PEG胁迫下的甘蔗RNA-Seq定量分析与差异表达基因鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蔗(Saccharum officinarum L.)是重要的糖料作物和能源作物,蔗糖分别占世界食糖和我国食糖总产量的70%和90%以上,甘蔗燃料乙醇产量约占世界生物质燃料乙醇总产量的40%。干旱是造成甘蔗等作物减产的重要因素,我国甘蔗85%种植在盐碱地或旱坡地,甘蔗水分需求与供给不平衡的矛盾尤为突出。
     挖掘甘蔗抗旱基因是甘蔗抗逆性育种的重要基础工作。转录水平调节是作物从分子水平上适应干旱胁迫的一个重要机制,利用干旱胁迫应答基因在转录水平的表达差异来筛选并鉴定抗旱相关基因,是挖掘作物抗旱基因的有效手段。斑茅(Erianthus arundinaceus)是甘蔗近缘属植物,具有优异的抗逆基因资源,已成为甘蔗抗逆育种的重要基因来源。有性杂交虽然也是一种有效的途径,而且,经过了十几年研究,目前也已培育出甘蔗与斑茅杂交的BC3和BC4后代。但是,在斑茅优异的抗逆基因资源的杂交利用与“高贵化”回交过程中,还面临较多的困难,如杂交后代花粉不育、计划杂交的组合花期不遇和优良目标性状的多基因聚合问题,同时,在杂交后代广泛变异群体中,具有优良目标性状聚合基因型单株的鉴定与选择的准确性和效率依然不高。因而,即便对于甘蔗品种间的杂交,一般认为在10万个杂交后代变异群体中,经过10年的鉴定与选择,有希望培育出1个优良栽培品种。基于上述考虑,利用综合性状好且具有斑茅血缘的甘蔗BC2材料,进行模拟干旱逆境胁迫,以期在解析甘蔗应答干旱逆境胁迫分子机理的同时,挖掘重要的抗逆基因和转录调控元件,为后续抗逆育种奠定物质基础、理论依据与技术储备。本研究以甘蔗与斑茅杂交选育的BC2无性系(S. complex)崖城05-179(YCE05-179)为实验材料,采用Illumina GA/HiSeq第二代测序平台进行RNA-Seq高通量测序,通过收集、比对与分析在模拟干旱胁迫条件下(25%PEG800,24h)的甘蔗根中的转录本数据,高通量的分离和筛选差异表达基因,并对部分PEG胁迫应答基因进行了功能验证。主要结果与结论如下:
     1.以抗旱斑茅蔗无性系YCE05-179为植物材料,基于Illumina/Solexa二代测序平台的RNA-Seq技术,成功获得YCE05-179的根中响应PEG胁迫的转录本序列信息,处理和对照2个样本的测序总量分别达到514,274,992个和556,342,815个总碱基对(Total base pairs);其中,胁迫处理样本得到10,495,408个clean reads,对照样本得到11,353,935个clean reads。测序质量的多重评估分析结果表明,本研究中RNA-Seq测序质量良好,测序深度充分,测序结果已经基本覆盖了2组样本细胞中全部表达的基因。
     2.以NCBI的高粱基因组数据库以及高粱基因数据库数据为参考,对上述两组RNA-Seq数据进行比对和分析,共检测到23,550个基因。从两组样品中,共筛选到12,035个差异表达基因,其中上调表达的基因有6,480个,下调表达的基因有5,555个。表达显著差异(差异表达基因为FDR≤0.001且倍数差异不低于2倍)的基因共有597个(其中上调表达329个,下调表达268个)。本研究从上述差异表达基因中挑选出部分基因做进一步的功能验证,包括参与细胞次生代谢途径中木质素合成的dirigent蛋白基因、参与重金属绑定和细胞活性氧清除的金属硫蛋白基因,以及参与转录调控的R2R3-MYB转录因子家族基因。
     3. Dirigent和dirigent-like家族蛋白与植物细胞的木质素合成相关,参与了植物对病原体和非生物胁迫的应答。本研究在对RNA-Seq和甘蔗茎cDNA全长文库数据分析的基础上,分离克隆了1个dirigent-like基因,命名为ScDir (GenBank Accession number:JQ622282)。 ScDir的cDNA全长819bp,包含1个564bp的开放读码框,编码187个氨基酸。ScDir蛋白的氨基酸序列N端的第1到25个氨基酸残基和第7到26个氨基酸残基的位置分别包含一个信号肽和跨膜结构区。用His标签标记ScDir蛋白,并成功在大肠杆菌(Escherichia coli)中表达了该重组蛋白(理论分子量大小为27.4kDa).ScDir基因在大肠杆菌中的表达提高了宿主菌对PEG和NaCl的耐受能力。以GAPDH基因为内参基因的实时荧光定量PCR研究表明,ScDir基因在甘蔗的茎中高度特异表达,其在茎中的相对表达量分别是在根、叶和芽中的8.64±0.48倍,25,635.16±2,966.03倍和721.50±8.17倍。实时荧光定量PCR研究结果表明,H2O2、PEG和NaCl胁迫提高了ScDir基因在甘蔗组培苗中的表达水平,其中ScDir基因的表达受PEG胁迫的诱导而显著上调,在处理12h时间点其表达量最高,为对照的35倍以上。上述实验结果说明,ScDir基因是一种茎高度特异表达基因,该基因在大肠杆菌中的作用及其在甘蔗中的表达模式,揭示了该基因在甘蔗应答干旱、高盐和氧化等非生物胁迫方面起到积极的作用。
     4.金属硫蛋白基因是一类富含半胱氨酸的小分子量金属结合蛋白。前人的研究显示,植物金属硫蛋白具有可逆结合有毒离子和基本金属离子的能力,在解毒、维持金属离子代谢平衡和调节金属离子转运等方面起重要作用。本研究在对RNA-Seq和甘蔗茎cDNA全长文库数据分析的基础上,分离克隆了一个金属硫蛋白基因,命名为ScMT2-1-3(GenBank Accession number:JQ627644)。ScMT2-1-3基因全长700bp,包含一个240bp的开放读码框,编码79个氨基酸。在大肠杆菌中成功表达了带His标签的ScMT2-1-3重组蛋白(分子量大小约为19.01kDa),并通过MALDI-TOF-TOF MS验证了该重组蛋白。ScMT2-1-3基因在大肠杆菌中的表达提高了宿主菌对Cd2+、Cu2+、PEG和NaCl的耐受能力。实时荧光定量PCR研究表明,CuCl2、H2O2、PEG和NaCl胁迫均提高了ScMT2-1-3基因在甘蔗组培苗中的表达水平,而CdCl2胁迫抑制了ScMT2-1-3基因的表达水平;ScMT2-1-3基因在甘蔗芽和根中的相对表达量是在茎和叶中的14倍以上。ScMT2-1-3基因在大肠杆菌中的作用及其在甘蔗中的表达模式,提示了该基因在甘蔗应答干旱、高盐和氧化等非生物胁迫时,扮演着抗氧化的角色,并起积极的作用。此外,ScMT2-1-3基因还参与了铜离子在细胞中的解毒和富集过程,但其对甘蔗细胞中镉的解毒和富集过程的作用机理还需进一步研究。
     5.R2R3-MYB基因是MYB转录因子基因家族的主要成员,已被证明在次生代谢和非生物逆境胁迫应答中起重要作用。本研究在RNA-Seq高通量测序的基础上,综合应用电子克隆、RT-PCR和RACE技术,分离克隆了3个甘蔗R2R3-Myb基因/亚家族Sc2RMyb1、 Sc2RMyb2和Sc2RMyb3s。这些基因的表达特性或功能验证实验结果如下:
     (1)Sc2RMyb1(GenBank Accession number:JQ823165)的基因组DNA全长1,807bp,由3个外显子和2个内含子构成,编码区长度为1,284bp,编码427个氨基酸。构建含有Sc2RMyb1基因的原核表达载体并转入大肠杆菌,经IPTG诱导产生的重组蛋白相对分子量约为52kDa。在NaCl胁迫的LB培养基上,重组菌生长明显优于对照菌。实时荧光定量PCR分析表明,甘蔗中Sc2RMyb1基因的表达受H202和NaCl抑制而明显下调;Sc2RMyb1基因对PEG的应答除了在处理12h时略有上调以外,在其余的6个理处时间点均明显下调。推测该基因作为负调节因子参与了NaCl等胁迫应答相关基因的调控过程。
     (2)Sc2RMyb2基因通过不同剪接方式,产生至少两种转录本,即Sc2RMyb1和Sc2RMyb2。其中Sc2RMyb2S1的cDNA全长为1,066bp,开放阅读框长度为687bp,共编码228个氨基酸;Sc2RMyb2S2无明显开放读码框,不编码功能蛋白。序列分析表明,串联内含子的结构特征是Sc2RMyb2剪接调控的结构基础。Sc2RMyb2转录基因子基因通过剪接调控,调节细胞中Sc2RMyb2S1和Sc2RMyb2S2两种转录本的相对表达量,从而对PEG胁迫引起的生理生化变化进行应答。实时荧光定量PCR研究表明,Sc2RMyb2S1基因的表达受PEG胁迫的抑制而显著下调,该基因在烟草叶片中的瞬时表达导致叶片变黄,提示了该基因参与了PEG胁迫引起的细胞衰老的调控过程。
     (3)本研究还分离克隆了Sc2RMyb3s亚家族的7个成员基因(Sc2RMyb3-1~Sc2RMyb3-7),并对Sc2RMyb3-1、Sc2RMyb3-2和Sc2RMyb3-3等3个基因进行了初步的功能验证。在烟草叶片中的瞬时表达实验表明,Sc2RMyb3-1和Sc2RMyb3-2基因没有引起烟草叶色等表型的明显变化,而Sc2RMyb3-3基因在烟草叶片中的瞬间表达导致了叶色明显变黄,这提示了Sc2RMyb3-3基因在细胞衰老等相关生理生化过程中发挥重要的调控作用;Sc2RMyb3s亚家族各成员基因在甘蔗响应环境因子的过程中执行不同的功能,体现了R2R3-Myb转录因子调控机制的复杂性。序列分析表明,氨基酸序列中的C端序列结构在决定甘蔗Sc2RMyb3s转录因子的功能上起到重要的作用。
Sugarcane(Saccharum officinarum L.) is one of the more important sugar and energy crops of the world. Cane sugar accounts for more than70%of the sugar production in the world and90%of that in China. Moreover, sugarcane fuel ethanol accounted for about40%of total biomass fuel ethanol production in the world. Drought is one of the most important yield-limiting factors of sugarcane plants. In China, due to85%of the sugarcane planting in saline or sloping dryland, the problem of insufficient water supply became more prominent.
     Mining for drought tolerance gene sources is an important work for sugarcane resistance breeding. Identification of the genes responsible for drought tolerance by monitoring the changes in gene expression at the transcriptional level is an effective method to target drought-tolerance genes. Erianthus arundinaceus is a closely related genus of S. officinarum L. With its outstanding stress-tolerance and high rooting ability, E. arundinaceus has proved to be one of the every important genetic resources for improvement of stress-tolerance in sugarcane. Although conventional hybridization is an effective way, and the BC3or BC4fertile hybrids from intergeneric crosses between S. officinarum L. and E. arundinaceus have been generated over the past ten years of work. Still, there are several difficulties in the process of making use of the outstanding stress-tolerance gene resources of E. arundinaceus and "noblelization" backcross, such as pollen sterility, flowering asynchronism, and target trait polymerisation problems, etc. Thus, it usually takes more than ten years for a cycle of sugarcane breeding to develop a good variety. In this study, an intergeneric BC2hybrid (S. complex) with good comprehensive characters named YCE05-179from S. officinarum X E. arundinaceus, was taken as the experimental material in imitation of drought stress. Analysis of molecular mechanism of sugarcane in response to drought stress and mining important functional protein genes and transcriptional regulatory elements are our main purpose. A high-throughput technology of RNA-Seq based on Illumina/Solexa platforms (Illumina GA/HiSeq) was used to produce a substantial expressed sequence tags dataset from the roots of YCE05-179under the treatment of PEG (25%PEG8000,24h). The main results and conclusions are as follows:
     1. RNA-seq based on the Illumina GA/HiSeq, was used to generate an extensive map of YCE05-179(S. complex) roots transcriptome under the treatment of PEG. In total,514,274,992basepairs raw sequence data corresponding10,495,408clean reads and556,342,815basepairs raw sequence data corresponding11,353,935clean reads were generated from the treatment and the control samples, respectively. The quality of these sequence reads was assessed by multiple analyses, and the information indicated that the high-quality RNA sequencing data in this study could fully cover the expressed genes in cells from each sample.
     2. Clean reads were aligned to sorghum genome and unigenes. In total,2.18million reads were aligned to the genome and unigenes, and23,550genes were identified. A total of12,035genes,6,480up-regulated genes and5,555down-regulated genes, were found to be differentially expressed in roots. Among them,597genes (329up-regulated genes,268down-regulated genes) were defined as highly significant differential expression filtered by conditions on FDR≤0.001and|log2Ratio|≥1. In this study, three types of gene including dirigent-like protein gene, metallothionein gene and R2R3-Myb transcription factor gene, which were clustered based on gene ontology (GO) terms, possess functional signatures identify as secondary metabolism (lignin synthesis), heavy metal binding (oxygen and reactive oxygen species metabolic process) and regulation of transcription, respectively, and all these genes were picked out for further functional verification.
     3. Dirigent and dirigent-like family proteins contain a number of proteins involved in lignification or in the response to pathogen infection and abiotic stress in plants. In this study, a full-length cDNA sequence of a dirigent-like gene designated ScDir (GenBank Accession Number JQ622282) was obtained from sugarcane based on RNA-Seq and bioinformatics analysis using the data of sugarcane stem full-length cDNA library. The ScDir gene was819bp long, including a564bp ORF encoding187amino acid residues. The protein N-terminus contained signal peptides at amino acid residues of1to25and trans-membrane regions at7to26aa. A His-tagged ScDir protein with an estimated molecular mass of27.4kDa was expressed in Escherichia coli system. The expressed ScDir protein had increased the host cell's tolerance to PEG and NaCl. When an endogenous GAPDH gene was used as the internal control, results from Real-time qPCR demonstrate that the ScDir mRNA amount in sugarcane stalks was significantly higher than that in the roots, leaves and buds, as18.64±0.48-,25,635.16±2,966.03-,721.50±8.17-fold, respectively. The ScDir transcript levels in sugarcane seedling increased under H2O2, PEG or NaCl stress. The expression level of ScDir was significantly upregulated under PEG stress, and the highest level (>35-fold) was observed at12h after stress. Thus, both the ScDir hosted cell performance and the enhanced expressions in sugarcane imply that the ScDir gene is involved in the response to abiotic stresses of drought, salts, and oxidation. The transcription of the ScDir gene is highly stalk-specific, as revealed by Real-time qPCR.
     4. Metallothioneins (MTs) are cysteine-rich, low-molecular-weight, metal-binding proteins. Due to their ability to reversibly bind both toxic and essential metal ions, previous studies indicated that plant MTs play important roles in detoxification, metal ion homeostasis and metal transport adjustment. In this study, a novel metallothionein gene, designated as ScMT2-1-3(GenBank Ace:JQ627644), was obtained from sugarcane based on RNA-Seq and bioinformatics analysis using the data of sugarcane stem full-length cDNA library. ScMT2-1-3gene was700bp long, including a240bp ORF encoding79amino acid residues. A His-tagged ScMT2-1-3protein with an estimated molecular mass of19.01kDa was successfully expressed in Escherichia coli system and was identified at the same time by MALDI-TOF-TOF MS. The expressed ScMT2-1-3protein had increased the host cell's tolerance to Cd2+, Cu2+, PEG and NaCl. The expression of ScMT2-1-3was up-regulated under Cu2+, H2O2, PEG and NaCl stress, but down-regulated under Cd2+stress. Real-time qPCR demonstrated that the expression levels of ScMT2-1-3gene in bud and root were over14times higher than those in the stem and leaf. Thus, both the E. coli assay and sugarcane plantlets assay suggested that ScMT2-1-3gene act as antioxidants when it functions in sugarcane response to drought, high salinity and oxidative stress. Moreover, ScMT2-1-3gene is significantly involved in the copper detoxification and storage in the cell, but its functional mechanism in cadmium detoxification and storage in sugarcane cells need more testification though its expressed protein could abviously increase the host E. coli cell's tolerance to Cd2+.
     5. R2R3-MYB gene is a principal member of MYB transcription factor superfamily, which has been showed to play an important role in secondary metabolism and abiotic stress responses. Based on high-throughput RNA sequencing, three sugarcane R2R3-Myb genes/sub-family genes were isolated in the present study.
     (1) Genomic DNA sequence of Sc2RMybl gene (GenBank Acc:JQ823165) was1,807bp in length, including3exons and2introns, and the complete coding sequence was1,248bp encoding427amino acids. The recombinant protein with an estimated molecular mass of52kDa was produced in positive prokaryotic strain induced by IPTG The recombinant E. coli cells exhibited better growth than the negative strain in liquid LB medium with addition of NaCl. When25srRNA gene was used as the internal control, the expression profiles of Sc2RMybl gene responsive to different stresses were detected by Real-time qPCR in sugarcane. The transcript levels of Sc2RMybl gene in sugarcane seedling decreased under both H2O2and NaCl stresses. Moreover, when treated with PEG, Sc2RMybl gene was only slightly up-regulated at the treatment time point of12h and down-regulated visibly in the other six treatment time points. It suggested that the Sc2RMyb1gene, as a negative adjustment factor, may involve in the response to salt stress, etc.
     (2) Sc2RMyb2gene was able to generate at least two distinct transcripts, Sc2RMyb2S1and Sc2RMyb2S2, by alternative splicing. Sc2RMyb2S1gene was1,066bp long, including a687bp ORF encoding288amino acid residues. Sc2RMyb2S2had no significant open reading frame and did not encode a functional protein. Sequence analysis showed that series introns structure in the gDNA sequences of Sc2RMyb2gene was the structure foundation for alternative splicing. The alternative splicing of Sc2RMyb2gene is responsive to PEG stress, by means of regulating the relative transcript level of Sc2RMyb2S1and Sc2RMyb2S2in cells. The transcript level of Sc2RMyb2S1gene was inhibited by PEG with obvious down-regulation during the whole period of treatment. The tobacco leaves turned yellow when the Sc2RMyb2S1gene expressed transiently in it, which suggested that the Sc2RMyb2Sl gene was involved in cellular senescence induced by PEG
     (3) In the present study,7genes termed as Sc2RMyb3-1to Sc2RMyb3-7were cloned and classified into the same sub-family genes:Sc2RMyb3s. Three of them, Sc2RMyb3-1, Sc2RMyb3-2and Sc2RMyb3-3, were chosen for a transient expression assay in the tobacco leaf. The transient expression of Sc2RMyb3-1or Sc2RMyb3-2gene in the tobacco leaves, did not cause any significant phenotypic changes, such as colors. On the contrary, the tobacco leaves turned yellow notably when the transient expression assay of Sc2RMyb3-3gene was performed under the same conditions. It was suggested that the Sc2RMyb3-3gene was involved in cellular senescence induced by PEG, and the complex role played by Sc2RMyb3s sub-family members in regulating multiple aspects of different stresse responses. Sequence analysis showed that the C-terminal amino acid sequence may play an important role in determining the function of Sc2RMyb3s transcription factors in sugarcane.
引文
[11刘志玲,程丹.植物抗旱生理研究进展与育种[J].中国农学通报,2011,27(24):249-252.
    [2]张木清,陈如凯等.作物抗旱分子生理与遗传改良[M].北京:科学出版社,2005,1-3.
    [3]山仑,陈培元.旱地农业生理生态基础[M].北京:科学出版社,1998,1-17,98-105.
    [4]韩金龙,王同燕,徐子利,等.玉米抗旱机理及抗旱性鉴定指标研究进展[J1.中国农学通报,2010,26(21):142-146.
    [5]Monaco A P. Isolation of genes from cloned DNA [J]. Curr Opin Genet Dev,1994,4:360-365.
    [6]Mindrinos M, Katagiri F, Yu G L, et al. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats [J]. Cell,1994,78(6):1089-1099.
    [7]Xia Z J, Watanabe S, Yamada T, et al. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering [J]. Proc.Natl Acad Sci USA,2012,109 (32): E2155-E2164.
    [8]Martin G B, Brommonschenkel S H, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance to tomato [J]. Science,1993,262(5138):1432-1436.
    [9]Song W Y, Wang G L, Chen L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21 [J]. Science,1995,270(5243):1804-1806.
    [10]Yasuda K, Tsukiyama T, Karki S, et al. Mobilization of the active transposon mPing in interspecific hybrid rice between Oryza sativa and O. glaberrima [J]. Euphytica,2012, online
    [11]Johal G S, Briggs S P. Reductase activity encoded by the HM1 disease resistance gene in maize [J]. Science, 1992,258(5084):985-987.
    [12]Ambrosel B A, Lernerl D R, Ciceri P, et al. Molecular and genetic analyses of the SilkyI gene reveal conservation in floral organ specification between eudicots and monocots [J]. Mol Cell,2000,5(3):569-579.
    [13]Whitham S, Dinesh-Kumar S P, Choi D, et al. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor [J]. Cell,1994,78(6):1101-1115
    [14]Jones D A, Thomas C M, Hammond-Kosack K E, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosprium fulvum by transposon tagging [J]. Science,1994,265(5186):1856-1860.
    [15]Lawrence G J, Finnegan E J, Ayliffe M A, et al. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. [J]. Plant Cell,1995,7(8): 1195-1206.
    [16]Yeku O, Frohman M A. Rapid amplification of cDNA ends (RACE) [J]. Methods Mol Biol,2011,703: 107-22.
    [17]Huminiecki L, Bicknell R. In silico Cloning of novel endothelia-specific genes [J].Genome Res,2000,10(11): 1796-1806.
    [18]Gill R W, Sanseau P. Rapid in silico cloning of genes using expressed sequence tags (ESTs) [J]. Biotechnol Annu Rev,2000,5:25-44.
    [19]Fields S, Song O. A novel genetic system to detect protein-protein interactions [J]. Nature,1989,340: 245-246.
    [20]Ning Y, Jantasuriyarat C, Zhao Q, et al. The sina E3 ligase OsDIS1 negatively regulates drought response in rice [J]. Plant Physiol.2011,157(1):242-255.
    [21]Jiang Y, Chen X, Ding X, et al. The XA21 binding protein XB25 is required for maintaining XA21-mediated disease resistance [J]. Plant J.2013,73(5):814-823.
    [22]Holtgrawe D, Scholz A, Altmann B, et al. Cytoskeleton-associated, carbohydrate-metabolizing enzymes in maize identified by yeast two-hybrid screening [J]. Physiologia Plantarum,125(2):141-156.
    [23]杨姗,孙晓丽,于洋,等.酵母双杂交筛选与GsCBRLK相互作用的蛋白质[J].遗传,2013,35(3):onIiine
    [24]郭英慧,于月平,郑成超,等.棉花锌指蛋白GhZFP1相互作用蛋白的酵母双杂交筛选[J].中国生物化学与分子生物学报,2010,26(5):423-428.
    [25]Li J J, Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system[J]. Science,1993,262(5141):1870-1874.
    [26]Wang M N, Reed R R. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast [J]. Nature,1993,364(6433):121-126.
    [27]Liu Q, Kasuga M, Sakum Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis [J]. Plant Cell,1998,10(8):1391-1406.
    [28]Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor [J]. Nat Biotechnol,1999,17:287-291.
    [29]Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress [J]. Plant Cell,1994,6(2):251-264.
    [30]Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [J]. Science,1992,257:967-971.
    [31]Tseng T C, Tsai T H, Lue M Y, et al. Identification of sucrose-regulated genes in cultured rice using mRNA differential display [J]. Gene,1995,161:179-182.
    [32]Joshi C P, Kumar S, Nguyen H T. Application of modified differential display technique for cloning and sequencing of the 3' region from three putative members of wheat HSP70 gene family [J]. Plant Mol Biol, 1996,30:641-646.
    [33]Habu Y, Fukada-Tanaka S, Hisatomi Y,et al. Amplified restriction fragment length polymorphism2based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence [J].Biochem Bioph Res Co,1997,234:516-521.
    [34]Yang L, Zheng B, Mao C, et al. cDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit [J]. Gene,2003,314:141-148.
    [35]Cao Y Y,l Zhang Q,Chen Y H, et al. Identification of differential expression genes in leaves of rice (Oryza sativa L.) in response to heat stress by cDNA-AFLP analysis [J]. BioMed Research International,2013, online
    [36]Liu L, Hao Z, Weng J, et al. Identification of drought-responsive genes by cDNA-amplified fragment length polymorphism in maize [J]. Ann Appl Biol,2012,161(3):203-213.
    [37]Claverie M, Souquet M, Jean J, et al. cDNA-AFLP-based genetical genomics in cotton fibers [J]. Theor Appl Genet,2012,124(4):665-683.
    [38]Que Y X, Lin J W, Song X X, et al. Differential gene expression in sugarcane in response to challenge by fungal pathogen Ustilago scitaminea revealed by cDNA-AFLP [J]. J Biomed Biotechnol,2011, online.
    [39]Gupta S, Bharalee R, Bhorali P, et al. Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling [J]. Mol Biotechnol,2013,53(3):237-248.
    [40]Diatchenko L, Lau Y-F C, Campbell A P, et al. Suppression subtractive hybridization:A method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. Proc Natl Acad Sci USA,1996,93: 6025-6030.
    [41]Vonstdin O D, Thies W Q Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes [J]. Nucleic Acids Res,1997,25(13):2598-2602.
    [42]Ji W, Wright M B, Cai L, et al. Efficacy of SSH PCR in isolating differentially expressed genes [J]. BMC Genomics.2002,3:12
    [43]Rawat N, Neeraja C N, Suresh Nair S, et al. Differential gene expression in gall midge susceptible rice genotypes revealed by suppressive subtraction hybridization (SSH) cDNA libraries and microarray analysis [J]. Rice,2012,5:1-15.
    [44]Huang X L, Ma J B, Chen X M, et al. Genes involved in adult plant resistance to stripe rust in wheat cultivar Xingzi 9104 [J]. Physiol Mol Plant P,2012,81:26-32.
    [45]Gao P, Wang G Y, Zhao H J, et al. Isolation and identification of submergence-induced genes in maize (Zea mays) seedlings by suppression subtractive hybridization [J]. Acta Botanica Sinca,2003,45(4):479-483.
    [46]Almeida C M A, Donate V M T S, Amaral D O J, et al. Differential gene expression in sugarcane induced by salicylic acid and under water deficit conditions [J]. Agric Sci Res J,2013,3(1):38-44.
    [47]Zhang W W, Jian G L, Jiang T F, et al. Cotton gene expression profiles in resistant Gossypium hirsutum cv. Zhongzhimian KV1 responding to Verticillium dahliae strain V991 infection [J]. Mol Biol Rep,2012,39(10): 9765-9774.
    [48]Chen R J, Qiu, J D, Jiang Y Y, et al. Isolation of a novel MYB transcription factor OsMyblR from rice and analysis of the response of this gene to abiotic stresses [J]. African Journal of Biotechnology,2012,11 (16): 3731-3737.
    [49]Rawat N, Naga N C, Meenakshi S R, et al. A novel mechanism of gall midge resistance in the rice variety Kavya revealed by microarray analysis [J]. Funct Integr Genomics,2012,12(2):249-264.
    [50]Li Z Y, Zhang T F, Wang S C. Transcriptomic analysis of the highly heterotic maize hybrid zhengdan 958 and its parents during spikelet and floscule differentiation [J]. Journal of Integrative Agriculture,2012,11(11): 1783-1793.
    [51]Wan Y F, Shewry P R, Hawkesford M J. A novel family of y-gliadin genes are highly regulated by nitrogen supply in developing wheat grain [J]. J Exp Bot,2013,64(1):161-168.
    [52]Le D T, Nishiyama R, Watanabe Y, et al. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis [J]. PLoS One, 2012,7(11):e49522.
    [53]Casu R.E, Jarmey J M, Bonnett G D, et al. Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by affymetrix genechip sugarcane genome array expression profiling [J]. Funct Integr Genomics,2007,7:153-167.
    [54]Liu L, Li Y H, Li, S L, et al. Comparison of next-generation sequencing systems [J]. J Biomed Biotechnol, 2012, online.
    [55]Droege M, Hill B. The Genome Sequencer FLX System--longer reads, more applications, straight forward bioinformatics and more complete data sets [J]. J Biotechnol,2008,136(1-2):3-10.
    [56]Marioni J C, Mason C E, Mane S M, et al. RNA-seq:an assessment of technical reproducibility and comparison with gene expression arrays [J]. Genome Res,2008,18(9):1509-1517.
    [57]Garber M, Grabherr M G, Guttman M, et al. Computational methods for transcriptome annotation and quantification using RNA-seq [J]. Nat. Methods,2011,8(6):469-477.
    [58]王曦,汪小我,王立坤,等.新一代高通量RNA测序数据的处理与分析[J].生物化学与生物物理进展, 2010,37(8):834-846.
    [59]Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell,2004,116(2):281-297.
    [60]Sunkar R, Zhou X, Zheng Y, et al. Identification of novel and candidate miRNAs in rice by high throughput sequencing [J]. BMC Plant Biol,2008,8:5
    [61]王茂.打顶前后烟草miRNA表达谱的生物信息学分析及靶基因的电子克隆[D].河南农业大学,2010,6.
    [62]Wei B, Cai T, Zhang R, et al. Novel microRNAs uncovered by deep sequencing of small RNA transcripomes in bread wheat (Triticum aestivum L.)and Brachypodium distachyon (L.) Beauv [J]. Fuctional & Integrative Genomics,2009,9(4):499-511.
    [63]Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics [J]. Nat Rev Genet, 2009,10:57-63.
    [64]Velculescu V E, Zhang L, Vogelstein B, et al. Serial analysis of gene expression [J]. Science,1995,270(5235): 484-487.
    [65]Zhou D X, Rao M S, Walker R, et al. Massively parallel signature sequencing [J]. Methods In Molecular Biology,2006,331:285-311.
    [66]祁云霞,刘永斌,荣威恒.转录组研究新技术RNA-Seq及其应用[J].遗传,2011,33(11):1191-1202.
    [67]Lu T T, Guojun Lu G J, Danlin Fan D L, et al. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq [J]. Genome Res,2010,20:1238-1249.
    [68]Pellny T K, Lovegrove A, Freeman J, et al. Cell Walls of developing wheat starchy endosperm:comparison of composition and RNA-Seq [J]. Plant Physiol,2012,158(2):612-627.
    [69]Li P H, Ponnala L, Gandotra N, et al. The developmental dynamics of the maize leaf transcriptome [J]. Nat Genet,2010,42:1060-1067.
    [70]Severin A J, Woody J L, Bolon Y T, et al. RNA-Seq atlas of Glycine max:a guide to the soybean transcriptome [J]. BMC Plant Biology,2010,10:160.
    [71]Sara Z, Alberto F, Enrico G, et al. Characterization of transcriptional complexity during derry development in vitis vinifera using RNA-Seq [J]. Plant Physiol,2010,4(152):1787-1795.
    [72]Graham I A, Besser K, Blumer S, et al. The gentic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin [J]. Science,2010,327(5963:) 328-331.
    [73]Wu T, Qin Z W, Zhou X Y, et al. Transcriptome profile analysis of floral sex determination in cucumber [J]. J Plant Physiol,2010,167(11):905-913.
    [74]Jones H Q Lakso A N, Syvertsen J P. Physiological control of water status in temperate and subtropical fruit trees [J]. Horticultural Review,1985,7:301-344.
    [75]焦蓉,刘好宝,刘贯山,等.论脯氨酸累积与植物抗渗透胁迫[J].中国农学通报,2011,27(7):216-221.
    [76]Galston A W, Sawhney B K. Polyamines in plant physiology [J]. Plant Physiol,1990,94:406-410.
    [77]汪沛洪.植物多胺代谢的酶类与胁迫反应[J].植物生理学通讯,1990,26(1):1-7.
    [78]谭云,叶庆生,李玲.植物抗旱过程中ABA生理作用的研究进展[J].植物学通报,2001,18(2):197-201.
    [79]唐海明,徐一兰,陈金湘,等.植物脱落酸、多胺和乙烯与逆境的关系[J].作物研究,2007,21(5):501-505.
    [80]Huberman M, Pressman E, Jaffe M J. Pith autolysis in plants:Ⅳ. The activity of polygalacturonase and cellulose during drought stress induced pith autolysis [J]. Plant Cell Physiol,1993,34(6):795-801.
    [81]Kavi Kishor P B, Hong Z, Miao G, et al. Overexpression of △'-pyrroline-5-carboxylate synthetase increases proline overproduction and confers osmotolerance in transgenic plants [J]. Plant Physiol,1995,108: 1387-1394.
    [82]Hong Z L, Lakkineni K, Zhang Z M, et al. Removal of feedback inhibition of △'-Pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress [J]. Plant Physiol,2000,122:1129-1136.
    [83]李玲,余光辉,曾富华.水分胁迫下植物脯氨酸累积的分子机理[J].华南师范大学学报(自然科学版)'2003,1(1):126-134.
    [84]陈吉宝,赵丽英,景蕊莲,等.植物脯氨酸合成酶基因工程研究进展[J].生物技术通报,2010,2:8-10,23.
    [85]张积森,陈由强,李伟,等.甘蔗△1-吡咯啉-5-羧酸合成酶基因(P5CS)的克隆及其表达分析[J].热 带作物学报,2009,9:1337-1344.
    [86]黄诚梅.甘蔗脯氨酸积累与△1-吡咯啉-5-羧酸合成酶(.ScP5CS)基因克隆及转化研究[D].广西大学,2007.
    [87]梁峥,骆爱玲.甜菜碱和甜菜碱合成酶[J].植物生理学通讯,1995,31(1):1-8.
    [88]张立新,李生秀.甜菜碱与植物抗旱/盐性研究进展[J].西北植物学报,2004,24(9):1765-1771.
    [89]Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress:clues from transgenic plants [J]. Plant Cell Environ,2002,25(2):163-171.
    [90]曾华宗,郑成木.甘蔗抗旱生理测验及BADH基因PCR扩增的研究[J].热带作物学报,2003,1:55-58.
    [91]余爱丽.斑茅抗逆性评价及其BADH基因的克隆表达[D].福建农林大学,2004.
    [92]李金花,张春艳,刘浩,等.海藻糖的特性及其在植物抗逆中的应用[J].江西农业学报,2011,23(6):25-27.
    [93]殷桂香,佘茂云,高翔,等.植物果聚糖合成酶基因克隆及特性分析[J].中国生物工程杂志,2009,29(2):125-133.
    [94]Goddijn O J, van Dun K. Trehalose metabolism in plants [J]. Trends Plant Sci,1999,4(8):315-319.
    [95]Garg A K, Kim J K, Owens T G, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses [J]. Proc Natl Acad Sci USA,2002,99(25):15898-15903.
    [96]Fernandez O, Bethencourt L, Quero A, et al. Trehalose and plant stress responses:friend or foe? [J]. Trends in Plant Science,2010,15(7):409-417.
    [97]喻时周,张树珍,施宗强.海藻糖在植物遗传转化中的应用[J].植物生理学通讯,2009,45(3):285-290
    [98]张红缨,刘洋,张今.海藻糖的生物合成和相关酶的特性[J].微生物学通报,1998,1-6:236-239.
    [99]唐先兵,赵恢武,林忠平.植物耐旱基因工程研究进展[J].首都师范大学学报(自然科学版),2002,23(3):47-51.
    [100]刘占磊,黄丛林,张秀海,等.海藻糖的应用及其合酶基因TPS在植物转基因中的研究进展[J].中国农学通报,2009,25(06):54-58.
    [101]张树珍,郑学勤.海藻糖合酶基因的克隆及转化甘蔗的研究[J].农业生物技术学报,2000,4:385-388.
    [102]王自章,张树珍,杨本鹏,等.甘蔗根癌农杆菌介导转化海藻糖合酶基因获得抗渗透胁迫能力增强植株[J].中国农业科学,2003,36(2):140-146.
    [103]曾艳波.干旱诱导启动子驱使下的海藻糖合酶基因遗传转化甘蔗的研究[D].华南热带农业大学,2004.
    [104]成善汉,谢从华,柳俊.高等植物果聚糖研究进展[J].植物学通报,2002,19(3):208-289.
    [105]武媛丽.转蔗糖:蔗糖·1-果糖基转移酶基因甘蔗的抗旱性研究[D].海南大学,2011.
    [106]廖祥儒.植物果聚糖的合成与降解[J].生命的化学,1995,15(5):34-36.
    [107]杨晓红,陈晓阳.果聚糖对植物抗逆性的影响及相应基因工程研究进展[J].华北农学报,2006,21(增刊):6-11.
    [108]王正鹏,蔡文伟,张树珍.蔗糖:蔗糖果糖基转移酶(1-SsT)基因的克隆与植物表达载体的构建[J].浙江农业科学,2008,4:418-421.
    [109]唐建平,蔡文伟,王俊刚,等.农杆菌介导蔗糖:蔗糖果糖基转移酶基因转化甘蔗[J].分子植物育种,2009,7(3):579-582.
    [110]陈丽萍,何道一.植物抗旱耐盐基因的研究进展[J].基因组学与应用生物学,2010,29(3):542-549.
    [111]梁东,马锋旺,张军科,等.苹果6-磷酸山梨醇脱氢酶(S6PDH)基因cDNA克隆及其植物表达载体构建[J].农业生物技术学报,2006,4:635-636.
    [112]Chong B F, Bonnett G D, Glassop D, et al. Growth and metabolism in sugarcane are altered by the creation of a new hexose-phosphate sink [J]. Plant Biotechnol J,2007,5(2):240-253.
    [113]Marino C L, Meire S, Leite M, et al. Putative metabolic pathway of mannitol and sorbitol and in sugarcane [J]. Scientia Agricola,2003,60(4):723-728.
    [114]Luo Y, Qin G J, Zhang J, et al. D-myo-inositol-3-phosphate affects phosphatidylinositol-mediated endomembrane function in Arabidopsis and is essential for auxin-regulated embryogenesis [J]. Plant Cell,2011, 23:1352-1372.
    [115]金京波.肌醇可以消除由过氧化氢激发且依赖水杨酸的细胞死亡和抗性反应[J].农业生物技术学报,2010,5:930.
    [116]Souza G M, Simoes A C Q, Oliveira K C, et al. The sugarcane signal transduction (SUCAST) catalogue: prospecting signal transduction in sugarcane [J]. Genet Mol Biol,2001,24(1-4):25-34.
    [117]周丽,姬向楠,何非,等.植物胚胎发育晚期丰富蛋白的结构与功能[J].热带生物学报,2012,3(2):191-196.
    [118]Tolleter D, Hincha D K, Macherel D. A mitochondrial late embryogenesis abundant protein stabilizes model merebranes in the dry state [J]. Biochim Biophys Acta,2010,1798(10):1926-1933.
    [119]Hundertmark M, Hincha D K. LEA (Late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana [J]. BMC Genomics,2008,9:118.
    [120]刘金仙,阙友雄,郭晋隆,等.甘蔗胚胎晚期丰富蛋白基因(LEA) cDNA全长克隆及表达特性[J].农业生物技术学报,2009,05:836-842.
    [121]Iskandar H M. Stress-related gene expression associated with sucrose accumulation in sugarcane culm [D]. The University of Queensland,2009.
    [122]Prabu G, Kawar P G, Pagariya M C, et al. Identification of water deficit stress upregulated genes in sugarcane [J]. Plant Mol Biol Rep,2011,29:291-304.
    [123]Papini-Terzi F S, Rocha F R, Vencio R Z, et al. Sugarcane genes associated with sucrose content [J]. BMC Genomics,2009,10:120.
    [124]赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制[J].西北植物学报,2005,25(2):413-418.
    [125]李国龙,吴海霞,温丽,等.作物抗旱生理与分子作用机制研究进展[J].中国农学通报,2010,26(23):185-191.
    [126]Corpas F J, Barroso J B, del Rio LA. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells [J]. Trends Plant Sci,2001,6(4):145-150.
    [127]Corpas F J, Fernandez-Ocana A, Carreras A, et al. The expression of different superoxide dismutase forms is cell-type dependent in olive(Olea europaea L.) leaves [J]. Plant Cell Physiol,2006,47(7):984-994.
    [128]阙友雄,刘金仙,许莉萍,等.甘蔗锰超氧化物歧化酶基因的全长克隆、序列分析和表达特性[A].中国植物病理学会2009年学术年会论文集[C].2009年.
    [129]Que Y X, Liu J X, Xu L P, et al. Molecular cloning and expression analysis of a zeta-class glutathione S-transferase gene in sugarcane [J]. African Journal of Biotechnology,2011,10(39):7567-7576.
    [130]陈珊珊.甘蔗活性氧代谢途径关键酶基因的克隆与表达分析[D].福建农林大学,2012.
    [131]Simon S, Hemaprabha G. Sugarcane specific drought responsive candidate genes identified through differential expression in resistant and susceptible genotypes of sugarcane (Saccharum sp.) [J]. International Sugar Journal,2012,1004(1366):731-737.
    [132]Msanne J, Lin J, Stone J M, et al. Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes [J]. Planta,2011,234(1):97-107.
    [133]Wu Y, Zhou H, Que Y X, et al. Cloning and identification of promoter Prd29A and its application in sugarcane drought resistance [J]. Sugar Tech,2008,10(1):36-41.
    [134]Seger R, Krebs E G The MAPK signaling cascade [J]. FASEB J,1995,9(9):726-735.
    [135]Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants [J]. Science,1996, 274(5294):1900-1902.
    [136]Xie T, Ren R B, Zhang Y Y, et al. Molecular mechanism for the inhibition of a critical component in the Arabidopsis thaliana abscisic acid signal transduction pathways, SnRK2.6, by the protein phosphatase ABI1 [J]. J BIOL CHEM,2012,287 (1):794.
    [137]Carraro D M, Lambais M R, Carrer H. In silico characterization and expression analyses of sugarcane putative sucrose non-fermenting-1 (SNF1) related kinases [J]. Genet Mol Biol,2001,24(1-4):35-41.
    [138]Rocha F R, Papini-Terzi F S, Nishiyama M Y, et al. Signal transduction-related responses to phytohormones and environmental challenges in sugarcane [J]. BMC Genomics,2007,8:71.
    [139]李粲,滕峥,刘开雨,等.甘蔗MAP激酶基因SoMAPK4克隆与生物信息学分析[J].南方农业学报,2012,43(6):727-732.
    [140]Riechmann J L, Ratcliffe O J. A genomic perspective on plant transcription factors [J]. Curr Opin Plant Biol, 2000,3(5):423-434.
    [141]Umezawa T, Fujita M, Fujita Y, et al. Engineering drought tolerance in plants discovering and tailoring genes to unlock the future [J]. Curr Opin. Biotechnol,2006,17(2):113-122.
    [142]Jakoby M, Weisshaar B, Droge-Laser W, et al. bZIP transcription factors in Arabidopsis [J]. Trends in Plant Science,2002,7(3):106-111.
    [143]Finkelstein R R, Lynch T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor [J]. The Plant Cell,2000,12:599-609.
    [144]Finkelstein R R, Gampala S S, Rock C D. Abscisic acid signaling in seeds and seedlings [J]. The Plant Cell, 2002,14(Supplement):15-45.
    [145]Landschulz W H, Johnson P F, Mc Knight S L. The leucine zipper:a hypothetical structure common to a new class of DNA binding proteins [J]. Science,1988,240:1759-1764.
    [146]Lee S J, Lee M Y, Yi S Y, et al. PPI 1 A novelpathogen-induced basic region-leucine zipper (bZIP) transcription factor frompepper [J]. Molecular Plant-Microbe Interactions,2002,15 (6):540-548.
    [147]Suzuki M, Ketterling M G, Li Q B, et al. Viviparousl alters global gene expression patterns through regulation of abscisic acid signaling [J]. Plant Physiology,2003,132:1664-1677.
    [148]Nakagawa H, Ohmiya K, Hattori T, et al. A rice bZIP protein, designated OSBZ8, is rapidly induced by absciscic [J]. The Plant Journal,1996,9:217-227.
    [149]Guiltinan M J, Marcotte W R Jr, Quatrano R S. A plant leucine zipper protein that recognizes an abscisic and response element [J]. Science,1990,250(4978):267-271.
    [150]Schlogl P S, Nogueira F T, Drummond R, et al. Identification of new ABA and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database [J]. Plant Cell Rep,2008,27:335-345.
    [151]Schlogl P S, Kobarg J, Moreauc V H, et al. Expression, purification and characterization of a novel bZIP protein from sugarcane [J]. Plant Science,2004,167:583-595.
    [152]GuptaV, Raghuvanshi S, Gupta A, et al. The water-deficit stress- and red-rot-related genes in sugarcane [J]. Funct Integr Genomics,2010,10:207-214.
    [153]Singh K, Foley R C, Oflate-Sanchez L. Transcript ion factors in plant defense and stress responses [J]. Curr Opin Plant Biol,2002,5(5):430-436.
    [154]Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family [J]. Plant Mol Bio,1999, 41(5):577-585.
    [155]Zhong R Q, Richardson E A, Ye Z.H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis [J]. Plant Cell,2007,19(9):2776-2792.
    [156]Kranz H, Scholtz K, Weisshaar B. c-MYB oncogene-like genes encoding three MYB repeats occur in all major plant lineages [J]. Plant J,2000,21(2):231-235.
    [157]Braun E L, Grotewold E. Newly discovered plant c-myb-like genes rewrite the evolution of the plant myb gene family [J]. Plant Physiol,1999,121(1):21-24.
    [158]Bilaud T, Koering C E, Bient-Brasselet E, et al. The telobox, a myb related telomeric DNA bindingmotif found in proteins from yeast, plants and human [J]. Nucleic Acids Res,1996,24(7):1294-1303.
    [159]Martin C, Paz-Ares J. MYB transcription factors in plants [J].Trends Genet,1997,13(2):67-73.
    [160]Ogata K, Morikawa S, Nakamura H, et al. Comparison of the free and DNA-complexed forms of the DMA-binding domain from c-Myb. Nature Struct Biol,1995,2:309-320.
    [161]Romero I, Fuertes A, Benito M J, et al. More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana [J]. Plant J,1998,14(3):273-284.
    [162]Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana [J], Curr Opin Plant Biol,2001,4(5):447-456.
    [163]李国印,阙友雄,许莉萍,等.甘蔗MYB2转录因子的电子克隆和生物信息学分析[J].生物信息学,2011,9(1):24-27.
    [164]Prabu Q Kawar P G, Theertha-Prasad D. Molecular cloning and characterization of an inducible alternatively spliced MYB transcription factor gene, ScMYBAS1 from sugarcane (Saccharum officinarum Linn.) [A]. Plant and Animal Genome XVII Conference Abstracts,2009.
    [165]Prabu G R, Theertha-Prasad D. Structure of DNA binding MYB transcription factor protein (ScMYBAS1-3) from sugarcane [J]. Journal of Phytology,2011,3(3):77-82.
    [166]Prabu Q Prasad D T. Functional characterization of sugarcane MYB transcription factor gene promoter (PScMYBAS1) in response to abiotic stresses and hormones [J]. Plant Cell Reports,2012,31(4):661-669.
    [167]Patade V Y, Suprasanna P. Short-term salt and PEG stresses regulate expression of microRNA, miR159 in sugarcane leaves [J]. J Crop Sci Biotech,2010,13(3):177-182.
    [168]Riechmann J L, Meyerowitz E M. The AP2/EREBP family of plant transcription factors [J]. Biol Chem, 1998,379(6):633-646.
    [169]Sakuma Y, Liu Q, Dubouzet J Q et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression [J]. Biochem Biophys Res Commun.2002,290(3):998-1009.
    [170]Liu Q, Zhang G Y, Chen S Y. Structure and regulatory function of plant transcription factors [J]. Chinese Science Bulletin,2001,46(4):271-278.
    [171]Shigyo M, Hasebe M, Ito M. Molecular evolution of the AP2 subfamily [J]. Gene,2006,366(2):256-265.
    [172]Okamuro J K, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding protein in Arabidopsis. Proc Natl Acad Sci USA,1997,94(13):7076-7081.
    [173]Moose S P, Sisco P H. Glossyl5, an APETALA2-like gene from maize that regulates leaf epidermal cell identity [J]. Genes Dev,1996,10(23):3018-3027.
    [174]Hu Y B, Zhao L F, Chong K, et al. Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis [J]. J Plant Physiol,2008,165(16):1717-1725.
    [175]Trujillo L E, Sotolongo M, Menendez C, et al. SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants [J]. Plant Cell Physiol,2008, 49(4):512-525.
    [176]Kido E A, Costa Ferreira Neto J R, de Oliveira Silva R L, et al. New insights in the sugarcane transcriptome responding to drought stress as revealed by supersage [J]. Scientific World Journal,2012, online.
    [177]Rushton P J, Somssich I E, Ringler P, et al. WRKY transcription factors [J]. Trends Plant Sci,2010,15(5): 247-258.
    [178]Ulker B, Somssich I E. WRKY transcription factors:from DNA binding towards biological function [J].Curr Opin Plant Biol,2004,7(5):491-498.
    [179]田云,卢向阳,彭丽莎,等.植物WRKY转录因子结构特点及其生物学功能[J].遗传,2006,28(12):1607-1612.
    [180]Lambais M R. In silico differential display of defense-related expressed sequence tags from sugarcane tissues infected with diazotrophic endophytes [J]. Genet Mol Biol,2001,24 (1-4):103-111.
    [181]Liu J X, Que Y X, Guo J L, et al. Molecular cloning and expression analysis of a WRKY transcription factor in sugarcane [J]. African Journal of Biotechnology,2012,11(24):6434-6444.
    [182]Duval M, Hsieh T F, Kim SY, et al. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily [J]. Plant Mol Biol,2002,50:237-248.
    [183]才华,朱延明,李勇,等.野生大豆转录因子GsNAC20基因的分离及胁迫耐性分析[J].作物学报,2011,37(8):1351-1359.
    [184]Olsen A N, Ernst H A, Leggio L L, et al. DNA-binding specificity and molecular functions of NAC transcription factors [J]. Plant Sci,2005,169(4):785-797.
    [185]Kim H S, Park B O, Yoo J H, et al. Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis [J]. J Biol Chem,2007,282(50):36292-36302.
    [186]Xue G P. A CELD-fusion method for rapid determination of the DNA-binding sequence specificity of novel plant DNA-binding proteins [J]. Plant J,2005,41(4):638-649.
    [187]Ren T, Qu F, Morris T J. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus [J]. Plant Cell,2000,12(10):1917-1926.
    [188]Weir I, Lu J, Cook H, et al. CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum [J]. Development,2004,131(4):915-922.
    [189]Tran L S, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter [J]. Plant Cell,2004,16(9):2481-2498.
    [190]Hu H H, You J, Fang Y J, et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice [J]. Plant Mol Biol,2008,67(1-2):169-181.
    [191]Nogueira F T, Schlogl P S, Camargo R S, et al. SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane [J]. Plant Sci,2005,169 (1):93-106.
    [192]陈如凯等著.现代甘蔗遗传育种[M].北京:中国农业出版社,2011,1-3.
    [193]徐欣,陈如凯.我国甘蔗燃料乙醇生产潜力与发展策略[J].林业经济,2009,2000):57-60.
    [194]Minoche A E, Dohm J C, Himmelbauer H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems [J]. Genome Biol,2011,12(11):R112.
    [195]Li R, Yu C, Li Y, et al. SOAP2:An improved ultra fast tool for short read alignment [J]. Bioinformatics, 2009,25 (15):1966-1967.
    [196]Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for Transcriptomics [J]. Nat Rev Genet, 2009,10:57-63.
    [197]Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nat Methods,2008,5(7):621-628.
    [198]Audic S, Claverie J M. The significance of digital gene expression profiles [J]. Genome Res,1997,7(10): 986-995.
    [199]Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency [J]. The Annals of Statistics,2001,29(4):1165-1188.
    [200]Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment [J]. Nucleic Acids Res,2008,36 (Database issue):480-484.
    [201]Ming R, Liu S C, Lin Y R, et al. Detailed alignment of saccharum and sorghum chromosomes:comparative organization of closely related diploid and polyploid genomes [J]. Genetics,1998,150(4):1663-1682.
    [202]Vincent D, Lapierre C, Pollet B, et al. Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation [J]. Plant Physiol,2005,137:949-960.
    [203]蒋明义,荆家海,王韶唐.水分胁迫引起植物膜脂过氧化[J].西北农业大学学报,19(2):88-94.
    [204]顾者珉,沈曾佑,张志良,等.细胞分裂素对水分胁迫中小麦胚芽鞘生长的影响[J].植物生理学报,1984,10(4):353-361.
    [205]Davin L B, Wang H B, Crowell A L, et al. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center [J]. Science,1997,275(5298):362-366.
    [206]Gang D R, Costa M A, Fujita M, et al. Regiochemical control of monolignol radical coupling:a new paradigm for lignin and lignan biosynthesis [J]. Chem Biol,1999,6(3):143-151.
    [207]Burlat V, Kwon M, Davin L B, et al. Dirigent proteins and dirigent sites in lignifying tissues [J]. Phytochemistry,2001,57(6):883-897.
    [208]Ralph S, Park J Y, Bohlmann J, et al. Dirigent proteins in conifer defense:gene discovery, phylogeny, and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.) [J]. Plant Mol Biol,2006,60(1):21-40.
    [209]Ralph S G, Jancsik S, Bohlmann J. Dirigent proteins in conifer defense Ⅱ:Extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.) [J]. Phytochemistry, 2007,68(14):1975-1991.
    [210]Wu R H, Wang L L, Wang Z, et al. Cloning and expression analysis of a dirigent protein gene from the resurrection plant Boea hygrometrica [J]. Prog Nat Sci,2009,19(3):347-352.
    [211]Gao C Q, Liu G F, Wang Y C, et al. Cloning and analysis of dirigent-like protein in gene from Tamarix androssow ii [J]. Bulletin of Botanical Research,2010,30:81-86.
    [212]Que Y X, Yang Z X, Xu L P, et al. Isolation and identification of differentially expressed genes in sugarcane infected by Ustilago scitaminea [J]. Acta Agron Sin,2009,3:452-458.
    [213]Gupta K, Agarwal P K, Reddy M K, et al. SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli [J]. Plant Cell Rep,2010, 29:1131-1137.
    [214]Van der Weele C M, Spollen W G, Sharp R E, et al. Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media [J]. Journal of Experimental Botany,2000, 51:1555-1562.
    [215]Zhang L J, Fan J J, Ruan Y H, et al. Application of polyethylene glycol in the study of plant osmotic stress physiology [J]. Plant Physiology Communications,2004,40:361-364.
    [216]Iskandar H M, Simpson R S, Casu R E, et al. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane [J]. Plant Molecular Biology Reporter, 2004,22:325-337.
    [217]Que Y X, Xu L P, Xu J S, et al. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane [J]. Chinese Journal of Tropical Crops,2009,30:274-278.
    [218]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method [J]. Methods,2001,25:402-408.
    [219]Casu R E, Dimmock C M., Chapman S C, et al. Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling [J]. Plant Molecular Biology,2004,54:503-517.
    [220]Damaj M B, Kumpatla S P, Emani C, et al. Sugarcane DIRIGENT and O-METHYLTRANSFERASE promoters confer stem-regulated gene expression in diverse monocots [J]. Planta,2010,231:1439-1458.
    [221]Gu, J Q Zhou Q X, Wang X. Reused path of heavy metal pollution in soils and its research advance [J]. Chinese Journal of Basic Science and Engineering,2003,11(2):143-151.
    [222]Chaney R L, Plant uptake of inorganic waste constituents.1983, In J.F. Parr, P.B. Marsh and J.M. Kla (eds.) Land treatment of hazardous wastes. Noyes Data Corp, Park Ridge, N J.
    [223]Raskin I, Smith R D, Salt D E. Phytoremediation of metals:using plants to remove pollutants from the environment [J]. Curr Opin Biotech,1997,8(2):221-226.
    [224]Flathman P E, Lanza G R. Phytoremediation:current views on an emerging green technology [J]. J Soil Contain,1998,7(4):415-432.
    [225]Cunningham S D, Ow D W, Promises and prospects of phytoremediation [J]. Plant Physiol,1996,110 (3): 715-719.
    [226]Verbruggen N, Hermans C, Scha H. Molecular mechanisms of metal hyperaccumulation in plants [J]. New Phytol,2009,181(4):759-776.
    [227]Hossain M A, Piyatida P, Teixeira da Silva J A, et al. Molecular mechanism of heavy metal toxicity and tolerance in plants:central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation [J]. Journal of Botany,2012,1-37.
    [228]Wu M G, Lin Y Q, Zhang H. Research status and prospect on industrial standard of sugarcane in China [J]. Chinese Journal of Subtropical Agriculture Research,2010,6(3):209-211.
    [229]Sereno M L. Response of sugarcane to increasing concentrations of copper and cadmium and expression of metallothionein genes [J].J Plant Physiol,2007,164:1499-1515.
    [230]Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis [J]. Annu Rev Plant Biol,2002,53:159-182.
    [231]Roosens N H, Leplae R, Bernard C, et al. Variations in plant metallothioneins:the heavy metal hyperaccumulator Thlaspi caerulescens as a study case. Planta,2005,222(4):716-729.
    [232]Rodriguez-Llorente I D. Expression of the seed-specific metallothionein mt4a in plant vegetative tissues increases Cu and Zn tolerance [J]. Plant Sci,2010,178:327-332.
    [233]Huang G Y, Wang Y S. Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress [J]. Aquat Toxicol,2010,99:86-92.
    [234]Guo J L, Que Y X, Liu J X, et al. Construction of full-length cDNA library for sugarcane stem by optimized oligo-capping [J]. Chinese Journal of Tropical Crops,2009,30:672-676.
    [235]Van der Weele C M, Spollen W G, Sharp R E, et al. Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media [J]. J Exp Bot,2000,51:1555-1562.
    [236]Zhang L J. Application of polyethylene glycol in the study of plant osmotic stress physiology [J]. Plant Physiol Communications,2004,40:361-364.
    [237]Bartolf M, Brennan E, Price C A. Partial characterization of a cadmium-binding protein from the roots of cadmium-treated tomato [J]. Plant Physiol,1980,66:438-441.
    [238]Zhou J, Goldsbrough P B. Structure, organization and expression of the metallothionein gene family in Arabidopsis [J]. Mol Gen Genet,1995,248:318-328.
    [239]Wong H L, Sakamoto T, Kawasaki T, et al., Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRacl in rice [J]. Plant Physiol,2004,135(3):1447-1456.
    [240]Figueira A, Kido E A, Almeida R S. Identifying sugarcane expressed sequences associated with nutrient transporters and peptide metal chelators [J]. Genet Mol Biol,2001,24 (1-4):207-220.
    [241]Guo W J, Bundithya W, Goldsbrough P B. Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper [J]. New Phytolo,2003, 159:369-381.
    [242]Guo W J, Meetam M, Goldsbrough P B. Examining the specific contribution of individual Arabidopsis metallothioneins to copper distribution and metal tolerance [J]. Plant Physiol,2008,146:1697-1706.
    [243]Hsieh H M, Liu W K, Chang A, et al. RNA expression patterns of a type 2 metallothionein-like gene from rice [J]. Plant Mol Biol,1996,32(3):525-529.
    [244]Zhu J H, Zhang Q, Wu R, et al. HbMT2, an ethephon-induced metallothionein gene from Hevea brasiliensis responds to H2O2 stress [J]. Plant Physiol Bioch,2010,48:710-715.
    [245]Murphy A, Zhou J, Goldsbrough P B, et al. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsk thaliana [J]. Plant Physiol,1997,113:1293-1301.
    [246]Bilecen K, Ozturk U H, Duru A D, et al., Triticum durum metallothionein. Isolation of the gene and structural characterization of the protein using solution scattering and molecular modeling [J]. J Biol Chem, 2005,280(14):13701-13711.
    [247]Tang W H, Zhang J L, Wang Z Y, et al. The cause of deviation made in determining the molecular weight of His-tag fusion proteins by SDS-PAGE [J]. Chinese Journal of Acta Phytophysiologica Sinica,2000,26(1): 64-68.
    [248]Tommey A M, Shi J, Lindsay W P, et al., Expression of the pea gene PsMTA in E. coli. Metal-binding properties of the expressed protein [J]. FEBS Lett,1991,292 (1-2):48-52.
    [249]Evans K M, Gatehouse J A, Lindsay W P, et al. Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation implications for PsMTA function [J]. Plant Mol Biol,1992,20(6):1019-1028.
    [250]Garcia-Herndndez M, Murphy A, Taiz L. Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis [J]. Plant Physiol,1998,118(2):387-397.
    [251]Klempnauer K.H, Gonda T J, Bishop J M. Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb:the architecture of a transduced oncogene [J]. Cell,1982,31:453-446.
    [252]Weston K. Myb proteins in life, death and differentiation [J]. Curr Opin Genet Dev,1998,8(1):76-81.
    [253]Lipsick J S. One billion years of Myb [J]. Oncogene,1996,13(2):223-235.
    [254]Dubos C, Stracke., Grotewold E, et al. MYB transcription factors in Arabidopsis [J]. Trends Plant Sci,2010, 15(10):573-581.
    [255]Dai X Y, Xu Y Y, Ma Q B, et al. Over expression of a R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing drought and salt stress in transgenic Arabidopsis [J]. Plant Physiol,2007,143(4): 1739-1751.
    [256]HagaN, Kato K, Murase M, et al. R1R2R3-MYB proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana [J]. Development,2007,134(6):1101-1110.
    [257]Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J]. Plant Cell,2003,15(1):63-78.
    [258]Vannini C, Locatelli F, Bracale M, et al. Over expression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants [J]. The Plant Journal,2004,37(1):115-127.
    [259]Lin-Wang K, Bolitho K, Grafton K, et al. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae [J]. BMC Plant Biol,2010,10:50.
    [260]陈焕新,关秋玲,李秋莉.植物MYB 2转录因子[J].植物生理学通讯,2008,44(5):1034-1038.
    [261]贾东升,毛新国,景蕊莲,等.小麦转录因子TaMyb2s的克隆及表达[J].作物学报,2008,34(8):1323-1329.
    [262]胡银岗,林凡云,王士强,等.糜子抗旱节水相关基因PmMYB的克隆及表达分析[J].遗传,2008,30(3):373-379.
    [263]Rahaie M, Xue G P, Naghavi M R, et al. A MYB gene from wheat(Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes [J]. Plant Cell Rep,2010,29:835-844.