]. Journal of Wuhan University of Technology-Mater.2010.25(3):509-514.
    [67] Li Hedong, Xu Shilang, Christopher K Y Leung. Tensile and Flexural Properties of Ultra HighToughness Cemontious Composite[J]. Journal of Wuhan University of Technology-Mater.2009.24(4):677-683.
    [68]公成旭,张君.高韧性纤维增强水泥基复合材料的抗拉性能[J].水利学报.2008.39(3):361-366.
    [69] Jun Zhang, Chengxu Gong, Zili Guo, Minghua Zhang. Engineered Cementitious Compositewith Characteristic of Low Drying Shrinkage[J]. Cement and Concrete Research.2009.39:303-312.
    [70]邓宗才,薛会青,李朋远,张鹏飞,佘向军.高韧性纤维增强水泥基复合材料的单轴拉伸力学性能[J].北京工业大学学报.2009.35(9):1204-1208.
    [71] Yang Yingzi, Gao Xiaojian, Deng Hongwei, Yu Pengzhan, Yao Yan. Effects of Water/BinderRatio on the Properties of Engineered Cementitious Composites[J]. Journal of WuhanUniversity of Technology-Mater.2010.25(2):298-302.
    [72] Shunzhi Qian, Victor C. Li. Simplified Inverse Method for Determining the Tensile StrainCapacity of Strain Hardening Cementitious Composites[J]. Journal of Advanced ConcreteTechnology.2007.5(2):235-246.
    [73] Shunzhi Qian, Victor C. Li. Simplified Inverse Method for Determining the Tensile Propertiesof Strain Hardening Cementitious Composites (SHCC)[J]. Journal of Advanced ConcreteTechnology.2008.6(2):353-363.
    [74] J.P. Romualdi, J.A. Mandel. Tensile Strength of Concrete Affected by Uniformly Distributedand Closely Spaced Short Lengths of Wire Reinforcement[J]. Journal of the AmericanConcrete Institute.1964. Proc.61:657-672.
    [75]刘卫东.改性聚丙烯纤维混凝土的工程性能研究[D].上海:东华大学.2009.
    [76]小林一辅(蒋之峰译).纤维补强混凝土[M].北京:中国铁道出版社.1995.
    [77] Kanda T, Li V C. Effect of Fiber Strength and Fiber-Matrix Interface on Crack Bridging inCement Composites[J]. Journal of Engineering Mechanics ASCE.1999.125(3):290-299.
    [78] Xiang-Rong Cai, Shi-Lang Xu, Bai-Quan Fu. A Statistical Micromechanical Model ofMultiple Cracking for Ultra High Toughness Cementitious Composites[J]. EngineeringFracture Mechanics.2011.78(2):1091-1100.
    [79]周尚志.混凝土动静力破坏过程的数值模拟及细观力学分析[D].西安:西安理工大学.2007.
    [80]马怀发,陈厚群,黎保琨.混凝土细观力学研究进展及评述[J].中国水利水电科学研究院学报.2004.2(2):124-130.
    [81]尚岩,杜成斌.基于细观损伤的混凝土力学性能数值模拟研究进展[J].水利与建筑工程学报.2004.2(1):23-28.
    [82] E. Schlangen, E.J. Garboczi. Fracture Simulations of Concrete Using Lattice Models:Computational Aspects[J]. Engineering Fracture Mechanics.1997.57(2-3):319-332.
    [83] B. Chiaia, A. Vervuurt, J.G.M. Van Mier. Lattice Model Evaluation of Progressive Failure inDisordered Particle Composites[J]. Engineering Fracture Mechanics.1997.57(2-3):301-309.
    [84] Z. Ba ant, M. Tabbara, M. Kazemi, G. Pijaudier‐Cabot. Random Particle Model for Fractureor Fiber Composites[J]. Journal of Engineering Mechanics.1990.116(8):1686-1705.
    [85]田威.基于细观损伤的混凝土破裂过程的三维数值模拟及CT验证[D].西安:西安理工大学.2006.
    [86]应宗权,杜成斌,刘冰.混凝土梁弯拉断裂过程的细观分析[J].东南大学学报(自然科学版).2007.32(2):213-216.
    [87]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟[J].水利学报.2004.10:1-10.
    [88]秦武,杜成斌,孙立国.基于数字图像技术的混凝土细观层次力学建模[J].水利学报.2011.42(4):431-439.
    [89]唐春安,朱万成.混凝土损伤与断裂数值试验[M].北京:科学出版社.2003.
    [90] Kawai Tadahiko. New Element Models in Discrete Structural Analysis[J]. Journal of theSociety of Naval Architects of Japan.1977.6:174-180.
    [91]侯宇星.钢筋混凝土力学性能的细观数值模拟研究[D].大连:大连理工大学.2010.
    [92]胡曙光.先进水泥基复合材料[M].北京:科学出版社.2009.
    [93] Shuxin Wang, Victor C. Li. Engineered Cementitious Composites with High-Volume FlyAsh[J]. ACI Materials Journal.2007.104(3):233-241.
    [94] En-Hua Yang. Designing Added Functions in Engineered Cementitious Composites[D]. AnnArbor: University of Michigan.2008.
    [95]刘宝举.粉煤灰作用效应及其在蒸养混凝土中的应用[D].长沙:中南大学.2007.
    [96]饶芳芬.粉煤灰对超高韧性水泥基复合材料弯曲性能的影响试验研究[D].大连:大连理工大学.2008.
    [97]艾红梅.大掺量粉煤灰混凝土配合比设计与性能研究[D].大连:大连理工大学.2005.
    [98] Shaikh Faiz Uddin Ahmed, Mohamed Maalej, P. Paramasivam. Flexural Responses of HybridSteel-polyethylene Fiber Reinforced Cement Composites Containing High Volume Fly Ash[J].Construction and Building Materials.2007.21:1088-1097.
    [99] C.X. Qian, P. Stroeven. Development of Hybrid Polypropylene-steel Fibre-reinforcedConcrete[J]. Cement and Concrete Research.2000.30:63-69.
    [100] Bin Wei, Hailin Cao, Shenhua Song. Tensile Behavior Contrast of Basalt and Glass Fibersafter Chemical Treatment[J]. Materials and Design.2010.31:4244-4250.
    [101] Y. Shan, K. Liao. Environmental Fatigue of Unidirectional Glass-carbon Fiber HybridComposite[J]. Composites: Part B.2001.32:355-363.
    [102] Rui He, Shuanfa Chen, Yongpeng Li, Peiliang Cong, Zhuangzhuang Liu. Chemical Resistanceof Polyvinylalcohol Reinforcing Fibers[J]. International Journal of Pavement Research andTechnology.2012.5(4):277-282.
    [103]吴越,骆玉祥,胡福增,吴叙勤.液态氧化法处理超高分子量聚乙烯纤维[J].功能高分子学报.1999.12(4):427-430.
    [104] Yoichiro Muraoka, Michael J. Rich, Lawrence T. Drzal. Sulfonation of UHMW-PE Fibers forAdhesion Promotion in Epoxy Polymers [J]. Journal of Adhesion Science and Technology.2002.16(12):1669-1685.
    [105]张礼和,谈慕华,马一平,吴科如. PP纤维水泥界面粘接与抗干缩开裂性能研究[J].建筑材料学报.2001.4(1):17-21.
    [106] W. Lu, X. Fu, D.D.L. Chung. A Comparative Study of the Wettability of Steel, Carbon, andPolyethylene Fibers Between Water[J]. Cement and Concrete Research.1998.28(6):783-786.
    [107] A. Durán-Herrera, C.A. Juárez, P. Valdez, D.P. Bentz. Evaluation of Sustainable High-volumeFly Ash Concretes[J]. Cement and Concrete Composites.2011.33:39-45.
    [108] G. Baert, A.-M. Poppeand, N. De Belie. Strength and Durability of High-volume Fly AshConcrete[J]. Structural Concrete.2008.9(2):101-108.
    [109]吴建华.高强高性能大掺量粉煤灰混凝土研究[D].重庆:重庆大学.2004.
    [110]刘金梅,卢中远,严云,舒朗.超细粉煤灰对水泥与高效减水剂相容性的影响[J].混凝土.2008.11:68-71.
    [111] Liberato Ferrara, Yon-Dong Park, Surendra P. Shah. Correlation among Fresh State Behavior,Fiber Dispersion, and Toughness Properties of SFRCs[J]. Journal of Materials in CivilEngineering.2008.20(7):493-501.
    [112]王闯,李克智,李贺军,徐国忠.短切炭纤维的CVI处理及其在CFRC中的分散性[J].复合材料学报.2007.24(1):135-140.
    [113] Bang Yeon Lee, Jin-Keun Kim, Jeong-Su Kim, Yun Yong Kim. Quantitative EvaluationTechnique of Polyvinyl Alcohol (PVA) Fiber Dispersion in Engineered CementitiousComposites[J]. Cement&Concrete Composites.2009.31:408-417.
    [114]张晖. CFRC中短切碳纤维的分散性及其机敏特性研究[D].武汉:武汉理工大学.2004.
    [115]阳知乾,刘加平,吕进.纤维在水泥基复合材料中的分散性评价方法综述[J].新型建筑材料.2008.13:85-90.
    [116]徐文杰,岳中琦,胡瑞林.基于数字图像的土、岩和混凝土内部结构定量分析和力学数值计算的研究进展[J].工程地质学报.2007.15(3):289-319.
    [117]余荣传.基于数字图像技术的砂土模型试验细观机构参数测量[D].上海:同济大学.2006.
    [118]王新飞.沥青混合料细观结构的粘弹性力学及断裂力学数值分析[D].杭州:浙江大学.2011.
    [119]张俊华,杨根,徐青.基于分段线性变换的图像增强[C].福州:第十四届全国图象图形学学术会议.2008.5.
    [120]熊琴.粗集料形状特征的数字图像分析[D].重庆:重庆交通大学.2011.
    [121]陈书海,傅录祥.实用数字图像处理[M].北京:科学出版社.2005.
    [122]李丽.三维空间Delaunay三角剖分算法的研究及应用[D].大连:大连海事大学.2010.
    [123] Kasthurirangan Gopalakrishnan,Naga Shashidhar,Xiaoxiong Zhong. Attempt at Quantifyingthe Degree of Compaction in HMA Using Image Analysis[C]. Proceedings of the Sessions ofthe Geo-Frontiers2005. Austin: ASCE Geotechnical Special Publication. No.130,225-239.
    [124]王新飞,黄志义,刘卓,朱兴一,徐伟. DELAUNAY三角网格的沥青混合料粗集料分布特性分析[J].浙江大学学报(工学版).2012.46(2):263-368.
    [125] Maleki A, Kjoniksen A L, Nystrom B. Effect of Shear on Intramolecular and IntermolecularAssociation During Cross-linking of Hydroxyethylcellulose in Dilute Aqueous Solutions[J].Journal of Physical Chemistry B.2005.109(25):12329-12336.
    [126] ASTM C1018-97. Standard Test Method for Flexural Toughness and First-Crack Strength ofFiber-Reinforced Concrete (Using Beam With Third-Point Loading)[S].
    [127]朱海堂,高丹盈,谢丽,张启明.钢纤维高强混凝土弯曲韧性的研究[J].硅酸盐学报.2004.32(5):656-660.
    [128]丁一宁,董香军,王岳华.钢纤维混凝土弯曲韧性测试方法与评价标准[J].建筑材料学报.2005.8(6):660-664.
    [129] A.E. Naaman, H.W. Reinhardt. Characterization of High Performance Fiber ReinforcedCement Composites-HPFRCC[C]. High Performance Fiber Reinforced Cement Composites2(HPFRCC2), Proceedings of the Second International RILEM Workshop, London,1996, p.1.
    [130]王伯昕,黄承逵.大直径合成纤维增强混凝土抗冲击性能的研究[J].建筑材料学报.2006.9(5):608-612.
    [131]白二雷,许金余,高志刚,胡泽斌. EPS颗粒对混凝土的增韧效应[J].建筑材料学报.2012.15(1):53-59.
    [132]曾梦澜,黄海龙,彭良清,吴盛华.冲击荷载下橡胶改性沥青混凝土的动力学性质[J].湖南大学学报(自然科学版).2011.38(12):1-7.
    [133]朱晓斌.纤维增强水泥基复合材料抗裂与耐撞磨性能研究[D].南京:东南大学.2009.
    [134]谢友均.超细粉煤灰高性能混凝土的研究与应用[D].长沙:中南大学.2006.
    [135]丁一宁,刘思国.钢纤维自密实混凝土弯曲韧性和剪切韧性试验研究[J].土木工程学报.2010.43(11):55-63.
    [136]温小栋.梯度结构混凝土的体积稳定性研究与应用[D].武汉:武汉理工大学.2007.
    [137]陈瑛,姜弘道,朱为玄,冯新权.混杂纤维水泥基复合材料断裂分析[J].河海大学学报(自然科学版)2005.33(5):571-574.
    [138]宋世学,邱学农.关于脆性陶瓷材料R-曲线行为表达式的讨论[J].济南大学学报(自然科学版).2007.21(3):197-199.
    [139] Shilang Xu, Hans W. Reinhardt. A Simplified Method for Determining Double-K FractureParameters for Three-point Bending Tests[J]. International Journal of Fracture.2000.104(2):181-209.
    [140] A. Sadrmomtazi, A. Fasihi. Influence of Polypropylene Fibers on the Performance ofNano-SiO2-Incorporated Mortar[J]. Iranian Journal of Science&Technology, Transaction B:Engineering.2010.34(4):385-395.
    [141] Aaron Richard Sakulich, Victor C. Li. Nanoscale Characterization of EngineeredCementitious Composites (ECC)[J]. Cement and Concrete Research.2011.41(2):169-175.
    [142] Siaw Foon Lee, Stefan Jacobsen. Study of Interfacial Microstructure, Fracture Energy,Compressive Energy and Debonding Load of Steel Fiber-reinforced Mortar[J]. Materials andStructures.2011.44:1451-1465.
    [143] H.F.W. Taylor, D.E. Newbury. An Electron Microprobe Study of a Mature Cement Paste[J].Cement and Concrete Research.1984.14(4):565-573.
    [144]孙伟,严云.钢纤维高强水泥基复合材料的界面效应及其疲劳特性的研究[J].硅酸盐学报.1994.22(2).107-116.
    [145]过镇海.混凝土的强度和本构关系:原理与应用[M].中国建筑工业出版社.2004.
    [146]梁咏宁,袁迎曙.硫酸盐腐蚀后混凝土单轴受压本构关系[J].哈尔滨工业大学学报.2008.40(4):532-535.
    [147] CAI Xiangrong, XU Shilang. Uniaxial Compressive Properties of Ultra High ToughnessCementitious Composite[J]. Journal of Wuhan University of Technology (Materials ScienceEdition).2011.26(4):762-769.
    [148]杨林虎,朱涵,刘春生.软性填充物对椭圆形孔洞周区应力场影响的二维分析[J].天津大学学报.2010.43(7):601-605.
    [149]孙丽,刘安恒.片石混凝土路面的温度应力分析[J].重庆交通大学学报(自然科学版).2011.30(2):242-245.
    [150]蒋应军,戴经梁.刚性路面中关于温度应力计算问题[J].岩土工程学报.2007.29(6):837-842.
    [151]王春来,徐必根,李庶林,唐海燕.单轴受压状态下钢纤维混凝土损伤本构模型研究[J].岩土力学.2006.27(1):151-154.
    [152]薛云亮,李庶林,林峰,徐宏斌.考虑损伤阀值影响的钢纤维混凝土损伤本构模型研究[J].岩土力学.2009.30(7):1987-1999.
    [153] Mohamed Maalej, Victor C. Li. Flexural/tensile–Strength Ratio in Engineered CementitiousComposites[J]. Journal of Materials in Civil Engineering.1994.6(4):513-528.
    [154] Naser Mostaghel, Ryan A. Byrd. Inversion of Ramberg-Osgood Equation and Description ofHysteresis Loops[J]. International Journal of Non-Linear Mechanics2002.37:1319-1335.
    [155] S. C. Wong, Y. W. Mai. Effect of Rubber Functionality on Mechanical Fracture Properties ofImpact-Modified Nylon6.6/Polypropylene Blends[J]. Key Engineering Materials.1998.137:55-62.
    [156]过镇海.混凝土的强度和本构关系-原理与应用[M].北京:中国建筑工业出版社.2004.
    [157]过镇海,张秀琴.砼受拉应力-变形全曲线的试验研究[J].建筑结构学报.1988.9(4):45-53.
    [158] Ostergaard, L., Walter, R. and Olesen, J. F. Method for determination of tensile properties ofengineered cementitious composites (ECC)[C]. Proceedings of ConMat'05, Vancouver,Canada.2005.
    [159] Toshiyuki Kanakubo, Katsuyuki Shimizu, Makoto Katagiri, Tetsushi Kanda, HiroshiFukuyama, Keitetsu Rokugo. Tensile Charaeteristies Evaluation of DFRCC-Round Robin TestResults by JCI-TC[C]. Proeeedings of RILEM International Workshop on High PerformanceFiber Reinforced Cementitious Composites (HPFRCC) in Structural CPPlications. Hawaii:RILEM Publications SARI.2005:27-36.
    [160]姚慕生.高等代数学[M].上海:复旦大学出版社.2003.
    [161]曹志浩,张玉德,李瑞遐.矩阵计算和方程求根[M].北京:高等教育出版社.1984.
    [162]杜修力,金浏.基于随机多尺度力学模型的混凝土力学特性研究[J].工程力学.2011.28(1):151-155.
    [163]袁小平,刘红岩,王志乔.基于Drucker-Prager准则的岩石弹塑性损伤本构模型研究[J].岩土力学.2012.33(4):1103-1108.
    [164]唐春安,朱万成.混凝土损伤与断裂-数值试验[M].北京:科学出版社.2003.
    [165]钟根全.基于细观层次橡胶混凝土力学性能的数值模拟[D].广州:广东工业大学.2009.
    [166] ABAQUS Inc. Abaqus Theory Manual[M].2007.
    [167] ABAQUS Inc. Abaqus User’s Manual[M].2007.
    [168]张战廷,刘宇锋. ABAQUS中的混凝土塑性损伤模型[J].建筑结构.2011.41(S2):229-231.
    [169]张劲,王庆扬,胡守营,王传甲. ABAQUS混凝土损伤塑性模型参数验证[J].建筑结构.2008.38(8):127-130.
    [170]王瑶,周继凯,沈德建,王岩.混凝土中骨料浆体界面过渡区的力学性能研究综述[J].水利水电科技进展.2008.28(2):88-94.
    [171] Bentur A. Microstructure Interfacial Effects and Micromechanics of CementitiousComposites[J]. Advances in Cementitious Materials.1990.16:523-550.
    [172] Temesgen W. Aure, Anastasios M. Ioannides. Simulation of Crack Propagation in ConcreteBeams with Cohesive Elements in ABAQUS[J]. Journal of the Transportation Research Board.2012.2154:12-21.
    [173] T. Drabek, H.J. Bohm. Damage models for studying ductile matrix failure in composites[J].Computational Materials Science.2005.32:329-336.
    [174]胡乐生.基于细观模型的混凝土开裂过程数值研究[D].杭州:浙江大学.2011.
    [175]程伟峰.混凝土三维随机凸型骨料模型生成方法研究[J].水利学报.2011.42(5):609-615.
    [176] F.H. Wittmann, P.E. Roelfstra, H. Sadouki. Simulation and Analysis of CompositeStructures[J]. Materials Science and Engineering.1985.68(2):239–248.
    [177] Wang Z.M., Kwan A.K.H., Chan H.C.. Mesoscopic Study of Concrete Ⅰ: Generation ofRandom Aggregate Structures and Finite Element Mesh[J]. Computers and Structures.1999.58:533-544.
    [178]张剑,金南国,金贤玉,郑建军.混凝土多边形骨料分布的数值模拟方法[J].浙江大学学报(工学版).2004.38(5):581-584.
    [179]苑坤兴.聚丙烯纤维混凝土力学性能及细观结构的数值模拟[J].中国石油大学.2011.5.
    [180]郑克仁.矿物掺合料对混凝土疲劳性能的影响及机理[D].南京:东南大学.2005.
    [181] M.K. Lee, B.I.G. Barr. An Overview of the Fatigue Behaviour of Plain and Fibre ReinforcedConcrete[J]. Cement and Concrete Composites.2004.26:299-305.
    [182]李朝阳,宋玉普,车轶.混凝土的单轴抗压疲劳损伤累积性能研究[J].土木工程学报.2002.35(2):38-40.
    [183]易成,范永魁,朱红光,王建强.基于韧性的混凝土轴压疲劳损伤演化研究[J].工程力学.2010.27(8):113-119.
    [184]方志,向宇,匡镇,王常林.钢纤维含量对活性粉末混凝土抗疲劳性能的影响[J].湖南大学学报(自然科学版).2011.38(6):6-12.
    [185]邹尤.混杂纤维混凝土弯曲疲劳特性研究[D].武汉:武汉理工大学.2010.
    [186]易成,谢和平,孙华飞.钢纤维混凝土疲劳断裂性能与工程应用[M].北京:科学出版社.2003.
    [187] Hui Li, Mao-hua Zhang, Jin-ping Ou. Flexural Fatigue Performance of Concrete ContainingNano-particles for Pavement[J]. International Journal of Fatigue.2007.29:1292-1301.
    [188]郑木莲.多孔混凝土排水基层研究[D].西安:长安大学.2004.
    [189]贾侃.半刚性基层材料的疲劳特性研究[D].西安:长安大学.2008.
    [190]范小春.层布式钢纤维混凝土基本性能与应用研究[D].武汉:武汉理工大学.2008.
    [191]吕新丽.普通水泥混凝土路面三维尺寸研究[D].西安:长安大学.2009.
    [192]龚小涛,杨帆.台阶锥形环件冷辗压中等效塑性应变规律研究[J].锻压技术.2012.37(5):140-143.
    [193]余自若,安明喆.活性粉末混凝土的疲劳损伤[J].华南理工大学学报(自然科学版).2009.37(3):114-119.